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Abstract. In this paper, we obtain the error approximation of a function in weighted

W (Lr, ξ(t)), r ≥ 1 class by Hausdorff-Matrix (∧T ) product means of its Fourier series. Our

main theorems generalize the results of Nigam ([18], [19]), Nigam and Sharma [20], Singh

and Srivastava [28] and Lal [14]. Thus, these results become the particular cases of our

theorems. Some important corollaries are also deduced from our main theorems.

1. Introduction

The studies of error estimation of a function f in Lipα class using different
single means have been made by the researchers ([1], [3], [4]-[10], [13], [15]-
[17], [21]-[27]) in past few decades. Nigam ([18], [19]), Nigam and Sharma [20],
Singh and Srivastava [28], Albayrak et al. [2] and Lal [14] have studied error
estimation of a function f in weighted W (Lr, ξ(t)), r ≥ 1 class and its subclass
Lipα using different product means in recent past.

In this paper, we obtain the error estimation of a function in weighted
W (Lr, ξ(t)), r ≥ 1 class by Hausdorff-Matrix (∧T ) product means of its Fourier
series.
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Let f be a 2π-periodic function and Lebesgue integrable on [−π, π]. The
Fourier series of f at a point x is defined by

f(x) =
a0
2

+
∞∑
n=0

(an cosnx+ bn sinnx) (1.1)

with nth partial sums sn(f ;x).

In 1921, Hausdorff [12] proved the following theorem:

Theorem 1.1. Given the sequence (µn)∞n=1, defines

∆pµn =

p∑
i=0

(
p
i

)
(−1)iµn+i.

Then, the matrix with elements

λmn =


(
m

n

)
∆m−nµn for n ≤ m

0 for n > m.

(1.2)

is regular if and only if µn is the moment sequence

µn =

∫ 1

0
xndχ(x), (1.3)

where χ, known as mass function, is a real, bounded variation function defined
on the interval [0,1] satisfying the conditions:

χ(0+) = χ(0) = 0 and χ(1) = 1. (1.4)

A sequence µn that satisfies the condition (1.3) is known as a moment
sequence, while a sequence that satisfies both the conditions (1.3) and (1.4),
is known as a Hausdorff moment sequence. The matrix in (1.2) that satisfies
both (1.3) and (1.4) is known as a Hausdorff (∧) matrix (method).

The Hausdorff means of Fourier series are defined by

∧m(f ;x) =
m∑
n=0

λmnsn(f ;x),m = 0, 1, 2, 3, .... (1.5)

The Fourier series (1.1) is said to be summable to s by Hausdorff (∧) method
if

∧m(f ;x)→ s as m→∞.
An infinite series T = [cmn];m,n = 0, 1, ..... is called a regular matrix (method)
if it transforms any convergent sequence into convergent sequence with the
same limit.
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In 1911, Toeplitz [30] presented the following equivalence conditions for
regularity.

Theorem 1.2. The matrix T = [cmn] is regular if and only if

(i) limm→∞ cmn = 0, ∀n ≥ 0;

(ii) limm→∞
∑m

n=0 cmn = 1;

(iii) ∃M > 0,
∑∞

m=0 |cmn| < M, ∀m ≥ 0.

The matrix (T ) method of Fourier series is given by

Tm(f ;x) =
m∑
n=0

cmnsn(f ;x),m = 0, 1, 2, 3, ...

The Fourier series (1.1) is said to be summable to s by Matrix (T ) method if
Tm(f ;x)→ s as m→∞.

By superimposing Hausdorff (∧) method on Matrix (T ) method, Hausdorff-
Matrix (∧T ) method is obtained, which is defined as

K∧Tn (f ;x) =
n∑
k=0

λn,k

k∑
ν=0

ck,νsν(f ;x).

If K∧Tn (f ;x) → s as n → ∞, then the Fourier series (1.1) is said to be sum-
mable to s by Hausdorff-Matrix (∧T ) method.

Remark 1.3. It is worthwhile to mention here that Hausdorff matrices repre-
sent a wider class of summability matrices. Cesàro (C, 1) and the Euler matrix
(E, d); d > 0 are Hausdorff matrices and their products are also Hausdorff ma-
trices. Therefore, Hausdorff-Matrix (∧T ) product means, which is considered
in the present paper, is more powerful than the individual operators such as
Hausdorff (∧), Matrix (T ), (C, 1), (E, d) means.

Remark 1.4. Particular cases of Hausdorff-Matrix (∧T ) method:

Hausdorff-Matrix (∧T ) means reduces to

(i) ∧
(
H, 1

m+1

)
or ∧H means if cmn = 1

m−n+1 log(m+ 1).

(ii) ∧(C, 1) or ∧ C1 means if cmn = 1
m+1 .

(iii) ∧ (N, pm) or ∧Np means if cmn = pm−n

Pm
, where Pm =

∑m
n=0 pn 6= 0.
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(iv) ∧ (N, p, q) or ∧Np,q means if cmn = pm−nqn
Rm

, whereRm =
∑m

n=0 pnqm−n.

(v) ∧
(
N̄ , pm

)
or ∧ N̄p means if cmn = pn

Pm
.

(vi) ∧ (E, d) or ∧ Ed means if cmn = 1
(1+d)m

(
m
n

)
dm−n.

(vii) Cesàro-Matrix((C,m)T ) or CmT means if the mass function χ(x) =
m
∫ x
0 (1− t)m−1dt.

(viii) Hölder-Matrix((H,m)T ) or HmT means if the mass function χ(x) =∫ x
0

1
(m−1)

(
log 1

t

)m−1
dt.

(ix) Euler-Matrix ((E, d)T ) or EdT means if the mass function

χ(x) =

{
0, if x ∈ [0, b]

1, if x ∈ [b, 1]
, where b = 1

1+d , d > 0.

Remark 1.5. In view of above Remark 1.4, Hausdorff-Matrix (∧T ) means
also reduces to (i) CmNp, (ii) CmNp,q, (iii) CmN̄p, (iv) HmNp, (v) HmNp,q,
(vi) HmN̄p, (vii) EdNp,, (viii) EdNp,q, (ix) EdN̄p (x) CmEd, (xi) EdCm means
for m, d > 0.

Remark 1.6. Since Cesàro means, Euler means and their product means are
again Hausdorff means then our main theorems also hold for Cesáro means,
Euler means and their product CmEd and EdCm means for m, d > 0.

Remark 1.7. Our main theorems also hold for all the cases mentioned in
Remarks 1.5 (case (i) to (ix)) and sub-cases mentioned in Remark 1.5 (case
(i) to (ix)).

L∞− norm of a function f : R→ R is defined by

‖f‖∞ = sup
x∈[0,2π]

{|f (x)| : x ∈ R} .

Lr− norm of a function f ∈ Lr[0, 2π] is defined by

‖f‖r =

 1

2π

2π∫
0

|f (x)|rdx


1
r

, r ≥ 1.

The degree of approximation of a function f : R → R by a trigonometric
polynomial tn of degree n under sup norm ‖·‖∞ is given by [31] and is defined
as

‖tn − f‖∞ = sup { |tn (x)− f (x)| : x ∈ R}
and the degree of approximation En(f) of a function f ∈ Lr is given by

En(f) = min
tn
‖tn − f‖r (1.6)
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This method of approximation is called trigonometric Fourier approximation
(TFA).

A function f ∈ Lipα if

f (x+ t)− f (x) = O ( |t|α) for 0 < α ≤ 1.

f ∈ Lip(α, r) if 2π∫
0

|f (x+ t)− f (x)|rdx


1
r

= O ( |t|α) , 0 < α ≤ 1, and, r ≥ 1.

Given a positive increasing function ξ (t), then f ∈W (Lr, ξ (t)) if 2π∫
0

|f (x+ t)− f (x) |rsinβ r x
2
dx


1
r

= O (ξ (t)) , β ≥ 0, r ≥ 1.

We use the following notation:

φ(t) = φ(x, t) = f(x+ t) + f(x− t)− 2f(x)

2. Lemmas

Lemma 2.1. For t ∈
[
0, 1

n+1

]
, |Kn(t)| = O(n+ 1).

Proof. For t ∈
[
0, 1

n+1

]
, sinnt ≤ nt, sin(t/2) ≥ t/π,

|Kn(t)| = 1

2π

∣∣∣∣∣
[{∫ 1

0

n∑
k=0

(
n
k

)
uk(1− u)n−kdγ(u)

}{
k∑
ν=0

ck,ν
sin
(
ν + 1

2

)
t

sin(t/2)

}]∣∣∣∣∣
(2.1)

First, we solve the following:∣∣∣∣∣
k∑
ν=0

ck,ν
sin
(
ν + 1

2

)
t

sin(t/2)

∣∣∣∣∣ ≤
k∑
ν=0

ck,ν

∣∣sin (ν + 1
2

)
t
∣∣

|sin(t/2)|

≤
k∑
ν=0

ck,ν

(
ν + 1

2

)
t

(t/π)

=
π

2

{
k∑
ν=0

ck,ν(2ν + 1)

}
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=
π

2

{
k∑
ν=0

ck,ν + 2

k∑
ν=0

ν ck,ν

}
=
π

2
{1 + 2(ck,1 + 2ck,2 + 3ck,1 + ....kck,k)}

≤π
2
{1 + 2(kck,1 + kck,2 + kck,3 + ....kck,k)}

≤π
2
{1 + 2k(ck,1 + ck,2 + ck,3 + ....ck,k)}

≤π
2
{1 + 2k(ck,0 + ck,1 + ck,2 + ....ck,k)− 2kck,0}

≤π
2
{1 + 2k(1− ck,0}

≤π
2

(1 + 2k)

=O(k + 1). (2.2)

Using (2.2) in (2.1), we have

|Kn(t)| = 1

2π

∣∣∣∣∣
[{∫ 1

0

n∑
k=0

(
n
k

)
uk(1− u)n−k(k + 1)dγ(u)

}]∣∣∣∣∣
=

1

2π

∣∣∣∣[{∫ 1

0
g(u)dγ(u)

}]∣∣∣∣ , (2.3)

where g(u) =
n∑
k=0

(
n
k

)
uk(1− u)n−k(k + 1).

Now solving,

g(u) =

n∑
k=0

(
n
k

)
uk(1− u)n−k(k + 1)

=(1− u)n
n∑
k=0

(
n
k

){
u

1− u

}k
(k + 1)

=(1− u)n

[
n∑
k=0

(
n
k

)
k

{
u

1− u

}k
+

n∑
k=0

(
n
k

){
u

1− u

}k]

=(1− u)n

[
n∑
k=0

(
n
k

)
k pk +

n∑
k=0

(
n
k

)
pk

]
,where p =

u

1− u

=(1− u)n

[
n∑
k=0

(
n
k

)
k pk + (1 + p)n

]
. (2.4)
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And also, we have

n∑
k=0

(
n
k

)
k pk =0

(
n
0

)
p0 + 1

(
n
1

)
p1 + 2

(
n
2

)
p2 + ....+ n

(
n
n

)
pn

=p

[(
n
1

)
+ 2

(
n
2

)
p+ .......+ n

(
n
n

)
pn−1

]
. (2.5)

We know that

(1 + p)n =

[(
n
1

)
+

(
n
2

)
p+ .....+

(
n
n

)
pn
]
. (2.6)

Differentiating (2.6) with respect to p on both sides,

n(1 + p)n−1 =

[(
n
1

)
+ ....+ n

(
n
n

)
pn−1

]
. (2.7)

From (2.5) in (2.7), we get

n∑
k=0

(
n
k

)
k pk = pn(1 + p)n−1. (2.8)

Using (2.8) in (2.4), we get

g(u) =(1− u)n
[
pn(1 + p)n−1 + (1 + p)n

]
=(1− u)n

{
n

(
u

1− u

)(
1

1− u

)n−1
+

(
1

1− u

)n}
=un+ 1. (2.9)

From (2.3) and (2.9), we get

|Kn(t)| = 1

2π

[{∫ 1

0
(un+ 1)du

}]
=O(n+ 1).

�

Lemma 2.2. For t ∈
[

1
n+1 , π

]
, |Kn(t)| = O

(
1
t

)
.

Proof. For t ∈
[

1
n+1 , π

]
, sin(t/2) ≥ t/π and sup

0≤k≤1
|γ′(u)| = N,

|Kn(t)| = 1

2π

∣∣∣∣∣
[{∫ 1

0

n∑
k=0

(
n
k

)
uk(1− u)n−kγ(u)

}{
k∑
ν=0

ck,ν
sin
(
ν + 1

2

)
t

sin(t/2)

}]∣∣∣∣∣ .
(2.10)
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First, we solve the following:

∣∣∣∣∣
k∑
ν=0

ck,ν
sin
(
ν + 1

2

)
t

sin(t/2)

∣∣∣∣∣ ≤
k∑
ν=0

ck,ν

∣∣sin (ν + 1
2

)
t
∣∣

|sin(t/2)|

≤π
t

∣∣∣∣∣
k∑
ν=0

ck,ν Im ei(ν+
1
2)t

∣∣∣∣∣
≤π
t

∣∣∣∣∣
k∑
ν=0

ck,ν Im eiνt

∣∣∣∣∣ ∣∣∣ei t2 ∣∣∣
≤π
t

∣∣∣∣∣
τ−1∑
ν=0

ck,ν Im eiνt

∣∣∣∣∣+
π

t

∣∣∣∣∣
k∑

ν=τ

ck,ν Im eiνt

∣∣∣∣∣ . (2.11)

Now considering first term of (2.11):

π

t

∣∣∣∣∣
τ−1∑
ν=0

ck,ν Im eiνt

∣∣∣∣∣ ≤ π

t

∣∣∣∣∣
τ−1∑
ν=0

ck,ν

∣∣∣∣∣ ∣∣eiνt∣∣
≤ π

t

∣∣∣∣∣
τ−1∑
ν=0

ck,ν

∣∣∣∣∣ . (2.12)

Now considering the second term of (2.11) and using Abel’s Lemma, we get

π

t

∣∣∣∣∣
k∑

ν=τ

ck,ν Im eiνl

∣∣∣∣∣ ≤πt
k∑

ν=τ

ck,ν max
0≤m≤ν

∣∣eimt∣∣
≤π
t

k∑
ν=τ

ck,ν . (2.13)

Combining (2.11), (2.12) and (2.13), we get

∣∣∣∣∣
k∑
ν=0

ck,ν
sin
(
ν + 1

2

)
l

sin(t/2)

∣∣∣∣∣ ≤πt
τ−1∑
ν=0

ck,ν +
π

t

k∑
ν=τ

ck,ν

=O

(
1

t

)
. (2.14)
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From (2.10) and (2.14), we get

|Kn(t)| =O

[
1

2πt

{∫ 1

0

n∑
k=0

(
n
k

)
uk(1− u)n−kdu

}]

=O

[
1

2πt

{∫ 1

0
(u+ 1− u)ndu

}]
=O

(
1

t

)
.

�

3. Main results

Theorem 3.1. Error estimation of a function f ( 2π- periodic) in W (Lr, ξ (t)) ,
r > 1, class by Hausdorff-Matrix (∧T ) means of its Fourier series is given by∥∥K∧Tn (f)− f (x)

∥∥
r

= O

[
(n+ 1)β+

1
r ξ

(
1

(n+ 1)

)]
provided a positive increasing function ξ (t) satisfies the following conditions:

ξ (t)

t
is non-increasing, (3.1)


1

n+1∫
0

(
|φ (t)| sinβ(t/2)

ξ (t)

)r
dt


1
r

= O

(
1

(n+ 1)1/r

)
, (3.2)


1

n+1∫
ε

(
ξ(t)

sinβ(t/2)

)r
dt


1
r

= O(n+ 1)β−1+
1
r ξ

(
1

n+ 1

)
(3.3)

and 
π∫

1
n+1

(
t−δ |φ (t)|
ξ (t)

)r
dt


1
r

= O
{

(n+ 1)δ
}
, (3.4)

where δ is an arbitrary positive number such that 0 < δ < β+ 1
r , 0 < β ≤ 1− 1

r

and 1
r + 1

s = 1. The conditions (3.2) and (3.4) hold uniformly in x.
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Proof. In view of the fact that φ(t) ∈ W (Lr, ξ(t)) and φ(t)
ξ(t) is bounded, (3.2)

and (3.4) can be verified. Moreover, in view of mean value theorem, (3.3) is
obvious. Following [29], we have

sn (f ;x)− f (x) =
1

2π

π∫
0

φ (t)
sin
(
n+ 1

2

)
t

sin t
2

dt.

Hausdorff-Matrix (∧T ) transform of sn (f ;x) is given by

f(x)− t∧Tn (x)

=
1

2π

π∫
0

φ (t)

[{
n∑
k=0

(
n
k

)
uk(1− u)n−kdγ(u)

}{
k∑
ν=0

ck,ν
sin
(
ν + 1

2

)
t

sin t
2

}]
dt

=

∫ π

0
φ(t)Kn(t)dt

=


1

n+1∫
0

+

π∫
1

n+1

φ (t) Kn (t) dt

= I1 + I2 (say). (3.5)

Now considering,

|I1| ≤

1
n+1∫
0

|φ (t)| |Kn (t)| dt.

Using Lemma 2.1 and Hölder’s inequality, we obtain

|I1| = O(n+ 1)


1

n+1∫
0

|φ (t) | sinβ(t/2)

ξ (t)
.

ξ(t)

sinβ(t/2)
dt



= O(n+ 1)


1

n+1∫
0

{
|φ (t) | sinβ(t/2)

ξ (t)

}r
dt


1
r
lim
ε→0

1
n+1∫
ε

{
ξ (t)

sinβ(t/2)

}s
dt


1
s

= O

{
n+ 1

(n+ 1)
1
r

(n+ 1)β−1+
1
r ξ

(
1

n+ 1

)}
by (3.2) and (3.3)

= O

{
(n+ 1)βξ

(
1

n+ 1

)}
since

1

r
+

1

s
= 1. (3.6)
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Using Lemma 2.2, Holder’s inequality and 1
sin(t/2) ≤

π
t for 0 < t < π, we obtain

|I2| = O


π∫

1
n+1

t−δ |φ (t) | sinβ(t/2)

ξ (t)
.

ξ(t)

t−δ+1 sinβ(t/2)
dt



= O


π∫

1
n+1

{
t−δ |φ (t) | sinβ(t/2)

ξ (t)

}r
dt


1
r


π∫
1

n+1

{
ξ (t)

t−δ+1+β

}s
dt


1
s

.

Using (3.1), (3.4), mean value theorem for integrals and in view of 0 < δ <
β + 1

r , we get

= O

(n+ 1)δξ

(
1

n+ 1

)
(n+ 1)

(∫ π

1
n+1

t−(β−δ)sdt

) 1
s


= O

[
(n+ 1)δξ

(
1

n+ 1

)
(n+ 1)(β+1−δ)− 1

s

]
= O

[
(n+ 1)β+

1
r ξ

(
1

n+ 1

)]
since

1

r
+

1

s
= 1. (3.7)

Thus combining (3.5), (3.6) and (3.7), we get∣∣f(x)− t∧Tn (x)
∣∣ = O

[
(n+ 1)βξ

(
1

n+ 1

)]
+O

[
(n+ 1)β+

1
r ξ

(
1

n+ 1

)]
,

∥∥f(x)− t∧Tn (x)
∥∥
r

= O

[
(n+ 1)β+

1
r ξ

(
1

n+ 1

)]
. (3.8)

�

Theorem 3.2. Error estimation of a function f ( 2π- periodic) in W (L1, ξ (t))
class by Hausdorff-Matrix (∧T ) means of its Fourier series is given by∥∥K∧Tn (f)− f (x)

∥∥
1

= O

[
(n+ 1)β+1 ξ

(
1

(n+ 1)

)]
provided a positive increasing function ξ (t) satisfies the following conditions:

ξ (t)

tδ
is non-decreasing, (3.9)

1
n+1∫
0

|φ (t)| sinβ(t/2)

ξ (t)
dt = O

(
1

n+ 1

)
, (3.10)
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π∫
1

n+1

t−δ |φ (t)|
ξ (t)

dt = O
{

(n+ 1)δ
}

(3.11)

and

ξ (t)

tβ−δ+1
is non-increasing, (3.12)

where δ is an arbitrary positive number such that 0 < δ < β+1 and 0 ≤ β < 1
The conditions (3.10) and (3.11) hold uniformly in x.

Proof. Following the proof of Theorem 3.1, for r = 1 i.e. s = ∞ and using
Lemma 2.1, we obtain

I1 = O(n+ 1)


1

n+1∫
0

|φ (t) | sinβ(t/2)

ξ (t)
dt

 ess sup
0<t< 1

n+1

∣∣∣∣ ξ(t)

sinβ(t/2)

∣∣∣∣
= O

ess sup
0<t< 1

n+1

∣∣∣∣ξ(t)tβ
∣∣∣∣
 by (3.10)

= O


∣∣∣∣∣∣∣
ξ
(

1
n+1

)
(

1
n+1

)β
∣∣∣∣∣∣∣
 by (3.9)

= O

[
(n+ 1)βξ

(
1

n+ 1

)]
(3.13)

and

I2 = O


π∫

1
n+1

t−δ |φ (t) | sinβ(t/2)

ξ (t)
dt

 ess sup
0<t< 1

n+1

∣∣∣∣ ξ(t)

t−δ+1 sinβ(t/2)

∣∣∣∣
= O

(n+ 1)δ ess sup
0<t< 1

n+1

∣∣∣∣ ξ(t)

t−δ+β+1

∣∣∣∣
by (3.11)

= O

{
(n+ 1)δξ

(
1

n+ 1

)}{
(n+ 1)1+β−δ

}
by (3.12)

= O

{
(n+ 1)β+1 ξ

(
1

n+ 1

)}
. (3.14)



Trigonometric approximation of function 687

Thus, combining (3.13) and (3.14), we get∥∥f (x)− t∧Tn
∥∥
1

= O

[
(n+ 1)β+1 ξ

(
1

(n+ 1)

)]
.

�

4. Corollaries

Corollary 4.1. If β = 0 and ξ(t) = tα, then the degree of approximation of a
function f ∈ Lip(α, r), 0 < α ≤ 1, is given by∥∥f (x)− t∧Tn

∥∥
r

= O

[(
1

n+ 1

)α− 1
r

]
.

Corollary 4.2. If r →∞ in Corollary 1, then 0 < α ≤ 1∥∥f (x)− t∧Tn
∥∥
∞ = O

[
1

(n+ 1)α

]
.

5. Particular cases

Remark 5.1. (i) If am,n = 1
m+1 , then in view of Remark 1.4 (case (ix))

for d = 1, Theorem 1 of [18] becomes a particular case of our main
theorems.

(ii) In view of Remark 1.4 (case (vii)) for m = 1, Theorem 1 of [28] be-
comes a particular case of our main theorems.

(iii) If am,n = 1
(1+d)md

m−n, then in view of Remark 1.4 (case (vii)) for

m = 1, the result of [19] becomes a particular case of our main theo-
rems.

(iv) If am,n = pm−n

Pm
, where Pm =

∑m
n=0 pn 6= 0, then in view of Remark 1.4

(case (vii)) for m = 1, Theorem 1 of [14] becomes a particular case of
our main theorems.

(v) If am,n = pm−n

Pm
, where Pm =

∑m
n=0 pn 6= 0, then in view of Remark

1.4 (case (ix)) for d = 1, Theorem 3 of [20] becomes a particular case
of our main theorems.
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