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Abstract. It is our purpose to continue the study of approximation of fixed point of multi-

valued nonlinear mappings in a modular function space which is initiated by Khan and Abbas

[14]. Some convergence results were established for three multi-valued ρ-quasi-nonexpansive

mappings using a three step iterative scheme.

1. Introduction

In 2014, Khan and Abbas [14] initiated the study of approximating fixed
points of multi-valued nonlinear mappings in modular function spaces. The
purpose of this paper is to continue this recent trend in the study of fixed point
theory of multi-valued nonlinear mappings in modular function spaces. For
over a century now, the study of fixed point theory of multi-valued nonlinear
mappings has attracted the interest of many well-known mathematicians and
mathematical scientists (see [1], [4], [6], [9], [11], [22], [24], [25]).

The theory of modular spaces had been initiated in 1950 by Nakano [23] in
connection with the theory of ordered spaces which was further generalized by
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Musielak and Orlicz [21]. Modular function spaces are natural generalizations
of both function and sequence variants of several important, from applica-
tion perspective, spaces like Musielak-Orlicz, Orlicz, Lorentz, Orlicz-Lorentz,
Kothe, Lebesgue, Calderon-Lozanovskii spaces and several others. Interest in
quasi-nonexpansive mappings in modular function spaces stems mainly in the
richness of structure of modular function spaces, that besides, being Banach
spaces (or F -spaces in a more general settings), are equipped with modular
equivalents of norm or metric notions and also equipped with almost every-
where convergence and convergence in submeasure. It is known that modu-
lar type conditions are much more natural as modular type assumptions can
be more easily verified than their metric or norm counterparts, particulary
in applications to integral operators, approximation and fixed point results.
Moreover, there are certain fixed point results that can be proved only using
the apparatus of modular function spaces. Hence, fixed point theory results in
modular function spaces, in this perspective, should be considered as comple-
mentary to the fixed point theory in normed and metric spaces (see [8], [12],
[17], [19]).

Fixed point point theory in modular function spaces has attracted the inter-
est of many mathematicians. Several authors have proved the very interesting
fixed point results in the framework of modular function spaces, (see [3], [5],
[10], [12], [13], [20]). Abbas et al. [2] proved the existence and uniqueness
of common fixed point of certain nonlinear mappings satisfying some contrac-
tive conditions in partially ordered modular function spaces. Öztürk, Abbas
and Girgin [28] established some interesting fixed point results of nonlinear
mappings satisfying integral type contractive conditions in the framework of
modular spaces endowed with a graph. Recently, Khan and Abbas initiated
the study of approximating fixed points of multi-valued nonlinear mappings
in the framework of modular function spaces [14]. Abbas and Ali [15] used
a three step iterative scheme to approximate the fixed point of multi-valued
ρ-quasi-nonexpansive mappings in modular function spaces. Rafiq [29] intro-
duced the modified Noor iterative scheme, which was extensively studied by
several authors, (see, e.g. Fukhar-ud-din and Khan [7], Xue and Fan [33],
Okeke and Akewe [26], Okeke and Olaleru [27]).

In this paper, we introduce a modular version of the Noor iterative scheme
and approximate the common fixed point of three ρ-quasi-nonexpansive map-
pings in the framework of modular function spaces.

2. Preliminaries

Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets of Ω.
Let P be a δ-ring of subsets of Ω such that E ∩ A ∈ P for any E ∈ P and



Common fixed point in modular function spaces 653

A ∈ Σ. Let us assume that there exists an increasing sequence of sets Kn ∈ P
such that Ω =

⋃
Kn (for instance, P can be the class of sets of finite measure

in a σ-finite measure space). By 1A, we denote the characteristic function of
the set A in Ω. By ε, we denote the linear space of all simple functions with
supports from P. By M∞, we denote the space of all extended measurable
functions, i.e., any function f : Ω→ [−∞,∞] such that there exists a sequence
{gn} ⊂ ε, |gn| ≤ |f | and gn(ω)→ f(ω) for each ω ∈ Ω.

Definition 2.1. Let ρ : M∞ → [0,∞] be a nontrivial, convex and even func-
tion. We say that ρ is a regular convex function pseudomodular if

(1) ρ(0) = 0;
(2) ρ is monotone, i.e., |f(ω)| ≤ |g(ω)| for any ω ∈ Ω implies ρ(f) ≤ ρ(g),

where f, g ∈M∞;
(3) ρ is orthogonally subadditive, i.e., ρ(f1A∪B) ≤ ρ(f1A) + ρ(f1B) for

any A,B ∈ Σ such that A ∩B 6= ∅, f ∈M∞;
(4) ρ has Fatou property, i.e., |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω implies ρ(fn) ↑

ρ(f), where f ∈M∞;
(5) ρ is order continuous in ε, i.e., gn ∈ ε and |gn(ω)| ↓ 0 implies ρ(gn) ↓ 0.

A set A ∈ Σ is said to be ρ-null if ρ(g1A) = 0 for every g ∈ ε. A property
p(ω) is said to be hold ρ-almost everywhere (ρ-a.e.) if the set {ω ∈ Ω : p(ω)
does not hold} is ρ-null. As usual, we identify any pair of measurable sets
whose symmetric difference is ρ-null as well as any pair of measurable functions
differing only on a ρ-null set. With this in mind we define

M(Ω,Σ,P, ρ) = {f ∈M∞ : |f(ω)| <∞ ρ-a.e.},

where f ∈ M(Ω,Σ,P, ρ) is actually an equivalence class of functions equal
ρ-a.e. rather than an individual function. If there is no confusion, we shall
write M instead of M(Ω,Σ,P, ρ).

The following definitions were given in [14].

Definition 2.2. ([14]) Let ρ be a regular function pseudomodular. We say
that ρ is a regular convex function modular if ρ(f) = 0 implies f = 0 ρ-a.e.

It is known that ρ satisfies the following properties (see [18]):

(1) ρ(0) = 0 if and only if f = 0 ρ-a.e.
(2) ρ(αf) = ρ(f) for every scalar α with |α| = 1 and f ∈M.
(3) ρ(αf + βg) ≤ ρ(f) + ρ(g) if α+ β = 1, α, β ≥ 0 and f, g ∈M.

The function ρ is called a convex modular if, in addition, the following property
is satisfied:

(3′) ρ(αf + βg) ≤ αρ(f) + βρ(g), for α+ β = 1, α, β ≥ 0 and f, g ∈M.
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Definition 2.3. ([14]) The convex function modular ρ defines the modular
function space Lρ as

Lρ = {f ∈M; ρ(λf)→ 0 as λ→ 0} .

Generally, the modular ρ is not subadditive and therefore does not behave
as a norm or a distance. However, the modular space Lρ can be equipped with
an F -norm defined by

‖f‖ρ = inf

{
α > 0 : ρ

(
f

α

)
≤ α

}
.

In the case ρ is convex modular,

‖f‖ρ = inf

{
α > 0 : ρ

(
f

α

)
≤ 1

}
defines a norm on the modular space Lρ, and it is called the Luxemburg norm.

The following uniform convexity type properties of ρ can be found in [5].

Definition 2.4. ([5]) Let ρ be a nonzero regular convex function modular
defined on Ω. For t ∈ (0, 1), r > 0, ε > 0, define

D(r1, ε) = {(f, g) : f, g ∈ Lρ, ρ(f) ≤ r, ρ(g) ≤ r, ρ(f − g) ≥ εr} .
Let

δt1(r, ε) = inf

{
1− 1

r
ρ(tf + (1− t)g) : (f, g) ∈ D(r1, ε)

}
, if D(r1, ε) 6= ∅,

and δ1(r, ε) = 1, if D(r1, ε) = ∅. As a conventional notation, δ1 = δ
1
2
1 .

Definition 2.5. A nonzero regular convex function modular ρ is said to satisfy
(UC1) if for every r > 0, ε > 0, δ1(r, ε) > 0. Note that for every r > 0,
D1(r, ε) 6= ∅ for ε > 0 small enough. ρ is said to satisfy (UUC1) if for every
s ≥ 0, ε > 0, there exists η1(s, ε) > 0 depending only upon s and ε such that
δ1(r, ε) > η1(s, ε) > 0 for any r > s.

Definition 2.6. Let Lρ be a modular space. The sequence {fn} ⊂ Lρ is said
to be:

(1) ρ-convergent to f ∈ Lρ if ρ(fn − f)→ 0 as n→∞;
(2) ρ-Cauchy, if ρ(fn − fm)→ 0 as n and m→∞.

Kilmer et al. [16] defined ρ-distance from f ∈ Lρ to a set D ⊂ Lρ as follows:

distρ(f,D) = inf {ρ(f − h) : h ∈ D} .
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Definition 2.7. A subset D ⊂ Lρ is said to be:

(1) ρ-closed if the ρ-limit of a ρ-convergent sequence of D always belongs
to D;

(2) ρ-a.e. closed if the ρ-a.e. limit of a ρ-a.e. convergent sequence of D
always belongs to D;

(3) ρ-compact if every sequence in D has a ρ-convergent subsequence in
D;

(4) ρ-a.e. compact if every sequence in D has a ρ-a.e. convergent subse-
quence in D;

(5) ρ-bounded if

diamρ(D) = sup {ρ(f − g) : f, g ∈ D} <∞.

A set D ⊂ Lρ is called ρ-proximinal if for each f ∈ Lρ there exists an
element g ∈ D such that ρ(f − g) = distρ(f,D). We shall denote the family
of nonempty ρ-bounded ρ-proximinal subsets of D by Pρ(D), the family of
nonempty ρ-closed ρ-bounded subsets of D by Cρ(D) and the family of ρ-
compact subsets of D by Kρ(D). Let Hρ(., .) be the ρ-Hausdorff distance on
Cρ(Lρ), that is,

Hρ(A,B) = max

{
sup
f∈A

distρ(f,B), sup
g∈B

distρ(g,A)

}
, A,B ⊂ Cρ(Lρ).

A multi-valued map T : D → Cρ(Lρ) is said to be:

(a) ρ-nonexpansive (see, e.g. Khan and Abbas [14]) if

Hρ(Tf, Tg) ≤ ρ(f − g), f, g ∈ D. (2.1)

(b) ρ-quasi-nonexpansive mapping if

Hρ(Tf, p) ≤ ρ(f − p) for all f ∈ D and p ∈ Fρ(T ). (2.2)

for all f ∈ D and p ∈ Fρ(T ), where Fρ(T ) is the set of all fixed points
of T , that is, p ∈ Tp.

A sequence {tn} ⊂ (0, 1) is called bounded away from 0 if there exists a > 0
such that tn ≥ a for every n ∈ N. Similarly, {tn} ⊂ (0, 1) is called bounded
away from 1 if there exists b < 1 such that tn ≤ b for every n ∈ N.

The following lemma will be needed in this study.

Lemma 2.8. ([3]) Let ρ be a function modular, {fn} and {gn} be two sequences
in Xρ. Then

lim
n→∞

ρ(gn) = 0 =⇒ lim sup
n→∞

ρ(fn + gn) = lim sup
n→∞

ρ(fn)
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and
lim
n→∞

ρ(gn) = 0 =⇒ lim inf
n→∞

ρ(fn + gn) = lim inf
n→∞

ρ(fn).

Lemma 2.9. ([5]) Let ρ satisfy (UUC1) and let {tk} ⊂ (0, 1) be bounded away
from 0 and 1. If there exists R > 0 such that

lim sup
n→∞

ρ(fn) ≤ R, lim sup
n→∞

ρ(gn) ≤ R

and
lim
n→∞

ρ(tnfn + (1− tn)gn) = R,

then limn→∞ ρ(fn − gn) = 0.

The above lemma is an analogue of a famous Lemma due to Schu [31] in
Banach spaces.

A function f ∈ Lρ is called a fixed point of T : Lρ → Pρ(D) if f ∈ Tf. The
set of all fixed points of T will be denoted by Fρ(T ).

Khan and Abbas [14] proved the following lemma.

Lemma 2.10. ([14]) Let T : D → Pρ(D) be a multi-valued mapping and

P Tρ (f) = {g ∈ Tf : ρ(f − g) = distρ(f, Tf)} .
Then the following statements are equivalent.

(1) f ∈ Fρ(T ), that is, f ∈ Tf.
(2) P Tρ (f) = {f}, that is, f = g for each g ∈ P Tρ (f).

(3) f ∈ F (P Tρ (f)), that is, f ∈ P Tρ (f). Further Fρ(T ) = F (P Tρ (f)) where

F (P Tρ (f)) is the set of fixed points of P Tρ (f).

Definition 2.11. A multi-valued mapping T : D → Cρ(D) is said to satisfy
condition (I) if there exists a nondecreasing function l : [0,∞)→ [0,∞) with
l(0) = 0, l(r) > 0 for all r ∈ (0,∞) such that

distρ(f, Tf) ≥ l(distρ(f, Fρ(T )))

for all f ∈ D.

It is a multi-valued version of condition (I) of Senter and Dotson [32] in the
framework of modular function spaces.

The following examples were presented by Razani et al. [30].

Example 2.12. Let (X, ‖.‖) be a normed space. Then ‖ · ‖ is a modular on
X. But the converse is not true.
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Definition 2.13. Let (X, ‖.‖) be a normed space. For any k ≥ 1, ‖ · ‖k is a
modular on X.

3. Main results

We begin this section by introducing a three step iteration for approximating
the common fixed point of three multi-valued ρ-quasi-nonexpansive mappings
in modular function spaces.

Let Ti : D → Cρ(Lρ), i = 1, 2, 3 be three multi-valued ρ-quasi-nonexpansive
mapping, we hereby introduce the following three-step iterative scheme.

fn+1 = (1− αn)fn + αnun

gn = (1− βn)fn + βnwn

hn = (1− γn)fn + γnvn

(3.1)

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are real sequences in [0, 1] satisfying
certain conditions, un ∈ P T1ρ (gn), wn ∈ P T2ρ (hn), vn ∈ P T3ρ (fn),

P Tiρ (f) = {g ∈ Tif : ρ(f − g) = distρ(f, Tif)} , i = 1, 2, 3. (3.2)

The three-step iterative scheme (3.1) could be seen as the modular version of
the modified Noor iterative scheme introduced by Rafiq [29] and extensively
studied by several authors (see, e.g. [26], [27], [33]).

The following lemma which could be seen as an extension of Lemma 2 of
Khan and Abbas [14] will be needed for the proof of main theorems.

Lemma 3.1. Let Ti : D → Pρ(D) be three multi-valued mappings and

P Tiρ (f) = {g ∈ Tif : ρ(f − g) = distρ(f, Tif)} , i = 1, 2, 3. (3.3)

Then the following statements are equivalent:

(1) f ∈
⋂3
i=1 Fρ(Ti), that is, f ∈

⋂3
i=1 Tif,

(2)
⋂3
i=1 P

Ti
ρ (f) = {f}, that is, f = g for each g ∈

⋂3
i=1 P

Ti
ρ (f).

(3) f ∈
⋂3
i=1 F (P Tiρ (f)), that is, f ∈

⋂3
i=1 P

Ti
ρ (f). And also, we have⋂3

i=1 Fρ(Ti) =
⋂3
i=1 F (P Tiρ (f)) where F (P Tiρ (f)) is the set of fixed

points of P Tiρ (f), i = 1, 2, 3.

Proof. We adopt the similar method of the proof of Khan and Abbas [14].

(1) =⇒ (2). Let f ∈
⋂3
i=1 Fρ(Ti). Then f ∈

⋂3
i=1 Tif, this means that

distρ(f, Tif) = 0. Hence, for any g ∈ P Tiρ (f), i = 1, 2, 3, ρ(f−g) = distρ(f, Tif)

= 0 implies that ρ(f − g) = 0. This means that f = g. Hence, P Tiρ (f) = {f},
i = 1, 2, 3.
(2) =⇒ (3). It is easy to prove this implication.
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(3) =⇒ (1). Recall f ∈
⋂3
i=1 F (P Tiρ (f)) and by definition of P Tiρ (f) as in (3.3),

we obtain distρ(f, Tif) = ρ(f − f) = 0. Thus, f ∈
⋂3
i=1 Tif by ρ-closedness of

Tif, (i = 1, 2, 3). �

Next, we establish the following results. We shall adopt the method of proof
of Abbas and Ali [15].

Theorem 3.2. Let ρ satisfy (UUC1) and D a nonempty ρ−closed, ρ−bounded
and convex subset of Lρ. Let Ti : D → Pρ(D), (i = 1, 2, 3) be three multi-valued
mappings such that P Tiρ , (i = 1, 2, 3) are ρ−quasi-nonexpansive mappings.
Suppose that

3⋂
i=1

Fρ(Ti) = Fρ(T1) ∩ Fρ(T2) ∩ Fρ(T3) 6= ∅.

Let {fn} ⊂ D be defined by three step iterative process (3.1), where un ∈
P T1ρ (gn), wn ∈ P T2ρ (hn), vn ∈ P T3ρ (fn), 0 < αn, βn, γn < 1. Then, for all
p ∈ Fρ(T1) ∩ Fρ(T2) ∩ Fρ(T3), there exists the limit

lim
n→∞

ρ(fn − p)

such that

lim
n→∞

distρ(fn, P
Ti
ρ (fn)) = 0, (i = 1, 2, 3).

Proof. From Lemma 3.1, we know that for p ∈ Fρ(T1) ∩ Fρ(T2) ∩ Fρ(T3),
P Tiρ (p) = {p} and

⋂3
i=1 Fρ(Ti) =

⋂3
i=1 F (P Tiρ ), i = 1, 2, 3. Since

ρ(fn+1 − p) = ρ[(1− αn)fn + αnun − p]
= ρ[(1− αn)(fn − p) + αn(un − p)].

(3.4)

By the convexity of ρ, we have

ρ(fn+1 − p) ≤ (1− αn)ρ(fn − p) + αnρ(un − p)
≤ (1− αn)ρ(fn − p) + αnHρ(P

T1
ρ (gn), P T1ρ (p))

≤ (1− αn)ρ(fn − p) + αnρ(gn − p).
(3.5)

Next, since

ρ(gn − p) = ρ[(1− βn)fn + βnwn − p],
from the convexity of ρ, we obtain

ρ(gn − p) = ρ[(1− βn)fn + βnwn − p]
≤ (1− βn)ρ(fn − p) + βnρ(wn − p)
≤ (1− βn)ρ(fn − p) + βnHρ(P

T2
ρ (hn)− P T2ρ (p))

≤ (1− βn)ρ(fn − p) + βnρ(hn − p).

(3.6)
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And also, since
ρ(hn − p) = ρ[(1− γn)fn + γnvn − p],

from the convexity of ρ, we obtain

ρ(hn − p) ≤ (1− γn)ρ(fn − p) + γnρ(vn − p)
≤ (1− γn)ρ(fn − p) + γnHρ(P

T3
ρ (fn)− P T3ρ (p))

≤ (1− γn)ρ(fn − p) + γnρ(fn − p)
= ρ(fn − p).

(3.7)

Using (3.6) and (3.7), we have

ρ(gn − p) ≤ (1− βn)ρ(fn − p) + βnρ(fn − p)
= ρ(fn − p).

(3.8)

Therefore,

ρ(fn+1 − p) ≤ (1− αn)ρ(fn − p) + αnρ(fn − p)
= ρ(fn − p).

(3.9)

It has shown that limn→∞ ρ(fn−p) exist for each p ∈ Fρ(T1)∩Fρ(T2)∩Fρ(T3).
Suppose that

lim
n→∞

ρ(fn − p) = L. (3.10)

Then we have to show that limn→∞ distρ(fn, P
Ti
ρ (fn)) = 0, i = 1, 2, 3.

First, we show that limn→∞ distρ(fn, P
T3
ρ (fn)) = 0.

Since distρ(fn, P
T3
ρ (fn)) ≤ ρ(fn − vn), it suffices to show that

lim
n→∞

ρ(fn − vn) = 0. (3.11)

Since

ρ(vn − p) ≤ Hρ(P
T3
ρ (fn), P T3ρ (p)) ≤ ρ(fn − p), (3.12)

it implies that

lim sup
n→∞

ρ(vn − p) ≤ lim sup
n→∞

ρ(fn − p). (3.13)

Hence, from (3.10), we obtain

lim sup
n→∞

ρ(vn − p) ≤ L. (3.14)

From (3.7), we have

lim sup
n→∞

ρ(hn − p) ≤ lim sup
n→∞

ρ(fn − p). (3.15)

Hence, we have

lim sup
n→∞

ρ(hn − p) ≤ L. (3.16)
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Similarly, using (3.8) and (3.10), we have

lim sup
n→∞

ρ(gn − p) ≤ L. (3.17)

From the inequality

ρ(wn − p) ≤ Hρ(P
T2
ρ (hn), P T2ρ (p)) ≤ ρ(hn − p) ≤ ρ(fn − p), (3.18)

it implies that

lim sup
n→∞

ρ(wn − p) ≤ lim sup
n→∞

ρ(fn − p). (3.19)

Hence, we have

lim sup
n→∞

ρ(wn − p) ≤ L. (3.20)

Similarly, we can get

lim sup
n→∞

ρ(un − p) ≤ L. (3.21)

But

lim
n→∞

ρ(fn+1 − p) = lim
n→∞

ρ[(1− αn)fn + αnun − p]

= lim
n→∞

ρ[(1− αn)(fn − p) + αn(un − p)]

= L.

(3.22)

Using (3.20), (3.21), (3.22) and Lemma 2.9, we obtain

lim
n→∞

ρ(un − wn) = 0. (3.23)

From the inequality

ρ(vn − p) ≤ Hρ(P
T3
ρ (fn), P T3ρ (p)) ≤ ρ(fn − p), (3.24)

this yields,

ρ(vn − p) ≤ lim sup
n→∞

ρ(fn − p). (3.25)

Hence, we have

lim sup
n→∞

ρ(vn − p) ≤ L. (3.26)

Using (3.20), (3.21), (3.26) and Lemma 2.9, we obtain

lim
n→∞

ρ(vn − wn) = 0. (3.27)

From the inequality

ρ(un − p) ≤ Hρ(P
T1
ρ (gn), P T1ρ (p)) ≤ ρ(gn − p) ≤ L, (3.28)

we have,

lim sup
n→∞

ρ(un − p) ≤ L. (3.29)
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Using (3.25), (3.28) and Lemma 2.9, we have

lim
n→∞

ρ(fn − vn) = 0. (3.30)

Therefore, we have

lim
n→∞

distρ(fn, P
Ti
ρ (fn)) = 0, (i = 1, 2, 3). (3.31)

This completes the proof. �

Next, we establish a convergence result for the approximation of the com-
mon fixed points of three multi-valued ρ-quasi-nonexpansive mappings in mod-
ular function spaces, using the three-step iterative scheme defined in (3.1).

Theorem 3.3. Let ρ satisfy (UUC1) and D be a nonempty ρ-compact, ρ-
bounded and convex subset of Lρ. Let Ti : D → Pρ(D), (i = 1, 2, 3) be
three multi-valued mappings such that P Tiρ , (i = 1, 2, 3) are three ρ-quasi-
nonexpansive mappings with

3⋂
i=1

Fρ(Ti) = Fρ(T1) ∩ Fρ(T2) ∩ Fρ(T3) 6= ∅.

Let {fn} be a sequence defined in Theorem 3.2. Then {fn} is ρ-convergent to
a common fixed point of Ti, i = 1, 2, 3.

Proof. Using the ρ−compactness of D, there exists a subsequence {fnk} of
{fn} such that limn→∞(fnk − q) = 0 for some q ∈ D. To establish that q
is a common fixed point of Ti, (i = 1, 2, 3). Let g be an arbitrary point in
P T1ρ (q) ∩ P T2ρ (q) ∩ P T3ρ (q) and f ∈ P T1ρ (fnk) ∩ P T2ρ (fnk) ∩ P T3ρ (fnk). Following
the proof of Theorem 2 of Abbas and Ali [15], we obtain ρ(q − g) = 0. Using
Theorem 3.2, we have

q ∈
3⋂
i=1

F (P Tiρ ) =

3⋂
i=1

Fρ(Ti). (3.32)

This implies that {fn} is ρ−convergent to the common fixed point of T1, T2
and T3. �

Theorem 3.4. Let ρ satisfy (UUC1) and D be a nonempty ρ-closed, ρ−bounded
and convex subset of Lρ. Let Ti : D → Pρ(D), (i = 1, 2, 3) be three multi-valued
mappings with

3⋂
i=1

Fρ(Ti) = Fρ(T1) ∩ Fρ(T2) ∩ Fρ(T3) 6= ∅
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satisfying condition (I) such that P Tiρ , (i = 1, 2, 3) are ρ−quasi-nonexpansive
mappings. Let {fn} be a sequence defined in Theorem 3.2. Then {fn} is
ρ−convergent to a common fixed point of T1, T2 and T3.

Proof. Using Theorem 3.2, limn→∞ ρ(fn − p) exists for all p ∈
⋂3
i=1 F (P Tiρ ) =⋂3

i=1 Fρ(Ti). If limn→∞ ρ(fn − p) = 0, there is nothing to prove. Assume that
limn→∞ ρ(fn − p) = L > 0. Using Theorem 3.2, we have

ρ(fn+1 − p) ≤ ρ(fn − p). (3.33)

Hence
distρ(fn+1, Fρ(Ti)) ≤ distρ(fn, Fρ(Ti)), (i = 1, 2, 3). (3.34)

So, this implies that limn→∞ distρ(fn, Fρ(Ti)) exists.
Next, we show that limn→∞ distρ(fn, Fρ(Ti)) = 0, (i = 1, 2, 3). By using

condition (I) and Theorem 3.2, we obtain

lim
n→∞

l(distρ(fn, Fρ(Ti))) ≤ lim
n→∞

distρ(fn, T fn) = 0. (3.35)

This means that
lim
n→∞

l(distρ(fn, Fρ(Ti)) = 0. (3.36)

Using the fact that l is nondecreasing function and l(0) = 0, it follows that

lim
n→∞

distρ(fn, Fρ(Ti)) = 0, i = 1, 2, 3.

Following the proof of Theorem 3 of Abbas and Ali [15], we see that {fn} is
a ρ−Cauchy sequence in a ρ−closed subset D of Lρ. Hence, it converges in
D. Let limn→∞ fn = q, we see that q ∈ ∩3i=1Fρ(Ti) follows from Theorem 3.2.
This completes the proof. �
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