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Abstract. In this paper, we prove some common fixed point theorems for two mappings

satisfying generalized contractive condition in S-metric spaces via simulation functions. Our

results extend and improve several previous well-known works.

1. Introduction and preliminaries

The Banach contraction principle is the most celebrated fixed point the-
orem and has been generalized in various directions. Fixed point problems
for contractive mappings in metric spaces with a partially order have been
studied by many authors (see [1], [2], [6]). In the present paper, we introduce
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the notion of S-metric spaces and give some properties of them (see [4], [9]).
In addition, we give an illustrative example to support our results.

First we recall some notions, lemmas, and examples which will be useful
later.

Definition 1.1. ([9]) Let X be a nonempty set. A function S : X3 → [0,∞)
is said to be an S-metric on X, if for each x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).

The pair (X,S) is called an S-metric space.

Example 1.2. ([9]) We can easily check that the following examples are S-
metric spaces.

(1) Let X = Rn and || · || a norm on X. Then S(x, y, z) = ||y + z − 2x||+
||y− z|| is an S-metric on X. In general, if X is a vector space over R
and || · || a norm on X, then it is easy to see that

S(x, y, z) = ||αy + βz − λx||+ ||y − z||,
where α+ β = λ for every α, β ≥ 1, is an S-metric on X.

(2) Let X be a nonempty set and d1, d2 be two ordinary metrics on X.
Then

S(x, y, z) = d1(x, z) + d2(y, z),

is an S-metric on X.

Lemma 1.3. ([7]) Let (X,S) be an S-metric space. Then, we have S(x, x, y) =
S(y, y, x), for all x, y ∈ X.

Definition 1.4. ([8]) Let (X,S) be an S-metric space and A ⊂ X.

(1) A sequence {xn} in X converges to x if S(xn, xn, x) → 0 as n → ∞,
that is for every ε > 0 there exists n0 ∈ N such that for n ≥ n0,
S(xn, xn, x) < ε. This case, we denote by limn→∞ xn = x and we say
that x is the limit of {xn} in X.

(2) A sequence {xn} in X is said to be Cauchy if for each ε > 0, there
exists n0 ∈ N such that S(xn, xn, xm) < ε for each n,m ≥ n0.

(3) The S-metric space (X,S) is said to be complete if every Cauchy se-
quence is convergent.

Definition 1.5. ([5]) Let (X,S) and (X ′, S ′) be two S-metric spaces, and
let f : (X,S) → (X ′, S ′) be a function. Then f is said to be continuous
at a point a ∈ X if for every sequence {xn} in X, S(xn, xn, a) → 0 implies
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S ′(f(xn), f(xn), f(a))→ 0. A function f is continuous on X if it is continuous
at all a ∈ X.

Lemma 1.6. ([8]) Let (X,S) be an S- metric space. If there exist sequences
{xn} and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then

lim
n→∞

S(xn, xn, yn) = S(x, x, y).

Definition 1.7. Let (X,S) be an S-metric space. A pair {f, g} is said to be
compatible if lim

n→∞
S(fgxn, fgxn, gfxn) = 0, whenever {xn} is a sequence in

X such that lim
n→∞

fxn = lim
n→∞

gxn = t for some t ∈ X.

Lemma 1.8. Let (X,S) be an S−metric space. If there exists two sequences
{xn} and {yn} such that limn→∞ S(xn, xn, yn) = 0, whenever {xn} is a se-
quence in X such that limn→∞ xn = t for some t ∈ X, then limn→∞ yn = t.

Proof. By the triangle inequality in S−metric space, we have

S(yn, yn, t) ≤ 2S(yn, yn, xn) + S(t, t, xn).

Now, by taking the upper limit as n→∞ in above inequality we get

lim sup
n→∞

S(yn, yn, t) ≤ 2 lim sup
n→∞

S(yn, yn, xn) + lim sup
n→∞

S(t, t, xn) = 0.

Hence limn→∞ yn = t. �

Definition 1.9. A function ξ : [0,∞[×[0,∞[−→ R is said to be a simulation
function if it satisfies the following conditions:

(ξ1) ξ(t, s) ≤ s− t, for all t, s ≥ 0,
(ξ2) if {tn}, {sn} are sequences in ]0,∞[ such that

0 < lim
n→∞

tn = lim
n→∞

sn <∞,

then

lim sup
n→∞

ξ(tn, sn) < 0.

Following are some examples of simulation functions [3].

Example 1.10. Let ξ : [0,∞[×[0,∞[−→ R, be defined by

(i) ξ(t, s) = λs− t for all t, s ∈ [0,∞[, where λ ∈ [0, 1[.
(ii) ξ(t, s) = ψ(s) − ϕ(t) for all t, s ∈ [0,∞[, where ϕ,ψ : [0,∞[−→ [0∞[

are two continuous functions such that ψ(t) = ϕ(t) = 0 if and only if
t = 0 and ψ(t) < t ≤ ϕ(t) for all t > 0.
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(iii) ξ(t, s) = sf(t,s)g(t,s) t for all t, s ∈ [0,∞[, where f, g : [0,∞[×[0,∞[−→]0,∞[

are two continuous functions with respect to each variable such that
f(t, s) > g(t, s) for all t, s > 0.

(iv) ξ(t, s) = s−ϕ(s)− t for all t, s ∈ [0,∞[, where ϕ : [0,∞[−→ [0,∞[ is a
lower semi-continuous function such that ϕ(t) = 0 if and only if t = 0.

(v) ξ(t, s) = sϕ(s) − t for all t, s ∈ [0,∞[, where ϕ : [0,∞[−→ [0,∞[ is
such that lim

t→r+
ϕ(t) < 1 for all r > 0.

Each of the function considered in (i)-(v) is a simulation function.

2. Fixed points via simulation functions in S-metric

The following lemmas, are needed to establish the main result.

Lemma 2.1. Let (X,S) be an S-metric space and let f, g : X −→ X be two
mappings. Suppose that there exists a simulation function ξ such that

ξ(S(fx, fy, fz), S(gx, gy, gz)) ≥ 0,∀ x, y, z ∈ X. (2.1)

Let f(X) ⊆ g(X). Then there exists {yn} a sequence in X such that

lim
n→∞

S(yn−1, yn−1, yn) = 0.

Proof. Let x0 ∈ X. Since f(X) ⊆ g(X), for every n ∈ N we have yn = f(xn) =
g(xn+1). If there exists n0 ∈ N such that yn0 = yn0+1 , then it follows from
(2.1) and (ξ1) that for all n ∈ N, we have

0 ≤ ξ(S(fxn0+1, fxn0+1, fxn0+2), S(gxn0+1, gxn0+1, gxn0+2))

= ξ(S(yn0+1, yn0+1, yn0+2), S(yn0 , yn0 , yn0+1))

≤ S(yn0 , yn0 , yn0+1)− S(yn0+1, yn0+1, yn0+2).

Since S(yn0 , yn0 , yn0+1) = 0, the above inequality shows that

S(yn0+1, yn0+1, yn0+2) = 0,

therefore yn0+1 = yn0+2. Thus, yn0 = yn0+1 = yn0+2 = · · · , which implies that

lim
n→∞

S(yn−1, yn−1, yn) = 0.

Now, suppose that yn 6= yn+1 for all n ∈ N. Then, it follows from (2.1) and
(ξ1) that for all n ∈ N, we have

0 ≤ ξ(S(fxn, fxn, fxn+1), S(gxn, gxn, gxn+1))

= ξ(S(yn, yn, yn+1), S(yn−1, yn−1, yn))

≤ S(yn−1, yn−1, yn)− S(yn, yn, yn+1).
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The above inequality shows that

S(yn, yn, yn+1) ≤ S(yn−1, yn−1, yn), ∀n ∈ N,
which implies that {S(yn−1, yn−1, yn)} is a decreasing sequence of positive real
numbers. So there is some r ≥ 0 such that lim

n→∞
S(yn−1, yn−1, yn) = r. Sup-

pose that r > 0. It follows from the condition (ξ2), with tn = S(yn, yn, yn+1)
and sn = S(yn−1, yn−1, yn), that

0 ≤ lim sup
n−→∞

ξ(S(yn, yn, yn+1), S(yn−1, yn−1, yn) < 0,

which is a contradiction. Then we conclude that r = 0, which ends the proof.
�

Lemma 2.2. Let (X,S) be an S−metric space and let f, g : X −→ X be two
mappings. Suppose that there exists a simulation function ξ such that (2.1)
holds. Let f(X) ⊆ g(X). Then there exists {yn} be a sequence in X such that

S(ym, ym, yn) ≤ S(ym−1, ym−1, yn−1).

Proof. By similar argument of Lemma 2.1, for every n ∈ N we have yn =
f(xn) = g(xn+1). Hence, it follows from (2.1) and (ξ1) that for all m,n ∈ N,
we have

0 ≤ ξ(S(fxm, fxm, fxn), S(gxm, gxm, gxn))

= ξ(S(ym, ym, yn), S(ym−1, ym−1, yn−1))

≤ S(ym−1, ym−1, yn−1)− S(ym, ym, yn).

The above inequality shows that

S(ym, ym, yn) ≤ S(ym−1, ym−1, yn−1), ∀ m,n ∈ N.
�

Lemma 2.3. Let (X,S) be an S-metric space and let f, g : X −→ X be two
mappings. Suppose that there exists a simulation function ξ such that (2.1)
holds. Let f(X) ⊆ g(X). Then there exists a bounded sequence {yn} in X.

Proof. By similar argument of Lemma 2.1, for every n ∈ N we have yn =
f(xn) = g(xn+1). If there exists n0 ∈ N such that yn0 = yn0+1 , we set

M = max{S(yi, yi, yj) : i, j ≤ n0},
then in this case for all i, j = 0, 1, 2, · · · we have S(yi, yi, yj) ≤ M . Let us
assume that yn 6= yn+1 for all n ∈ N and {yn} is not a bounded sequence.
Then, there exists a subsequence {ynk

} of {yn} such that n1 = 1 and for each
k ∈ N, nk+1 is the minimum integer such that S(ynk+1, ynk+1, ynk

) > 1 and

S(ym, ym, ynk
) ≤ 1, for nk ≤ m ≤ nk+1 − 1.
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By the triangle inequality, we obtain

1 < S(ynk+1
, ynk+1

, ynk
)

≤ 2S(ynk+1
, ynk+1

, ynk+1−1) + S(ynk+1−1, ynk+1−1, ynk
)

≤ 2S(ynk+1
, ynk+1

, ynk+1−1) + 1.

Letting k →∞ in the above inequality and using Lemma 2.1, we get

1 ≤ lim inf
k→∞

S(ynk+1
, ynk+1

, ynk
) ≤ lim sup

k→∞
S(ynk+1

, ynk+1
, ynk

) ≤ 1.

Hence, we have

lim
k→∞

S(ynk+1
, ynk+1

, ynk
) = 1. (2.2)

Again, from Lemma 2.2, we have

S(ynk+1
, ynk+1

, ynk
) ≤ S(ynk+1−1, ynk+1−1, ynk−1)

= S(ynk−1, ynk−1, ynk+1−1)

≤ 2S(ynk−1, ynk−1, ynk
) + S(ynk+1−1, ynk+1−1, ynk

)

≤ 2S(ynk−1, ynk−1, ynk
) + 1

Letting k →∞ in the above inequality and using (2.2), we deduce that there
exist

lim
k→∞

S(ynk+1−1, ynk+1−1, ynk−1) = 1.

Then by condition (ξ2), with

tk = S(ynk+1
, ynk+1

, ynk
)

and
sk = S(ynk+1−1, ynk+1−1, ynk−1),

we obtain

0 ≤ lim sup
k→∞

ξ(S(ynk+1
, ynk+1

, ynk
), S(ynk+1−1, ynk+1−1, ynk−1)) < 0,

which is a contradiction. This completes the proof. �

Lemma 2.4. Let (X,S) be an S-metric space and let f, g : X → X be two
mappings. Suppose that there exists a simulation function ξ such that (2.1)
holds. Let f(X) ⊆ g(X). Then there exists a Cauchy sequence {yn} in X.

Proof. By similar argument of Lemma 2.1, for every n ∈ N we have yn =
f(xn) = g(xn+1). If there exists n0 ∈ N such that yn0 = yn0+1 , then {yn} is a
Cauchy sequence. Let us assume that yn 6= yn+1 for all n ∈ N and let

Cn = sup{S(yi, yi, yj) : i, j ≥ n}, n ∈ N.
From Lemma 2.3, we know that Cn < ∞ for every n ∈ N. Since {Cn} is a
positive decreasing sequence, there is some C ≥ 0 such that
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lim
n→∞

Cn = C. (2.3)

Let us suppose that C > 0. By the definition of Cn, for every k ∈ N, there
exists nk,mk ∈ N such that mk > nk ≥ k and

Ck −
1

k
< S(ymk

, ymk
, ynk

) ≤ Ck.

Letting k →∞ in the above inequality, we get

lim
k→∞

S(ymk
, ymk

, ynk
) = C. (2.4)

Again, from Lemma 2.2 and the definition of Cn, we deduce

S(ymk
, ymk

, ynk
) ≤ S(ymk−1, ymk−1, ynk−1) ≤ Ck−1.

Letting k →∞ in the above inequality, using (2.3) and (2.4), we get

C ≤ lim inf
k→∞

S(ymk−1
, ymk−1

, ynk−1
) (2.5)

≤ lim sup
k→∞

S(ymk−1
, ymk−1

, ynk−1
)

≤ C.

Now, by the condition (ξ2), with

tk = S(ymk
, ymk

, ynk
)

and

sk = S(ymk−1
, ymk−1

, ynk−1
),

we get

0 ≤ lim sup
k→∞

ξ(S(ymk
, ymk

, ynk
), S(ymk−1, ymk−1, ynk−1)) < 0,

which is a contradiction. Thus we have C = 0, that is,

lim
n→∞

Cn = 0.

This proves that {yn} is a Cauchy sequence. �

Now, we present our first main result.

Theorem 2.5. Let (X,S) be a complete S-metric space and let f, g : X −→ X
be two mappings with f(X) ⊆ g(X) and the pair {f, g} be compatible. Suppose
that there exists a simulation function ξ such that (2.1) holds, that is,

ξ(S(fx, fy, fz), S(gx, gy, gz)) ≥ 0, ∀ x, y, z ∈ X.
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If g is continuous, then f and g have a coincidence point, that is, there exists
y ∈ X such that f(y) = g(y). Moreover, if g is continuous and it is one to
one, then f and g have unique fixed point.

Proof. Let x0 ∈ X. Since f(X) ⊆ g(X), for every n ∈ N we have yn =
f(xn) = g(xn+1). Now, by Lemma 2.4, the sequence {yn} is Cauchy. From
the completeness of (X,S) there exists some y ∈ X such that limn→∞ yn = y.
That is,

y = lim
n→∞

yn = lim
n→∞

f(xn) = lim
n→∞

g(xn). (2.6)

We claim that y is a coincidence point of f, g. Since, g is continuous, we have

lim
n→∞

gf(xn) = lim
n→∞

gg(xn) = g(y).

Also, since {f, g} is compatible, we have limn→∞ S(fg(xn), fg(xn), gf(xn)) =
0. Hence, by Lemma 1.8 we deduce

lim
n→∞

fg(xn) = g(y).

From (2.1) we have,

0 ≤ ξ(S(fy, fy, fgxn), S(gy, gy, ggxn)

≤ S(gy, gy, ggxn)− S(fy, fy, fgxn).

Letting n −→∞ in the above inequality, we get

0 ≤ lim inf
n→∞

S(gy, gy, ggxn)− lim sup
n→∞

S(fy, fy, fgxn)

= − lim sup
n→∞

S(fy, fy, fgxn)

≤ 0.

Thus,

lim sup
n→∞

S(fy, fy, fgxn) = 0.

That is

lim
n→∞

fg(xn) = f(y),

therefore, f(y) = g(y). Now, let there exists u ∈ X such that f(u) = g(u) then
we show that f(u) = f(y) = g(u) = g(y). Now, the (ξ2) inequality implies

0 ≤ ξ(S(fy, fy, fu), S(gy, gy, gu)) ≤ S(gy, gy, gu)− S(fy, fy, fu) = 0,

hence S(fy, fy, fu) = S(gy, gy, gu), by the condition (ξ2), with

tk = S(fy, fy, fu)

and

sk = S(gy, gy, gu),
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we get

0 ≤ lim sup
k−→∞

ξ(S(fy, fy, fu), S(gy, gy, gu) < 0,

which is a contradiction. Thus we have fy = fu = gy = gu.
Now, let the map g is continuous and it is one to one. If y, u are two

coincidence points of f and g, in this case we show that y = u. Because, by
above argument we have f(y) = g(y) = f(u) = g(u), since g is one to one it
follows that y = u. Now, since g(y) = f(y) and the pair (f, g) is compatible
we have fg(y) = gf(y). Therefore, gf(y) = fg(y) = ff(y). That is f(y) is
coincidence point for f and g. Therefore, f(y) = y hence f(y) = g(y) = y.
That is f and g have unique fixed point y ∈ X. �

We show the unifying power of simulation functions by applying Theorem
2.5 to deduce different kinds of contractive conditions in the existing literature.

Now we get the special cases of Theorem 2.5 as follows:

Corollary 2.6. Let (X,S) be an complete S-metric space and let f, g : X −→
X be two mappings with f(X) ⊆ g(X) and the pair {f, g} is compatible.
Suppose that there exists λ ∈]0, 1[ such that

S(fx, fy, fz) ≤ λS(gx, gy, gz) ∀ x, y, z ∈ X.

If g is continuous, then f and g have a coincidence point. Moreover, if g is
continuous and it is one to one, then f and g have unique fixed point.

Proof. The result follows from Theorem 2.5, by taking as simulation function

ξ(t, s) = λs− t,

for all t, s ≥ 0. �

Corollary 2.7. Let (X,S) be a complete S-metric space and let f : X −→ X
be a mapping. Suppose that there exists λ ∈]0, 1[ such that

S(fx, fy, fz) ≤ λS(x, y, z) ∀ x, y, z ∈ X.

Then f has unique fixed point.

Proof. The result follows from Corollary 2.6, by taking g = I identity map. �

Now we give an example to support our result.

Example 2.8. Let X = [0, 1] be endowed with S-metric S(x, y, z) = |x− z|+
|y − z|. Define f and g on X by

f(x) = (x2 )4, g(x) = (x2 )2.
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Then, we know that f(X) ⊆ g(X) and the pair {f, g} is compatible. Taking
as simulation function

ξ(t, s) =
1

2
s− t,

for all t, s ≥ 0. Also for each x, y ∈ X we have

S(fx, fy, fz) = |fx− fz|+ |fy − fz|

= |(x
2

)4 − (
z

2
)4|+ |(y

2
)4 − (

z

2
)4|

= |(x
2

)2 − (
z

2
)2||(x

2
)2 + (

z

2
)2|+ |(y

2
)2 − (

z

2
)2||(y

2
)2 + (

z

2
)2|

≤ 1

2
|gx− gz|+ 1

2
|gy − gz|

=
1

2
S(gx, gy, gz).

Thus f and g satisfy the conditions given in Corollary 2.6 and 0 is the unique
common fixed point of f and g .
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