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Abstract. In this paper, we introduce and study a new class of nonlinear set-valued mixed

random variational inclusions involving random nonlinear (Aω, ηω)-monotone Mappings in

Hilbert spaces. Based on the generalized random resolvent operator associated with random

nonlinear (Aω, ηω)-monotone mappings, an existence theorem of solutions for this kind of

random nonlinear set-valued mixed variational inclusions is established and a new algorithm

of approximation solution is suggested and discussed. The results presented in this paper

generalize, improve, and unify some recent results in this field.

1. Introduction

Variational inclusions are an important and generalization of classical vari-
ational inequalities which have wide applications to many fields including, for
example, mechanics, physics, optimization, control, and engineering sciences
and in face, the problems for random variational inclusions(inequalities) are
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just so. Motivated and inspired by the recent research works in these fasci-
nating areas, the random variational inclusion (inequalities, equalities, quasi-
variational inclusions, quasi-complementarity) problems have been introduced
and studied by Ahmad and Bazán [1], Chang [3], Chang and Huang [5], Gan-
guly and Wadhwa [9], Huang [10], Huang et al. [11], Khan et al. [14], Lan
[15], Noor and Elsanosi [17]. Very recently, the problems of random fuzzy
generalized variational inclusions involving random nonlinear mappings have
been studied by Li [16], and Zhang and Bi [25] in Hilbert spaces.

On the other hand, monotonicity techniques were extended and applied in
recent years because of their importance in the theory of variational inequali-
ties, complementarity problems, and variational inclusions.

In 2003, Huang and Fang [12] introduced a class of generalized monotone
mappings, maximal η-monotone mappings, and defined an associated resol-
vent operator. Using resolvent operator methods, which is a very important
method to find solutions of variational inequality and variational inclusion
problems, they developed some iterative algorithms to approximate the solu-
tion of a class of general variational inclusions involving maximal η-monotone
operators. Huang and Fang’s method extended the resolvent operator method
associated with an η-subdifferential operator due to Ding and Luo [6].

Recently, Fang and Huang [7], Fang-Huang-Thompon [8], Verma [23] intro-
duced H-monotone operator, (H, η)-monotone operator, and (A, η)-monotone
operator, which are generalization of the classical monotone operator. They
defined associated resolvent operator, established the Lipschitz continuity of
the resolvent operator, studied some classes of variational inclusions in Hilbert
spaces using those resolvent operators and constructed some algorithms for
approximating solutions of those variational inclusions.

The main purpose of this paper is to introduce and study a new class of
random nonlinear set-valued mixed variational inclusions involving random
nonlinear (Aω, ηω)-monotone mappings in Hilbert spaces. Based on the gener-
alized random resolvent operator associated with random nonlinear (Aω, ηω)-
monotone mappings, an existence theorem of solutions for this kind of random
nonlinear set-valued mixed variational inclusions is established and a new al-
gorithm of approximation solution is suggested and discussed.

1.1. Set-valued random mapping.
Throughout this paper, we suppose that (Ω,<, µ) is a complete σ-finite

measure space and X is a separable real Hilbert space endowed with a norm
‖ · ‖ and an inner product 〈·, ·〉. We denote by =(X) the class of Borel σ-fields
in X. Let 2X and CB(X) denote the family of all the nonempty subsets of
X and the family of all the nonempty bounded closed sets of X, respectively.
Let us recall the following definitions and some auxiliary results.
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Definition 1.1. A mapping x : Ω → X is said to be measurable if, for any
B ∈ =(X), {ω ∈ Ω : x(ω) ∈ B} ∈ <.

Definition 1.2. A mapping f : Ω × X → X is called a random mapping
if, for any x ∈ X, f(ω, x) = y(ω) is measurable. A random mapping f is
said to be continuous (resp., linear, bounded) if for any ω ∈ Ω, the mapping
f(ω, ·) : X → X is continuous (resp., linear, bounded).

Similarly, we can define a random mapping h : Ω×X ×X → X. We shall
write x = x(ω), y = y(ω), fω = f(ω, x(ω)) and hω(x, y) = h(ω, x(ω), y(ω)) for
all ω ∈ Ω and x(ω), y(ω) ∈ X.

It is well-known that a measurable mapping is necessarily a random map-
ping.

Definition 1.3. A set-valued mapping Q : Ω → 2X is said to be measurable
if, for any B ∈ =(X), Q−1(B) = {ω ∈ Ω : Q(ω)

⋂
B 6= ∅} ∈ <.

Definition 1.4. A mapping u : Ω → X is called a measurable selection of
a set-valued measurable mapping Q : Ω → 2X if, for any ω ∈ Ω, u(ω) is
measurable and u(ω) ∈ Q(ω).

Definition 1.5. A set-valued mapping Q : Ω×X → 2X is called a set-valued
random mapping if, for any x ∈ X, Q(·, x) is measurable(denoted by Qω, or
Q).

1.2. Random resolvent operator of (Aω, ηω)-monotone mapping.

Definition 1.6. The random mapping ηω : Ω × X × X → X is said to be
τω-Lipschitz continuous if there exists a real-valued random variable τω > 0
such that

‖ηω(x(ω), y(ω))‖ ≤ τω‖x(ω)− y(ω)‖,
for all x(ω), y(ω) ∈ X and for all ω ∈ Ω.

Definition 1.7. Let X be a separable real Hilbert Space, ηω : Ω×X×X → X
and Aω,Hω : Ω ×X be random single-valued mappings. Then a multi-valued
random mapping Mω : Ω× 2X is said to be:

(i) Ĥ-continuous if, for any ω ∈ Ω,Mω(·) is continuous in Ĥ(·, ·) that is,
there exists a real-valued random variable αω > 0 such that

Ĥ(Mω(x1(ω)),Mω(x2(ω))) ≤ αω‖x1(ω)− x2(ω)‖,
∀x1(ω), x2(ω) ∈ X, ω ∈ Ω where Ĥ(·, ·) is the Hausdorff metric on
CB(X) defined as follows: for any A,B ∈ CB(X),

Ĥ(A,B) = max{sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)};



398 Hong-Gang Li and Xian Bing Pan

(ii) monotone if, for any ω ∈ Ω,

〈u1(ω)− u2(ω), x1(ω)− x2(ω)〉 ≥ 0,

for all x1(ω), x2(ω) ∈ X, u1(ω) ∈ Mω(x1(ω)), u2(ω) ∈ Mω(x2(ω));
(iii) ηω-monotone if, for any ω ∈ Ω,

〈u1(ω)− u2(ω), ηω(x1(ω), x2(ω))〉 ≥ 0,

for all x1(ω), x2(ω) ∈ X, u1(ω) ∈ Mω(x1(ω)), u2(ω) ∈ Mω(x2(ω));
(iv) strictly ηω-monotone if, for any ω ∈ Ω,

〈u1(ω)− u2(ω), ηω(x1(ω), x2(ω))〉 ≥ 0,

for all x1(ω), x2(ω) ∈ X,u1(ω) ∈ Mω(x1(ω)), u2(ω) ∈ Mω(x2(ω)), and
the equality holds if and only if x1(ω) = x2(ω) for all ω ∈ Ω;

(v) rω−strongly ηω-monotone if there exists a real-valued random variable
rω > 0 such that

〈u1(ω)− u2(ω), ηω(x1(ω), x2(ω))〉 ≥ rω‖x1(ω)− x2(ω)‖2,

for all x1(ω), x2(ω) ∈ X, u1(ω) ∈ Mω(x1(ω)), u2(ω) ∈ Mω(x2(ω));
(vi) ηω-firmly nonexpansive if

‖u1(ω)− u2(ω)‖2 ≤ 〈u1(ω)− u2(ω), ηω(x1(ω), x2(ω))〉,
for all x1(ω), x2(ω) ∈ X, u1(ω) ∈ Mω(x1(ω)), u2(ω) ∈ Mω(x2(ω));

(vii) (mω, ηω)-relaxed monotone if there exists a real-valued random variable
mω > 0 such that, for any ω ∈ Ω,

〈u1(ω)− u2(ω), ηω(x1(ω), x2(ω))〉 ≥ −mω‖x1(ω)− x2(ω)‖2,

for all x1(ω), x2(ω) ∈ X, u1(ω) ∈ Mω(x1(ω)), u2(ω) ∈ Mω(x2(ω));
(viii) maximal monotone if, for any ω ∈ Ω, and any random variable ρω > 0,

the Mω is monotone and

(I + ρωMω)(X) = X,

where I denotes the identity mapping on X;
(ix) maximal ηω-monotone if, for any ω ∈ Ω, and any random variable

ρω > 0, the Mω is ηω-monotone and

(I + ρωMω)(X) = X,

where I denotes the identity mapping on X;
(x) Aω-monotone if, for any ω ∈ Ω and any random variable ρω > 0, the

Mω is mω-relaxed monotone and

(Aω + ρωMω)(X) = X;
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(xi) Hω-monotone if, for any ω ∈ Ω and any random variable ρω > 0, the
Mω is monotone and

(Hω + ρωMω)(X) = X;

(xii) (Hω, ηω)-monotone if, for any ω ∈ Ω and any random variable ρω > 0,
the Mω is ηω-monotone and

(Hω(·) + ρωMω(·))(X) = X;

(xiii) (Aω, ηω)-monotone if, for any ω ∈ Ω and any random variable ρω > 0,
the Mω is (mω, ηω)-relaxed monotone and

(Aω + ρωMω)(X) = X.

Definition 1.8. Let X be a separable real Hilbert Space, Aω : Ω×X → X and
Fω : Ω×X×X → X be single-valued random mappings, and Pω : Ω×X → 2X

be a multi-valued random mapping.
(i) A single-valued random mapping Fω is said to be (µω, νω)-Lipschitz

continuous, if there exist two random variables µω, νω : Ω → (0,+∞)
such that
‖Fω(x1(ω), y1(ω))− Fω(x2(ω), y2(ω))‖ ≤µω‖x1(ω)− x2(ω)‖

+ νω‖y1(ω)− y2(ω)‖,
∀xi(ω), yi(ω) ∈ X, i = 1, 2;

(ii) A single-valued random mapping Fω is said to be ψω-Pω-strongly mono-
tone with respect to Aω in the first argument of Fω(·, ·), if there exist
a random variables ψω : Ω → (0, +∞) such that

〈Fω(x1, ·)− Fω(x2, ·), Aω(y1)−Aω(y2)〉 ≥ ψω‖x1 − x2‖2,

∀xi(ω) ∈ X, yi ∈ Pω(i = 1, 2), ω ∈ Ω;

Definition 1.9. Let X be a separable real Hilbert Space, ηω : Ω×X×X → X
be a random single-valued mapping, Aω : Ω×X → X be a strictly ηω-monotone
single-valued mapping and Mω : Ω×X → 2X be a (Aω, ηω)-monotone mapping.
The random resolvent operator RAω ,ηω

ρω ,Mω
: Ω×X → X is defined by

RAω ,ηω

ρω ,Mω
(y) = (Aω + ρωMω)−1(y),

for all ω ∈ Ω, y = y(ω) ∈ X, and {ω ∈ Ω : 0 < ρω ∈ B} ∈ <.

Lemma 1.10. ([4]) Let X be a separable real Hilbert Space, Gω : Ω × X →
CB(X) be a Ĥ-continuous random set-valued mapping. then for any measur-
able mapping x : Ω → X, the set-valued mapping Gω(x(ω)) : Ω×X → CB(X)
is measurable.
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Lemma 1.11. ([4]) Let Gω, Pω : Ω × X → CB(X) be two measurable set-
valued mappings, ε > 0 be a constant and x : Ω → X be a measurable selection
of Pω. Then there exists a measurable selection y : Ω → X of Gω such that
for any ω ∈ Ω,

‖x(ω)− y(ω)‖ ≤ (1 + ε)Ĥ(Gω(·), Pω(·)).
Lemma 1.12. ([20]) Let X be a separable real Hilbert Space, ηω : Ω×X×X →
X be τω-Lipschtiz continuous random mapping, Aω : Ω × X → X be an rω-
strongly ηω-monotone random mapping, and Mω(y) : Ω × X → 2X(∀y ∈
X) be an (Aω, ηω)-monotone random mapping. Then the generalized random
resolvent operator RAω ,ηω

ρω ,Mω
: X → X is τω/(rω −mωρω)-Lipschitz continuous,

that is,
‖RAω ,ηω

ρω ,Mω
(x)−RAω ,ηω

ρω ,Mω
(y)‖ ≤ τω

rω −mωρω
‖x− y‖,

for all x, y ∈ X, ω ∈ Ω, where ρω, rω,mω : Ω → (0,+∞) are real-valued
measurable, and 0 < ρω < rω

mω
.

2. Random variational inclusion problem and Algorithm for
random the approximation solution of the problem

2.1. Random variational inclusion problem.
Let Aω, fω : Ω×X → X, ηω : Ω×X×X → X and Fω : Ω×X×X → X be

single-valued random mappings, and Gω, Pω be a multi-valued random map-
pings. Let Mω : Ω×X → X2X is a set-valued random mapping such that for
each ω ∈ Ω, and x ∈ X Mω(x, ·) : X × X → 2X is (Aω, ηω)-monotone ran-
dom mapping and range(Pω)

⋂
dom(Mω(x, ·)) 6= ∅. We introduce and study

the following problem for a new class of nonlinear set-valued mixed random
variational inclusions Involving Random (Aω, ηω)-monotone mappings.

For a given element gω : Ω → X and any real-valued random variable
kω > 0, finding measurable mappings x = x(ω), z = z(ω), y = y(ω) : Ω →
X, z ∈ Gω(x), and y ∈ Pω(x) such that

gω ∈ Fω(x, fω(z)) + kωMω(y, z), (2.1)

which is a called nonlinear set-valued mixed random variational inclusions in-
volving random nonlinear (Aω, ηω)-monotone mappings(short down: nonlinear
random SVMVI.) in Hilbert spaces. And a solution of the problem (2.1) is
called a random solution.

For a suitable choice of Aω, ηω, Fω, fω,Mω, Pω and the space X, a number
of known classes of variational inclusions and variational inequalities can be
obtained as special cases of the general set-valued mixed quasi-variational
inclusions (2.1).
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Special cases:

(i) If kω = 1, Gω(x) ≡ {x}, and Mω(·, ·) = ∂φ(·) is the subdifferential
of a lower semi-continuous and η-subdifferentiable function φ : X →
R

⋃{+∞}. Let for any v ∈ X, ηω(v, gω) = v−gω(u, x), Fω(v, fω(z)) =
fω(x) − pω(v), and taking gω = v ∈ X(∀ω ∈ Ω), then problem (3.1)
becomes the following problem: Find measurable mappings u, x, y :
Ω → X, such that for each ω ∈ Ω, v ∈ X, hold

x(ω) ∈ Gω(u), y(ω) ∈ Pω(u),

and

〈fω(x)− pω(y), v −ω (u, x)〉 ≥ φ(gω(u, x))− φ(v), (2.2)

for all ω ∈ Ω, and each measurable mappings u(ω), v(ω) ∈ X, which is
random generalized nonlinear variational inclusions for random map-
pings in Hilbert space. The form of the problem (2.2) was studied by
Zhang and Bi [25] when all the fuzzy mappings are taken as general
determine mappings in the problem.

(ii) If in the problem (2.2), Pω = pω(x), fω(z) ≡ z, Mω(·, ·) ≡ ∂φ(ω, ·) :
Ω ×X → X is subdifferentiable, and φ(ω, ·) is the indicator function
of a nonempty closed convex set K in K defined in the form:

φ(y) =
{

0 if y ∈ K,
∞ otherwise,

then the problem (2.3) becomes the problem of finding measurable
mappings x, u : Ω → X such that u ∈ Tω(x) and

〈fω(x) + u(ω)− gω, y − pω(x)〉 ≥ 0, (2.3)

for all ω ∈ Ω, y ∈ K.
(iii) If gω = 0, kω = 1, fω(z) ≡ z, Pω(x) = I, Mω(·, ·) = Mω(·), which is

identity mapping in the X, then the problem (2.1) is described as:
determine an element x ∈ X, z ∈ Qω such that

0 ∈ Fω(x, zω(x)) + Mω(x) (2.4)

which the form of the problem (2.4) have been studied by Verma[23]
when the random variables (functions, mappings) all are taken as gen-
eral variables (functions, mappings) in the problem.

(iv) If g(ω) = 0, kω = 1, fω(z) ≡ z, Aω = Hω, Pω(x) = I, Mω(·, ·) = Mω(·),
which is identity mapping in the X, then the problem (2.1) is described
as: determine an element x ∈ X, z ∈ Qω such that

0 ∈ Fω(x, zω(x)) + Mω(x). (2.5)
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(v) If Mω(·, ·) = Mω(·), fω(z) ≡ z, then the problem (2.1) becomes the
problem (2.1) in Li[16] which the form of the problem (2.1) have been
studied by Fang Huang and Thompson [8] when the random variables
(functions, mappings) all are taken as general variables (functions,
mappings) in the problem.

Furthermore, a number of known classes of variational inclusions and vari-
ational inequalities in Chang [3], Huang [10], Noor and Elsanosi [17] have
been studied as special cases of the problem (2.1) when the random variables
(functions, mappings) all are taken as general variables (functions, mappings)
in the problem. These types of variational inclusions can enable us to study
many important nonlinear problems arising in mechanics, physics, optimiza-
tion and control, nonlinear programming, economics, finance, regional, struc-
tural, transportation, elasticity, and applied sciences in a general and unified
framework.

2.2. Algorithm for random the approximation solution of the Ran-
dom variational inclusion problem.

New, we transfer the problem (2.1) into a fixed point problem.

Lemma 2.1. Measurable (x, z, y) : Ω → X is random solution of nonlinear
set-valued mixed random variational inclusions the problem (2.1) if and only
if for each ω ∈ Ω, holds the following relation

y = RAω ,ηω

ρωkω ,Mω
[Aω(y) + ρωgω − ρωFω(x, fω(z))], (2.6)

where z ∈ Gω, y ∈ Pω, ρ, k : Ω → (0,+∞) are two real-valued random vari-
ables, and RAω ,ηω

ρωkω ,Mω
= (Aω + ρωkωMω)−1 is a random resolvent operator in a

Hilbert Space X.

Proof. The proof directly follows from the definition of RAω ,ηω

ρωkω ,Mω
and so it is

omitted. ¤

Based on Lemma 2.1 and Nadler [18], we can develop a new algorithm
of approximation solution for solving the nonlinear set-valued mixed random
variational inclusions (2.1) with random nonlinear (Aω, ηω)-monotone map-
pings as follows:

Algorithm 2.2. Let Gω, Pω : Ω × X → CB(X) be set-valued random map-
pings, Aω, fω : Ω ×X → X, ηω, Fω : Ω ×X ×X → X single-valued random
mappings and Mω : Ω×X×X → 2X a set-valued random mapping such that,
for each fixed ω ∈ Ω and any measurable mapping x : Ω×X → X, Mω(x, ·) :
Ω×X → 2X is a (Aω, ηω)-monotone mapping and range(Pω)

⋂
domMω(·, z) 6=

∅(∀z ∈ Gω).

Step 1. Initialize:
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For any given x0 : Ω → X, the multi-mappings Gω(x0(·)), Pω(x0(·)) :
Ω × X → CB(X) are both measurable by Lemma 1.10, and so there exist
measurable selections z0 ∈ Gω(x0(·)) and y0 ∈ P (·, x0(·)) ([13]). Set

x1(ω) = (1−$)x0+$[x0−y0+RAω ,ηω

ρωkω ,Mω
(Aω(y0)+ρωgω−ρωFω(x0, fω(z0)))]+e0,

where kω, ρω, Aω,Mω, Fω are the same as in Lemma 4.1, 1 > $ > 0 is a
constant, and e0 = e0(ω) : Ω → X is a measurable function which takes into
account a possible inexact computation of the proximal point. Then, it is easy
to know that x1 : Ω → X is a measurable mapping. Since z0 ∈ Gω(x0(·))
and y0 ∈ Pω(x0(·)), by Lemma 1.11, there exist measurable selections z1 ∈
Gω(x1(·)) and y1 ∈ Pω(x1(·)) such that, for all ω ∈ Ω,

‖z0 − z1‖ ≤ (1 +
1
1
)Ĥ(Gω(x0(·)), Gω(x1(·))),

‖y0 − y1‖ ≤ (1 +
1
1
)Ĥ(Pω(x0(·)), Pω(x1(·))).

Step 2. Iterative:
By induction, we can get three measurable sequences {xn}, {zn}, and {yn}

from Ω to x inductively satisfying




xn+1 = (1−$)xn + $[xn − yn

+RAω ,ηω

ρωkω ,Mω
(Aω(yn) + ρωgω − ρωFω(xn, fω(zn)))] + en,

‖zn − zn+1‖ ≤ (1 + 1
n+1)Ĥ(Gω(xn), Gω(xn+1)),

‖yn − yn+1‖ ≤ (1 + 1
n+1)Ĥ(Pω(xn), Pω(xn+1)),

(2.7)

for n = 0, 1, 2, · · · , where en = en(ω) ∈ Xn ≥ 0) is a random error to take
into account a possible inexact computation of the proximal point.

Step 3. Condition for stopping algorithm:
If xn+1, zn+1, and yn+1 satisfy (2.7) sufficiently accurate, stop; otherwise,

set n := n + 1 and return to Step 2.

Remark 2.3. If we choose suitable eta,A, F,G, P, f and M , then the Algo-
rithm 2.2 reduce to a number of known algorithms for solving some classes of
variational inequalities and variational inclusions (see, for example, [5], [9]–
[11], [16], [25]).

Now, if we prove the existence of solutions of problem (2.1) and the con-
vergence of iterative sequences {xn}, {yn}, {zn} generated by the Algorithm
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2.2, then the (xn, zn, yn) will be a random approximation solution of problem
(2.1).

3. Existence and convergence theorem of solution of the
Random variational inclusion problem

In this section, we shall prove the existence of solution for problem (2.1) and
the convergence of the iterative sequences generated by the Algorithm 2.2.

3.1. Existence and convergence theorem.

Theorem 3.1. Let X be a real separable Hilbert space, ηω : Ω×X ×X → X
be a τω-Lipschtiz continuous mapping, Aω : Ω × X → X be a rω-strongly
ηω-monotone mapping and αω-Lipschitz continuous. Let Gω, Pω : Ω × X →
CB(X) be Ĥ-Lipschitz continuous set-valued random mappings with random
variables ζω, χω, respectively, and fω : Ω×X → X be ξω-Lipschitz continuous.
Let Pω be a βω-strongly monotone random mapping, Fω : Ω×X ×X → X be
Lipschitz continuous with random variables (µω, νω), and Fω be ψω-Pω-strongly
monotone with respect to Aω in the first argument of Fω(·, ·), and let gω : Ω →
X be a real random variable. Let Mω : Ω × X × X → 2X be a set-valued
random mapping such that for each measurable y ∈ X, Mω(y, ·) : X → 2X is
a (Aω, ηω)-monotone mapping, and range(Pω)

⋂
domMω(y) 6= ∅. If for any

x, y, z ∈ X,

‖RAω ,ηω

kωρω ,Mω(·,x)(z)−RAω ,ηω

kωρω ,Mω(·,y)(z)‖ ≤ δω‖x− y‖, (3.1)

and



|ρ− ψω−lωrω(kωmωlω+τωξωνωζω)
τ2
ωµ2−(kωmωlω+τωξωνωζω)

|

< {[ψω−lωrω(kωmωlω+τωξωνωζω)]2−[τ2
ωµ2−(kωmωlω+τωξωνωζω)2][τ2

ωα2
ωχ2

ω−l2ωr2
ω ]} 1

2

τ2
ωµ2−(kωmωlω+τωξωνωζω)2

,

τ2
ωµ2 > (kωmωlω + τωξωνωζω)2,

lω = 1−
√

1− 2βω + χ2
ω − δωζω < 1,

(3.2)

and

lim
n→∞ ‖en(ω)‖ = 0,

∞∑

n=1

‖en(ω)− en−1(ω)‖ < ∞, ∀ω ∈ Ω, (3.3)

then the random iterative sequences {xn}, {yn} and {zn} : Ω → X generated
by Algorithm 4.2 converge strongly to random variables x∗, y∗, and z∗ : Ω →
X, respectively, (x∗, y∗, z∗) is a random solution of the problem (3.1), and
(xn, yn, zn) is a random approximation solution of the problem (3.1).



Approximation Solution For NSVMRVI 405

Proof. From Algorithm 2.2, Lemma 2.1 and (2.8)–(2.10), for any ω ∈ Ω, and
0 < $ < 1, we have

‖xn+1 − xn‖
≤ (1−$)‖xn − xn−1‖+ ‖en − en−1‖+ $‖xn − xn−1 − (yn − yn−1)‖

+$‖RAω ,ηω

ρωkω ,Mω(yn,zn)(Aω(yn) + ρωgω − ρωFω(xn, fω(zn)))

−RAω ,ηω

ρωkω ,Mω(yn−1,zn−1)(Aω(yn−1) + ρωgω − ρωFω(xn−1, fω(zn−1)))‖
≤ (1−$)‖xn − xn−1‖+ ‖en − en−1‖

+${‖xn − xn−1 − (yn − yn−1)‖+ δω‖zn − zn−1‖
+

τω

rω − kωρωmω
[‖Aω(yn)−Aω(yn−1)

−ρω(Fω(xn, fω(zn))− Fω(xn−1, fω(zn)))‖
+ρ(ω)‖Fω(xn−1, fω(zn))− Fω(xn−1, fω(zn−1))‖]}. (3.4)

Since Pω is Ĥ-Lipschitz continuous with χω and βω-strongly monotone in the
second argument of Pω(·), by Algorithm 2.1, we obtain

‖xn − xn−1 − yn − yn−1‖2

= ‖xn − xn−1‖2 − 2〈yn − yn−1, xn − xn−1〉+ ‖yn − yn−1‖2

≤ ‖xn − xn−1‖2 + (1 + n−1)2Ĥ2(Pω(xn), Pω(xn−1))− 2βω‖xn − xn−1‖2

≤ [1− 2βω + (1 + n−1)2χ2
ω]‖xn − xn−1‖2. (3.5)

Since Fω is Ĥ-Lipschitz continuous with (µω, νω), and ψω-Pω-strongly mono-
tone with respect to Aω in the first argument of Fω(·, ·), we have

‖Aω(yn)−Aω(yn−1)− ρω(Fω(xn, fω(zn))− Fω(xn−1, fω(zn)))‖2

≤ ‖Aω(yn)−Aω(yn−1)‖2 + ρ2
ω‖Fω(xn, fω(zn))− Fω(xn−1, fω(zn))‖2

−2ρω〈(Fω(fω(xn), zn)− Fω(fω(xn−1), zn)), Aω(yn)−Aω(yn−1)〉
≤ α2

ω‖yn − yn−1‖2 + ρ2
ωµ2

ω‖xn − xn−1‖2 − 2ρωψω‖xn − xn+1‖2

≤ [α2
ω(1 + n−1)2χ2

ω + ρ2
ωµ2

ω − 2ρωψω]‖xn − xn−1‖2. (3.6)

Further, by assumptions, we have

‖Fω(xn−1, fω(zn)) − Fω(xn−1, fω(zn−1))‖
≤ νωξωζω(1 + n−1)‖xn − xn−1‖ (3.7)

and

‖zn − zn−1‖ ≤ ζω(1 + n−1)‖xn − xn−1‖. (3.8)
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From (3.6)–(3.8), it follows that

‖xn+1 − xn‖ ≤ (1−$ + $hn)‖xn − xn−1‖+ ‖en − en−1‖
= θn‖xn − xn−1‖+ ‖en − en−1‖, (3.9)

where θn = 1−$ + $hn and

hn = [1− 2βω + (1 + n−1)2χ2
ω]

1
2 + δωζω(1 + n−1)

+
τω

rω − kωρωmω
[(α2

ω(1 + n−1)2χ2
ω + ρ2

ωµ2
ω − 2ρωψω)

1
2

+ρωξωνωζω(1 + n−1)].

Let θ = 1−$ + $h and

h = [1− 2βω + χ2
ω]

1
2

+δωζω +
τω

rω − kωρωmω
[(α2

ωχ2
ω + ρ2

ωµ2
ω − 2ρωψω)

1
2 + ρωνωξωζω].

We have that hn → h and θn → θ as n → ∞. It follows from condition (3.2)
and 0 < $ < 1 that 0 < θ < 1 and hence there exists N0 > 0 and θ∗ ∈ (θ, 1)
such that θn < θ∗ for all n ≥ N0. Therefore, by (3.9), we have

‖xn+1 − xn‖ ≤ θ∗‖xn − xn−1‖+ ‖en − en−1‖, ∀n ≥ N0.

Without loss of generality, we assume

‖xn+1 − xn‖ ≤ θ∗‖xn − xn−1‖+ ‖en − en−1‖, ∀n ≥ 1,

Hence, for any m > n > 0, we have

‖xm − xn)‖ ≤
m−1∑

i=n

‖xi+1 − xi‖ ≤
m−1∑

i=n

θi
∗‖x1 − x0‖+

m−1∑

i=n

i∑

j=1

θi−j
∗ ‖ej − ej−1‖.

It follows from conditions (3.2)–(3.3) that ‖xm − xn‖ → 0, as n →∞, and so
{xn} is a Cauchy sequence in X. Let xn → x∗ as n → ∞. By the Lipschitz
continuity of Gω(·) and Pω(·), we obtain

‖zn+1 − zn‖ ≤ (1 + n−1)Ĥ(Gω(xn+1), Gω(xn)) ≤ ζω(1 + n−1)‖xn+1 − xn‖,
‖yn+1 − yn‖ ≤ (1 + n−1)Ĥ(Pω(xn+1), Pω(xn)) ≤ χω(1 + n−1)‖xn+1 − xn‖.
It follows that {zn} and {yn} are both Cauchy sequences in X. We assume
that zn → z∗ and yn → y∗, respectively. Noticing that zn ∈ Gω(xn), we have

d(z∗, Gω(x∗)) ≤ ‖z∗ − zn‖+ d(zn, Gω(x∗))

≤ ‖z∗ − zn‖+ Ĥ(Gω(xn), Gω(x∗))
≤ ‖z∗ − zn‖+ ζω‖xn − x∗‖ → 0(n →∞).

Hence d(z∗, Gω(x∗)) = 0 and so z∗ ∈ Gω(x∗). Similarly, we can prove that
y∗ ∈ Pω(x∗)).
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By the Lipschitz continuity of Gω(·) and Pω(·), Lemma 2.1, the condition
(4.1) and lim

n→∞ ‖en(ω)‖ = 0, we have

x∗(ω) = (1−$)x∗(ω) + $[x∗(ω)− y∗(ω)

+RAω ,ηω

ρωkω ,Mω
(Aω(y∗(ω)) + ρωgω − ρωFω(x∗(ω), fω(z∗(ω))))].

By Lemma 2.1, we know that (x∗, z∗, y∗) is a solution of problem (2.1). This
completes the proof. ¤

From Theorem 3.1, we have the following theorem.

3.2. Algorithm for random the approximation solution of the prob-
lem (2.5).

From Algorithm 2.2, we can get algorithm for solving problems (2.5) as
follows:

Algorithm 3.2. Let Gω, Pω : Ω × X → CB(X) be the multi-valued random
mappings , Hω : Ω × X → X, ηω, Fω : Ω × X × X → X and fω = Iω be
single-valued random mappings, and let Mω : Ω ×X → 2X be a multi-valued
random mapping such that for each fixed ω ∈ Ω, and for any a measurable
mapping z : Ω × X → X, Mω(z) : Ω × X → 2X be an (Hω, ηω)-monotone
mapping and range(Pω)

⋂
domMω(·) 6= ∅.

Step 1. Initialize:
For any given x0 : Ω → X, the multi-mappings Gω(x0(·)), Pω(x0(·)) : Ω ×

X → CB(X) all are measurable by Lemma (1.10). Set

x1(ω) = (1−$)x0 +$[x0−y0 +RHω ,ηω

ρωkω ,Mω
(Hω(y0)+ρωgω−ρωFω(x0, z0))]+e0,

where kω, ρω, Aω,Mω, Fω are the same as in Lemma 2.1, 1 > $ > 0 is a
constant, and e0 = e0(ω) : Ω → X is a measurable function which is an random
error to take into account a possible inexact computation of the proximal point.
Since z0 ∈ Gω(x0(·)), y0 ∈ Pω(x0(·)), by Lemma 1.11, there exist measurable
selections z1 ∈ Gω(x1(·)) and y1 ∈ Pω(x1(·)) such that, for all ω ∈ Ω,

‖z0 − z1‖ ≤ (1 +
1
1
)Ĥ(Gω(x0(·)), Gω(x1(·))),

‖y0 − y1‖ ≤ (1 +
1
1
)Ĥ(Pω(x0(·)), Pω(x1(·))),

Step 2. Iterative:
By induction, we can define a measurable sequences xn, zn, and yn : Ω → X

inductively satisfying

xn+1 = (1−$)xn + $[xn − yn + RHω ,ηω

ρωkω ,Mω
(Hω(yn)

+ρωgω − ρωFω(xn, zn))] + en (3.10)
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for n = 0, 1, 2, · · · , where en = en(ω) ∈ X(n ≥ 0) is an random error to take
into account a possible inexact computation of the proximal point.

Step 3. Iterative procedure:
Choose zn ∈ Gω(xn), yn ∈ Pω(xn) such that

‖zn − zn+1‖ ≤ (1 +
1

n + 1
)Ĥ(Gω(xn), Gω(xn+1)), (3.11)

‖yn − yn+1‖ ≤ (1 +
1

n + 1
)Ĥ(Pω(xn), Pω(xn+1)) (3.12)

for n = 0, 1, 2, · · · .

Step 4. Condition for stopping algorithm: If xn+1, zn+1, and yn+1 satisfy
(3.10)-(3.12) sufficiently accurate, stop; otherwise, set n := n + 1 and return
to Step 2.

Remark 3.3. If we choose suitable η,H, F, G, P, f and M , then the Algorithm
3.2 reduce to a number of known algorithms for solving some classes of varia-
tional inequalities and variational inclusions (see, for example, [14], [17], [16],
[25]).

3.3. Existence and convergence theorem of the problem (2.5).
From Theorem 3.1, we have the following theorem.

Theorem 3.4. Let gω, ηω, Fω,Mω, fω, X be the same as in Theorem 3.1, Aω =
Hω, and Gω, Pω : Ω × X → CB(X) be D-Lipschitz continuous with random
variables ζω, χω, respectively, and let Pω be βω-strongly monotone random in
the second argument of Pω(·). Let Fω : Ω×X×X → X be Lipschitz continuous
with random variables (µω, νω), and Fω be ψ(ω))-Pω-strongly monotone with
respect to Aω in the first argument of Fω(·, ·). If conditions (3.1)-(3.2) of
Theorem 3.1 hold, then the random variable iterative sequences {xn}, {zn}
and {yn} : Ω → X generated by Algorithm 3.2 converge strongly to random
variables x∗, z∗ and y∗ : Ω → X, respectively, (x∗, z∗, y∗) is a solution of
the problem (2.5), and (xn, yn, zn) is a random approximation solution of the
problem(2.5).

Remark 3.5. For a suitable choice of the mappings Aω, gω, ηω, Fω, fω,Mω,
Gω, Pω and Xω, we can obtain several known results of [5], [9]-[11], and [17]
as special cases of Theorems 3.1 and 3.4.
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