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Abstract. In this paper, the study of implicit viscosity approximation methods for non-

expansive mappings in Banach spaces is explored. A new iterative sequence is introduced

for the class of nonexpansive mappings in Banach spaces. Suitable conditions are imposed

on the control parameters to prove a strong convergence theorem. Moreover, the strong

convergence of the newly introduced sequence to a fixed point of a nonexpansive mapping is

obtained which also solves the variational inequality problem. These results are improvement

and extension of some recent corresponding results announced.

1. Introduction

Following the idea of Attouch [3], the viscosity approximation method for
nonexpansive mappings in Hilbert spaces was introduced in 2000 by Moudafi
[10].

Let H be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖, K be
a nonempty, closed and convex subset of H. Let G : K → K be a contraction
(i.e., ‖G(u) − G(v)‖ ≤ c‖u − v‖ for all u, v ∈ K and for some c ∈ [0, 1)), and
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let T : K → K be a nonexpansive mapping (i.e., ‖Tu− Tv‖ ≤ ‖u− v‖ for all
u, v ∈ K). The set of fixed points of T will be denoted by F (T ). Recently, Xu
et al. [16] proposed the implicit midpoint procedure:

xn+1 = λnG(xn) + (1− λn)T

(
xn + xn+1

2

)
, n ∈ N, (1.1)

where {λn}∞n=1 ⊂ [0, 1]. Under certain conditions imposed on the control pa-
rameter, it was established that the implicit midpoint procedure (1.1) con-
verges to a fixed point p of T which also solves the variational inequality:

〈(I −G)p, x− p〉 ≥ 0, ∀ x ∈ F (T ). (1.2)

Ke and Ma [5] introduced generalized viscosity implicit rules which extend
the results of Xu et al. [16]. The generalized viscosity implicit procedures are
given by

xn+1 = λnG(xn) + (1− λn)T (δnxn + (1− δn)xn+1) , n ∈ N, (1.3)

and

yn+1 = λnG(yn) + βnyn + γnT (δnyn + (1− δn)yn+1) , n ∈ N, (1.4)

where {λn}∞n=1 , {βn}
∞
n=1 , {γn}

∞
n=1 ⊂ [0, 1] with λn + βn + γn = 1. Suitable

conditions were imposed on the control parameters to show that the sequence
{xn}∞n=1 converges strongly to a fixed point p of the nonexpansive mapping
T, which is also the unique solution of the variational inequality (1.2). In
other words, p is the unique fixed point of the contraction PF (T )G, that is,
PF (T )G(p) = p. Replacement of strict contractions in (1.4) by the generalized
contractions and extension to uniformly smooth Banach spaces was considered
by Yan et al. [17]. Under certain conditions on imposed on the parameters
which are involved, the sequence {xn}∞n=1 converges strongly to a fixed point
p of the nonexpansive mapping T, which is also the unique solution of the
variational inequality

〈(I −G)p, J(x− p)〉 ≥ 0, ∀x ∈ F (T ), (1.5)

where J is the normalized duality mapping.

Inspired by the previous works in this direction, we propose a new implicit
iterative algorithm. Precisely, for a nonempty closed convex subset K of a

uniformly smooth Banach space E and for real sequences
{{
λin
}∞
n=1

}3
i=1
⊂

[0, 1] and {δn}∞n=1 ⊂ (0, 1), the implicit iterative scheme is defined from an
arbitrary x1 ∈ K by

xn+1 = λ1nG1(xn) + λ2nxn + λ3nT ((1− δn)G2(xn) + δnxn+1) , (1.6)

where T : K → K is a nonexpansive mapping and Gi : K → K is a generalized
contraction mapping for each i = 1, 2.
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2. Preliminaries

Let E be a real Banach space with dual E∗ and denotes the norm on E by
‖.‖. The normalized duality mapping J : E → 2E

∗
is defined as

J(x) = {f ∈ E∗ : 〈x, f〉 = ‖x‖‖f‖, ‖x‖ = ‖f‖} ,

where 〈·, ·〉 is the duality pairing between E and E∗. Let BE denotes the unit
ball of E. The modulus of convexity of E is defined as

δE(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ BE , ‖x− y‖ ≥ ε

}
, 0 ≤ ε ≤ 2.

E is uniformly convex if and only if δE(ε) > 0 for every ε ∈ (0, 2]. E is said to
be smooth (or Gáteaux differentiable) if the limit

lim
t→0+

‖x+ ty‖ − ‖x‖
t

exists for each x, y ∈ BE . E is said to have uniformly Gâteaux differentiable
norm if for each y ∈ BE , the limit is attained uniformly for x ∈ BE and
uniformly smooth if it is smooth and the limit is attained uniformly for each
x, y ∈ BE . Recall that if E is smooth, then J is single-valued and onto if
E is reflexive. Furthermore, the normalized duality mapping J is uniformly
continuous on bounded subsets of E from the strong topology of E to the
weak-star topology of E∗ if E is a Banach space with a uniformly Gâteaux
differentiable norm.

Let T be a self-mapping of K. T : K → K is said to be L-Lipschitzian if
there exists a constant L > 0, such that for all u, v ∈ K,

‖Tu− Tv‖ ≤ L‖u− v‖.

Let (X, d) be a metric space and K a subset of X. A mapping G : K → K is
said to be a Meir-Keeler contraction if for each ε > 0 there exists δ = δ(ε) > 0
such that for each u, v ∈ K, with ε ≤ d(u, v) < ε+ δ, we have

d(G(u), G(v)) < ε.

Let N be the set of all positive integers and R+ the set of all positive real
numbers. A mapping ψ : R+ → R+ is said to be an L-function if ψ(0) =
0, ψ(t) > 0 for all t > 0 and for every s > 0, there exists u > s such that
ψ(t) ≤ s for each t ∈ [s, u]. A mapping G : E → E is called a (ψ,L)-contraction
if ψ : R+ → R+ is an L-function and

d(G(x), G(y)) < ψ(d(x, y)),

for all x, y ∈ E, x 6= y.
The following interesting results about the Meir-Keeler contraction are well

known.
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Proposition 2.1. ([9]) Let (X, d) be a complete metric space and let G be a
Meir-Keeler contraction on X. Then G has a unique fixed point in X.

Remark 2.2. If K is a nonempty closed (convex) subset of a complete metric
space (X, d), then the conclusion of Proposition 2.1 is still true.

Proposition 2.3. ([13]) Let E be a Banach space, K a convex subset of E
and G : K → K a Meir-Keeler contraction. Then for all ε > 0, there exists a
c ∈ (0, 1) such that

‖G(u)−G(v)‖ ≤ c‖u− v‖ (2.1)

for all u, v ∈ K with ‖u− v‖ ≥ ε.

Proposition 2.4. ([8]) Let K be a nonempty convex subset of a Banach space
E, T : K → K a nonexpansive mapping and G : K → K a Meir-Keeler
contraction. Then TG and GT : K → K are Meir-Keeler contractions.

The following lemmas are also needed in the sequel.

Lemma 2.5. ([11]) Let K be a nonempty closed and convex subset of a uni-
formly smooth Banach space E. Let T : K → K be a nonexpansive mapping
such that F (T ) 6= ∅ and G : K → K be a generalized contraction mapping.
Then {xt} defined by

xt = tG(xt) + (1− t)Txt
for t ∈ (0, 1), converges strongly to p ∈ F (T ), which solves the variational
inequality:

〈G(p)− p, J(z − p)〉 ≤ 0, ∀ z ∈ F (T ).

Lemma 2.6. ([11]) Let K be a nonempty closed and convex subset of a uni-
formly smooth Banach space E. Let T : K → K be a nonexpansive mapping
such that F (T ) 6= ∅ and G : K → K be a generalized contraction mapping.
Assume that {xt} defined by

xt = tG(xt) + (1− t)Txt
for t ∈ (0, 1), converges strongly to p ∈ F (T ) as t→ 0. Suppose that {xn} is a
bounded sequence such that ‖xn − Txn‖ → 0 as n→∞. Then

lim sup
n→∞

〈G(p)− p, J(xn − p)〉 ≤ 0.

Lemma 2.7. ([12]) Let {un}∞n=1 and {vn}∞n=1 be bounded sequences in a
Banach space E and {tn}∞n=1 be a sequence in [0, 1] with 0 < lim inf

n→∞
tn ≤

lim sup
n→∞

tn < 1. Suppose that for all n ≥ 0,

un+1 = (1− tn)un + tnvn

and
lim sup
n→∞

(‖un+1 − un‖ − ‖vn+1 − vn‖) ≤ 0.
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Then lim
n→∞

‖un − vn‖ = 0.

Lemma 2.8. ([15]) Let {an} be a sequence of nonnegative real numbers sat-
isfying the following relations:

an+1 ≤ (1− αn)an + αnσn + γn, n ∈ N,
where

(i) {α}n ⊂ (0, 1),

∞∑
n=1

αn =∞;

(ii) lim sup
n→∞

σn ≤ 0;

(iii) γn ≥ 0,
∞∑
n=1

γn <∞.

Then, an → 0 as n→∞.

In this paper, the generalized contraction mappings refer to Meir-Keeler
contractions or (ψ,L)-contractions. It is assumed from the definition of (ψ,L)-
contraction that L-function is continuous, strictly increasing and lim

t→∞
φ(t) =

∞, where φ(t) = t− ψ(t) for all t ∈ R+. Whenever there is no confusion, φ(t)
and ψ(t) will be written as φ t and ψ t, respectively.

3. Main results

Assumption 3.1. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E. Let Gi : K → K be generalized contraction mappings
and T a nonexpansive self-mapping defined on K with F (T ) 6= ∅, for each

i = 1, 2. The real sequences
{{
λin
}∞
n=1

}3
i=1
⊂ [0, 1] and {δn}∞n=1 ⊂ (0, 1) are

assumed to satisfy the following conditions:

(i)
3∑
i=1

λin = 1;

(ii) lim
n→∞

(1− λ2n − λ3nδn) = 0,
∞∑
n=1

(1− λ2n − λ3nδn) =∞;

(iii) 0 < lim inf
n→∞

λ2n ≤ lim sup
n→∞

λ2n < 1;

(iv) lim
n→∞

λ3n = 0,

∞∑
n=1

λ3n(1− δn) <∞;

(v) 0 < ε ≤ δn ≤ δn+1 ≤ δ < 1, ∀n ∈ N.

The convergence of the iterative scheme (1.6) is being considered under the
conditions (i)-(v) of Assumption 3.1 stated above.
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First, it is observed that for all ω ∈ K, the mapping defined by

u 7→ Tω(u) : = λ1nG1(ω) + λ2nω + λ3nT ((1− δn)G2(ω) + δnu), (3.1)

for all u ∈ K, where
{{
λin
}∞
n=1

}3
i=1
⊂ [0, 1], {δn}∞n=1 ⊂ (0, 1), is a contraction

with the contractive constant δ ∈ (0, 1).
Indeed, for all u, v ∈ K,

‖Tω(u)− Tω(v)‖ = λ3n ‖T ((1− δn)G2(ω) + δnu)− T ((1− δn)G2(ω) + δnv)‖
≤ λ3n ‖(1− δn)G2(ω) + δnu− (1− δn)G2(ω)− δnv‖
≤ λ3nδn‖u− v‖
≤ δn‖u− v‖
≤ δ‖u− v‖. (3.2)

Therefore, Tω is a contraction. Thus, (1.6) is well defined since every contrac-
tion in a Banach space has a fixed point.

The proof of the following lemmas which are useful in establishing our main
result are given as below.

Lemma 3.2. Let K be a nonempty closed convex subset of a uniformly smooth
Banach space E. Let Gi : K → K be a generalized contraction mapping and
T a nonexpansive self-mapping defined on K with F (T ) 6= ∅ for each i = 1, 2.
For an arbitrary x1 ∈ K, define the iterative sequence {xn}∞n=1 by (1.6). Then
the sequence {xn}∞n=1 is bounded under the conditions (i)-(v) of Assumption
3.1.

Proof. It is shown that the sequence {xn}∞n=1 is bounded. Let ψ = max {ψ1, ψ2}
and G = max {‖G1(p)− p‖, ‖G2(p)− p‖} . For p ∈ F (T ),

‖xn+1 − p‖ = ‖λ1nG1(xn) + λ2nxn + λ3nT ((1− δn)G2(xn) + δnxn+1)− p‖
≤ λ1n‖G1(xn)− p‖+ λ2n‖xn − p‖

+ λ3n‖T ((1− δn)G2(xn) + δnxn+1)− p‖
≤ λ1n‖G1(xn)−G1(p)‖+ λ1n‖G1(p)− p‖+ λ2n‖xn − p‖

+ λ3n‖(1− δn)G2(xn) + δnxn+1 − p‖
= λ1n‖G1(xn)−G1(p)‖+ λ1n‖G1(p)− p‖+ λ2n‖xn − p‖

+ λ3n‖(1− δn)(G2(xn)− p) + δn(xn+1 − p)‖
≤ λ1n‖G1(xn)−G1(p)‖+ λ1n‖G1(p)− p‖+ λ2n‖xn − p‖

+ λ3n(1− δn)‖G2(xn)−G2(p)‖+ λ3n(1− δn)‖G2(p)− p‖
+ λ3nδn‖xn+1 − p‖
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≤ λ1nψ1‖xn − p‖+ λ1n‖G1(p)− p‖+ λ2n‖xn − p‖
+ λ3n(1− δn)ψ2‖xn − p‖+ λ3n(1− δn)‖G2(p)− p‖
+ λ3nδn‖xn+1 − p‖
≤
(
λ1nψ + λ2n + λ3n(1− δn)ψ

)
‖xn − p‖

+
(
λ1n + λ3n(1− δn)

)
G+ λ3nδn‖xn+1 − p‖

=
(
ψ + λ2n(1− ψ)− λ3nδnψ

)
‖xn − p‖

+
(
1− λ2n − λ3nδn

)
G+ λ3nδn‖xn+1 − p‖.

Therefore, we have

‖xn+1 − p‖ ≤
ψ + λ2n(1− ψ)− λ3nδnψ

1− λ3nδn
‖xn − p‖+

1− λ2n − λ3nδn
1− λ3nδn

G

=

(
1− (1− λ2n − λ3nδn)φ

1− λ3nδn

)
‖xn − p‖+

(1− λ2n − λ3nδn)φ

1− λ3nδn
φ−1G

≤ max
{
‖xn − p‖, φ−1G

}
. (3.3)

Then by induction,

‖xn+1 − p‖ ≤ max
{
‖x1 − p‖, φ−1G

}
.

This shows that the sequence {xn}∞n=1 is bounded and hence {{Gi(xn)}∞n=1}
2
i=1

and {T ((1− δn)G2(xn) + δnxn+1)}∞n=1 are bounded. Certainly, for p ∈ F (T ),

‖G1(xn)‖ ≤ ‖G1(xn)−G1(p)‖+ ‖G1(p)‖
≤ ψ1‖xn − p‖+ ‖G1(p)‖
≤ max

{
ψ1‖x1 − p‖, ψ1φ

−1G
}

+ ‖G1(p)‖ (by induction).

Similarly,

‖G2(xn)‖ ≤ max
{
ψ1‖x1 − p‖, ψ1φ

−1G
}

+ ‖G2(p)‖.

Furthermore,

‖T ((1− δn)G2(xn) + δnxn+1)‖
= ‖T ((1− δn)G2(xn) + δnxn+1)− p+ p‖
≤ ‖T ((1− δn)G2(xn) + δnxn+1)− Tp‖+ ‖p‖
≤ ‖(1− δn)G2(xn) + δnxn+1 − p‖+ ‖p‖
≤ (1− δn)‖G2(xn)− p‖+ δn‖xn+1 − p‖+ ||p||
≤ (1− δn)‖G2(xn)−G2(p)‖+(1−δn)‖G2(p)−p‖+δn‖xn+1−p‖+||p||
≤ (1− δn)ψ2‖xn − p‖+ δn‖xn+1 − p‖+ (1− δn)‖G2(p)− p‖+ ||p||
≤ (1− ε)ψ2‖xn − p‖+ δ‖xn+1 − p‖+ (1− ε)‖G2(p)− p‖+ ||p||.
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Therefore, we have

‖T ((1− δn)G2(xn) + δnxn+1)‖
≤ max

{
(1 + δ − ε)ψ‖x1 − p‖, (1 + δ − ε)ψφ−1G

}
+ (1− ε)|G2(p)− p‖+ ||p|| (by induction).

�

Lemma 3.3. Let K be a nonempty closed convex subset of a uniformly smooth
Banach space E. Let G : K → K be a generalized contraction mapping and
T a nonexpansive self-mapping defined on K with F (T ) 6= ∅. Suppose that
{δn}∞n=1 is a real sequence in (0, 1) and {xn}∞n=1 ⊂ K. Set

vn = (1− δn)G(xn) + δnxn+1.

Then, we have

‖Tvn+1 − Tvn‖ ≤ (1− δn+1)ψ‖xn+1 − xn‖+ (δn+1 − δn)‖xn+1 −G(xn)‖
+ δn+1‖xn+2 − xn+1‖.

Proof.

‖Tvn+1 − Tvn‖
= ‖T ((1− δn+1)G(xn+1) + δn+1xn+2)− T ((1− δn)G(xn) + δnxn+1)‖
≤ ‖(1− δn+1)G(xn+1) + δn+1xn+2 − (1− δn)G(xn)− δnxn+1‖
= ‖(1− δn+1)G(xn+1)− (1− δn+1)G(xn)

+ (1− δn+1)G(xn)− (1− δn)G(xn)

+ δn+1xn+2 − δn+1xn+1 + δn+1xn+1 − δnxn+1‖
= ‖(1− δn+1)(G(xn+1)−G(xn))− (δn+1 − δn)G(xn)

+ δn+1(xn+2 − xn+1) + (δn+1 − δn)xn+1‖
= ‖(1− δn+1)(G(xn+1)−G(xn)) + (δn+1 − δn)(xn+1 −G(xn))

+ δn+1(xn+2 − xn+1)‖
≤ (1− δn+1)‖G(xn+1)−G(xn)‖+ (δn+1 − δn)‖xn+1 −G(xn)‖

+ δn+1‖xn+2 − xn+1‖
≤ (1− δn+1)ψ‖xn+1 − xn‖+ (δn+1 − δn)‖xn+1 −G(xn)‖

+ δn+1‖xn+2 − xn+1‖. (3.4)

�

Theorem 3.4. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E. Let Gi : K → K be generalized contraction mapping
and T a nonexpansive self-mapping defined on K with F (T ) 6= ∅, for each
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i = 1, 2. Assume that the conditions (i)− (v) of Assumption 3.1 are satisfied.
Then the iterative sequence {xn}∞n=1 which is defined from an arbitrary x1 ∈ K
by (1.6), converges strongly to a fixed point p of T, which solves the variational
inequality

〈(I −G1)p, J(x− p)〉 ≥ 0, ∀x ∈ F (T ). (3.5)

Proof. Set un = xn+1−λ2nxn
1−λ2n

and vn = (1− δn)G2(xn) + δnxn+1. Then it could

be obtained that,

un+1 − un =
xn+2 − λ2n+1xn+1

1− λ2n+1

− xn+1 − λ2nxn
1− λ2n

=
λ1n+1G1(xn+1) + λ3n+1T (yn+1)

1− λ2n+1

− λ1nG1(xn) + λ3nT (yn)

1− λ2n

=
λ1n+1

1− λ2n+1

(G1(xn+1)−G1(xn)) +

(
λ1n+1

1− λ2n+1

− λ1n
1− λ2n

)
G1(xn)

+
λ3n+1

1− λ2n+1

(T (yn+1)− T (yn)) +

(
λ3n+1

1− λ2n+1

− λ3n
1− λ2n

)
T (yn)

=
λ1n+1

1− λ2n+1

(G1(xn+1)−G1(xn))−
(

λ3n+1

1− λ2n+1

− λ3n
1− λ2n

)
G1(xn)

+
λ3n+1

1− λ2n+1

(T (yn+1)− T (yn)) +

(
λ3n+1

1− λ2n+1

− λ3n
1− λ2n

)
T (yn)

=
λ1n+1

1− λ2n+1

(G1(xn+1)−G1(xn))

+

(
λ3n+1

1− λ2n+1

− λ3n
1− λ2n

)
(T (yn)−G1(xn))

+
λ3n+1

1− λ2n+1

(T (yn+1)− T (yn)).

Let

M1
n = sup

n
{‖T (yn)−G1(xn)‖} ,

M2
n = sup

n
{‖xn −G1(xn)‖} ,

M3
n = sup

n
{‖xn+1 −G2(xn)‖}

and M = max
{
M1
n, M

2
n, M

3
n

}
. Put ψ = max {ψ1, ψ2} . Then, it can be

obtained from (3.4) that
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‖un+1 − un‖ ≤
λ1n+1

1− λ2n+1

‖G1(xn+1)−G1(xn)‖

+

∣∣∣∣ λ3n+1

1− λ2n+1

− λ3n
1− λ2n

∣∣∣∣ ‖T (yn)−G1(xn)‖

+
λ3n+1

1− λ2n+1

‖T (yn+1)− T (yn)‖

≤
λ1n+1

1− λ2n+1

ψ1‖xn+1 − xn‖

+

∣∣∣∣ λ3n+1

1− λ2n+1

− λ3n
1− λ2n

∣∣∣∣ ‖T (yn)−G1(xn)‖

+
λ3n+1

1− λ2n+1

[(1− δn+1)ψ2‖xn+1 − xn‖

+(δn+1 − δn)‖xn+1 −G2(xn)‖+ δn+1‖xn+2 − xn+1‖ ]

≤
λ1n+1ψ + λ3n+1(1− δn+1)ψ

1− λ2n+1

‖xn+1 − xn‖

+

(∣∣∣∣ λ3n+1

1− λ2n+1

− λ3n
1− λ2n

∣∣∣∣+
λ3n+1(δn+1 − δn)

1− λ2n+1

)
M

+
λ3n+1δn+1

1− λ2n+1

‖xn+2 − xn+1‖. (3.6)

Next is to evaluate ‖xn+1 − xn‖.

xn+2 − xn+1 = λ1n+1G1(xn+1) + λ2n+1xn+1 + λ3n+1Tyn+1

−
(
λ1nG1(xn) + λ2nxn + λ3nTyn

)
= λ1n+1(G1(xn+1)−G1(xn)) + λ2n+1(xn+1 − xn)

+λ3n+1(Tyn+1 − Tyn) + (λ1n+1 − λ1n)G1(xn)

+(λ2n+1 − λ2n)xn + (λ3n+1 − λ3n)Tyn

= λ1n+1(G1(xn+1)−G1(xn)) + λ2n+1(xn+1 − xn)

+λ3n+1(Tyn+1 − Tyn)

+((λ2n − λ2n+1) + (λ3n − λ3n+1))G1(xn)

+(λ2n+1 − λ2n)xn + (λ3n+1 − λ3n)Tyn

= λ1n+1(G1(xn+1)−G1(xn)) + λ2n+1(xn+1 − xn)

+λ3n+1(Tyn+1 − Tyn) + (λ2n+1 − λ2n)(xn −G1(xn))

+(λ3n+1 − λ3n)(Tyn −G1(xn)).
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Then, from (3.4)) it leads to

‖xn+2 − xn+1‖ ≤ λ1n+1ψ‖xn+1 − xn‖+ λ2n+1‖xn+1 − xn‖
+λ3n+1‖Tyn+1 − Tyn‖
+|λ2n+1 − λ2n|‖xn −G1(xn)‖
+|λ3n+1 − λ3n|‖Tyn −G1(xn)‖

≤ λ1n+1ψ‖xn+1 − xn‖+ λ2n+1‖xn+1 − xn‖
+λ3n+1[(1− δn+1)ψ‖xn+1 − xn‖
+(δn+1 − δn)‖xn+1 −G2(xn)‖+ δn+1‖xn+2 − xn+1‖ ]

+|λ2n+1 − λ2n|‖xn −G1(xn)‖
+|λ3n+1 − λ3n|‖Tyn −G1(xn)‖

=
(
λ2n+1 + (λ1n+1 + λ3n+1)ψ − λ3n+1δn+1ψ

)
‖xn+1 − xn‖

+λ3n+1δn+1‖xn+2 − xn+1‖
+
(
|λ2n+1 − λ2n|+ |λ3n+1 − λ3n|+ λ3n+1(δn+1 − δn)

)
M

=
(
λ2n+1 + (1− λ2n+1)ψ − λ3n+1δn+1ψ

)
‖xn+1 − xn‖

+λ3n+1δn+1‖xn+2 − xn+1‖
+
(
|λ2n+1 − λ2n|+ |λ3n+1 − λ3n|+ λ3n+1(δn+1 − δn)

)
M

=
(
ψ + λ2n+1(1− ψ)− λ3n+1δn+1ψ

)
‖xn+1 − xn‖

+λ3n+1δn+1‖xn+2 − xn+1‖
+
(
|λ2n+1 − λ2n|+ |λ3n+1 − λ3n|+ λ3n+1(δn+1 − δn)

)
M

=
(
λ2n+1(1− ψ) + (1− λ3n+1δn+1)ψ

)
‖xn+1 − xn‖

+λ3n+1δn+1‖xn+2 − xn+1‖
+
(
|λ2n+1 − λ2n|+ |λ3n+1 − λ3n|+ λ3n+1(δn+1 − δn)

)
M.

Putting dn =
(
|λ2n+1 − λ2n|+ |λ3n+1 − λ3n|+ λ3n+1(δn+1 − δn)

)
, it could be ob-

tained that,

‖xn+2 − xn+1‖ ≤
λ2n+1(1− ψ) + (1− λ3n+1δn+1)ψ

1− λ3n+1δn+1
‖xn+1 − xn‖

+
dnM

1− λ3n+1δn+1
. (3.7)

Let Sn =
∣∣∣ λ3n+1

1−λ2n+1
− λ3n

1−λ2n

∣∣∣ +
λ3n+1(δn+1−δn)

1−λ2n+1
and substitute (3.7) into (3.6) to

obtain
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‖un+1 − un‖

≤ [
λ1n+1ψ + λ3n+1(1− δn+1)ψ

1− λ2n+1

+
λ3n+1δn+1

1− λ2n+1

×
λ2n+1(1− ψ) + (1− λ3n+1δn+1)ψ

1− λ3n+1δn+1
]‖xn+1 − xn‖

+SnM +
λ3n+1δn+1

1− λ2n+1

× dnM

1− λ3n+1δn+1

= [
λ1n+1ψ + λ3n+1(1− δn+1)ψ − λ3n+1δn+1(λ

1
n+1ψ + λ3n+1(1− δn+1)ψ)

[1− λ2n+1][1− λ3n+1δn+1]

+
λ3n+1δn+1(λ

2
n+1(1− ψ) + (1− λ3n+1δn+1)ψ)

[1− λ2n+1][1− λ3n+1δn+1]
]‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M

= [
λ1n+1ψ + λ3n+1(1− δn+1)ψ − λ3n+1δn+1(λ

1
n+1ψ + λ3n+1ψ − λ3n+1δn+1ψ)

[1− λ2n+1][1− λ3n+1δn+1]

+
λ3n+1δn+1(λ

2
n+1 − λ2n+1ψ + ψ − λ3n+1δn+1ψ)

[1− λ2n+1][1− λ3n+1δn+1]
]‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M

=
[λ1n+1ψ + λ3n+1(1− δn+1)ψ − λ3n+1δn+1((1− λ2n+1)ψ − λ3n+1δn+1ψ)

[1− λ2n+1][1− λ3n+1δn+1]

+
λ3n+1δn+1(λ

2
n+1 + (1− λ2n+1)ψ − λ3n+1δn+1ψ)

[1− λ2n+1][1− λ3n+1δn+1]

]
‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M

=
λ1n+1ψ + λ3n+1(1− δn+1)ψ + λ3n+1δn+1λ

2
n+1

[1− λ2n+1][1− λ3n+1δn+1]
‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M

=
(1− λ2n+1)ψ − λ3n+1δn+1ψ + λ3n+1δn+1λ

2
n+1

[1− λ2n+1][1− λ3n+1δn+1]
‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M
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=

(
1−

(1− λ2n+1)(1− ψ)− λ3n+1δn+1(1− ψ)

[1− λ2n+1][1− λ3n+1δn+1]

)
‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M

=

(
1−

(1− λ2n+1)φ− λ3n+1δn+1φ

[1− λ2n+1][1− λ3n+1δn+1]

)
‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M

=

(
1−

(1− λ2n+1 − λ3n+1δn+1)φ

[1− λ2n+1][1− λ3n+1δn+1]

)
‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M

≤
(

1−
(1− λ2n+1 − λ3n+1δn+1)φ

1− λ2n+1

)
‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

[1− λ2n+1][1− λ3n+1δn+1]

)
M.

It then follows that

‖un+1 − un‖ − ‖xn+1 − xn‖ ≤ −
(1− λ2n+1 − λ3n+1δn+1)φ

1− λ2n+1

‖xn+1 − xn‖

+

(
Sn +

dnλ
3
n+1δn+1

(1− λ2n+1)(1− λ3n+1δn+1)

)
M,

and thus,

lim sup
n→∞

(‖un+1 − un‖ − ‖xn+1 − xn‖) ≤ 0. (3.8)

Invoking Lemma 2.7 gives

lim
n→∞

‖un − xn‖ = 0. (3.9)

Consequently,

‖xn+1 − xn‖ = ‖(1− λ2n)un + λ2nxn − xn‖
= ‖(1− λ2n)un − (1− λ2n)xn‖
= ‖(1− λ2n)(un − xn)‖
≤ (1− λ2n)‖un − xn‖ → 0 as n→∞. (3.10)
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Next is to show that lim
n→∞

‖xn−T (xn)‖ = 0. From (1.6), we could have that

‖xn − Txn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T (xn)‖
≤ ‖xn+1 − xn‖+ ‖λ1nG1(xn) + λ2nxn + λ3nT (vn)− T (xn)‖
≤ ‖xn+1 − xn‖+ λ1n‖G1(xn)− T (xn)‖+ λ2n‖xn − T (xn)‖

+ λ3n‖T (vn)− T (xn)‖
≤ ‖xn+1 − xn‖+ λ1n‖G1(xn)− T (xn)‖+ λ2n‖xn − T (xn)‖

+ λ3n‖vn − xn‖
≤ ‖xn+1 − xn‖+ λ1n‖G1(xn)− T (xn)‖+ λ2n‖xn − T (xn)‖

+ λ3n‖(1− δn)G2(xn) + δnxn+1 − xn‖
≤ ‖xn+1 − xn‖+ λ1n‖G1(xn)− T (xn)‖+ λ2n‖xn − T (xn)‖

+ λ3n(1− δn)‖xn −G2(xn)‖+ λ3nδn‖xn+1 − xn‖
= (1 + λ3nδn)‖xn+1 − xn‖+ (λ1n + λ3n(1− δn))M

+ λ2n‖xn − T (xn)‖
= (1 + λ3nδn)‖xn+1 − xn‖+ (1− λ3nδn − λ2n)M

+ λ2n‖xn − T (xn)‖.

From 0 < lim inf
n→∞

λ2n ≤ lim sup
n→∞

λ2n < 1, let 0 < η ≤ λ2n < 1. Then

‖xn − Txn‖ ≤
1 + λ3nδn
1− λ2n

‖xn+1 − xn‖+
1− λ2n − λ3nδn

1− λ2n
M

≤ 1 + λ3nδn
1− η

‖xn+1 − xn‖+
1− λ2n − λ3nδn

1− η
M, (3.11)

which goes to zero as n→∞ by (3.10) and condition (ii) of Assumption 3.1.

Let a net {xt} be defined by xt = tG1(xt) + (1 − t)Txt for t ∈ (0, 1). It is
known by Lemma 2.5 that {xt} converges strongly to p ∈ F (T ), which solves
the variational inequality:

〈G1(p)− p, J(x− p)〉 ≤ 0, ∀x ∈ F (T ),

which is equivalent to

〈(I −G1)p, J(x− p)〉 ≥ 0, ∀x ∈ F (T ).

It is claimed that

lim sup
n→∞

〈G1(p)− p, J(xn+1 − p)〉 ≤ 0, (3.12)
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where p ∈ F (T ) is the unique fixed point of the generalized contraction
PF (T )G1(p) (Proposition 2.4), that is, p = PF (T )G1(p).

By (3.11), lim
n→∞

‖xn − Txn‖ = 0. So it follows from Lemma 2.6 that

lim sup
n→∞

〈G1(p)− p, J(xn − p)〉 ≤ 0.

Due to the norm-to-weak∗ uniform continuity on bounded sets of the duality
map and the fact that ‖xn+1 − xn‖ → 0 as n→∞ by (3.10), we obtain that,

lim sup
n→∞

〈G1(p)− p, J(xn+1 − p)〉

= lim sup
n→∞

〈G1(p)− p, J(xn+1 − xn + xn − p)〉

= lim sup
n→∞

〈G1(p)− p, J(xn − p)〉 ≤ 0. (3.13)

Lastly, it is established that xn → p ∈ F (T ) as n → ∞. Suppose that the
sequence {xn}∞n=1 does not converge strongly to p ∈ F (T ). Then there exists
ε > 0 and a subsequence {xnk

}∞k=1 of {xn}∞n=1 such that ‖xnk
− p‖ ≥ ε, for all

k ∈ N. Therefore, for this ε, there exists ci ∈ (0, 12) such that

‖Gi(xnk
)−Gi(p)‖ ≤ ci‖xnk

− p‖, i = 1, 2.

Let c = max {c1, c2} . Then,

||xnk+1
− p||2 = λ1nk

〈
G1(xnk

)− p, J(xnk+1
− p)

〉
+λ2nk

〈
xnk
− p, J(xnk+1

− p)
〉

+λ3nk

〈
T (ynk

)− p, J(xnk+1
− p)

〉
= λ1nk

〈
G1(xnk

)−G1(p), J(xnk+1
− p)

〉
+λ1n

〈
G1(p)− p, J(xnk+1

− p)
〉

+λ2nk

〈
xnk
− p, J(xnk+1

− p)
〉

+λ3nk

〈
T (ynk

)− p, J(xnk+1
− p)

〉
≤ cλ1nk

‖xnk
− p‖ ‖xnk+1

− p‖
+λ1n

〈
G1(p)− p, J(xnk+1

− p)
〉

+λ2nk
‖xnk

− p‖ ‖xnk+1
− p‖

+λ3nk
||(1− δnk

)G2(xnk
) + δnk

xnk+1
− p|| ||xnk+1

− p||
≤ cλ1nk

‖xnk
− p‖ ‖xnk+1 − p‖
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+λ1n
〈
G1(p)− p, J(xnk+1

− p)
〉

+λ2nk
‖xnk

− p‖ ‖xnk+1
− p‖

+λ3nk
(1− δnk

)||G2(xnk
)− p|| ||xnk+1

− p||
+λ3nk

δnk
‖xnk+1

− p‖2

≤ cλ1nk
‖xnk

− p‖ ‖xnk+1
− p‖+ λ1n

〈
G1(p)− p, J(xnk+1

− p)
〉

+λ2nk
‖xnk

− p‖ ‖xnk+1
− p‖+ cλ3nk

(1− δnk
)||xnk

− p|| ||xnk+1
− p||

+λ3nk
(1− δnk

)||G2(p)− p|| ||xnk+1
− p||+ λ3nk

δnk
‖xnk+1

− p‖2

=
(
cλ1nk

+ λ2nk
+ cλ3nk

(1− δnk
)
)
‖xnk

− p‖ ‖xnk+1
− p‖

+λ1n
〈
G1(p)− p, J(xnk+1

− p)
〉

+λ3nk
(1− δnk

)||G2(p)− p|| ||xnk+1
− p||+ λ3nk

δnk
‖xnk+1

− p‖2

≤ 1

2

(
cλ1nk

+ λ2nk
+ cλ3nk

(1− δnk
)
) (
‖xnk

− p‖2 + ‖xnk+1
− p‖2

)
+λ1n

〈
G1(p)− p, xnk+1

− p
〉

+ λ3nk
δnk
‖xnk+1

− p‖2

+
1

2
λ3nk

(1− δnk
)
(
‖G2(p)− p‖2 + ‖xnk+1

− p‖2
)

=
1

2

(
c(λ1nk

+ λ3nk
(1− δnk

)) + λ2nk

)
‖xnk

− p‖2

+λ1n
〈
G1(p)− p, J(xnk+1

− p)
〉

+
1

2

(
c(λ1nk

+ λ3nk
(1− δnk

)) + λ2nk
+ 2λ3nk

δnk
+ λ3nk

(1− δnk
)
)
‖xnk+1

− p‖2

+
1

2
λ3nk

(1− δnk
)‖G2(p)− p‖2

=
1

2

(
c(λ1nk

+ λ3nk
(1− δnk

)) + λ2nk

)
‖xnk

− p‖2

+λ1n
〈
G1(p)− p, J(xnk+1

− p)
〉

+
1

2

(
c(λ1nk

+ λ3nk
(1− δnk

)) + λ2nk
+ λ3nk

(1 + δnk
)
)
‖xnk+1

− p‖2

+
1

2
λ3nk

(1− δnk
)‖G2(p)− p‖2

=
1

2

(
c(1− λ2nk

− λ3nk
δnk

) + λ2nk

)
‖xnk

− p‖2

+λ1n
〈
G1(p)− p, J(xnk+1

− p)
〉

+
1

2

(
c(1− λ2nk

− λ3nk
δnk

) + λ2nk
+ λ3nk

(1 + δnk
)
)
‖xnk+1

− p‖2

+
1

2
λ3nk

(1− δnk
)‖G2(p)− p‖2. (3.14)
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Observe that

2− c(1− λ2nk
− λ3nk

δnk
)− λ2nk

− λ3nk
(1 + δnk

)

= 2− c+ cλ2nk
+ cλ3nk

δnk
− λ2nk

− λ3nk
− λ3nk

δnk

= 2− c− (1− c)λ2nk
− (1− c)λ3nk

δnk
− λ3nk

= 1− c− (1− c)λ2nk
− (1− c)λ3nk

δnk
+ 1− λ3nk

= 1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

(3.15)

and

λ1nk
= 1− λ2nk

− λ3nk

≤ 1− λ2nk
− λ3nk

δnk
(since δnk

∈ (0, 1)). (3.16)

Simplifying (3.14) by 2 gives

||xnk+1
− p||2

≤
c(1− λ2nk

− λ3nk
δnk

) + λ2nk

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

‖xnk
− p‖2

+
λ1n

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

〈
G1(p)− p, J(xnk+1

− p)
〉

+
λ3nk

(1− δnk
)

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

‖G2(p)− p‖2

=

(
1−

(1− 2c)(1− λ2nk
− λ3nk

δnk
) + λ1nk

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

)
‖xnk

− p‖2

+
λ1nk

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

〈
G1(p)− p, J(xnk+1

− p)
〉

+
λ3nk

(1− δnk
)

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

‖G2(p)− p‖2

≤

(
1−

(1− 2c)(1− λ2nk
− λ3nk

δnk
)

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

)
‖xnk

− p‖2

+
(1− 2c)(1− λ2nk

− λ3nk
δnk

)

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

1

1− 2c

〈
G1(p)− p, J(xnk+1

− p)
〉

+
λ3nk

(1− δnk
)

1 + (1− c)
(
1− λ2nk

− λ3nk
δnk

)
− λ3nk

‖G2(p)− p‖2 (By (3.16)).
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By taking αn = (1 − 2c)(1 − λ2nk
− λ3nk

δnk
), σn =

〈
G1(p)− p, J(xnk+1

− p)
〉

and γn = λ3nk
(1− δnk

) in Lemma 2.8, it shows that xnk
→ p as k →∞, which

is a contradiction. Hence, {xn}∞n=1 converges strongly to p ∈ F (T ). �

The next result shows that under suitable conditions, the implicit iterative
sequences (1.4) and (1.6) converge to the same fixed point.

Theorem 3.5. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E. Let Gi : K → K be a c-contraction mapping and
T be a nonexpansive self-mapping defined on K with F (T ) 6= ∅ for each i =

1, 2. Let
{{
λin
}∞
n=1

}3
i=1
⊂ [0, 1] and {δn}∞n=1 ⊂ (0, 1) be real sequences such

that

3∑
i=1

λin = 1. Suppose that G in (1.4) is the same as G1 in (1.6) and

lim
n→∞

λ3n
(1− λ2n − λ3nδn)

= 0. Then {xn}∞n=1 defined by (1.6) converges to p if

and only if {yn}∞n=1 defined by (1.4) converges to p.

Proof. Let c = max {c1, c2} .

‖xn+1 − yn+1‖
= ||λ1nG1(xn) + λ2nxn + λ3nT ((1− δn)G2(xn) + δnxn+1)

−
(
λ1nG(yn) + λ2nyn + λ3nT (δnyn + (1− δn)yn+1)

)
||

= ‖λ1n(G1(xn)−G1(yn)) + λ2n(xn − yn)

+ λ3n (T ((1− δn)G2(xn) + δnxn+1)− T (δnyn + (1− δn)yn+1)) ‖
≤ λ1n||G1(xn)−G1(yn)||+ λ2n‖xn − yn‖

+ λ3n‖T ((1− δn)G2(xn) + δnxn+1)− T (δnyn + (1− δn)yn+1)‖
≤ λ1nc1||xn − yn||+ λ2n‖xn − yn‖

+ λ3n‖(1− δn)(G2(xn)− yn+1) + δn(xn+1 − yn)‖
≤ λ1nc1||xn − yn||+ λ2n‖xn − yn‖

+ λ3n(1− δn)‖G2(xn)−G2(yn) +G2(yn)− yn+1‖
+ λ3nδn‖xn+1 − yn+1 + yn+1 − yn‖
≤ λ1nc1||xn − yn||+ λ2n‖xn − yn‖+ λ3n(1− δn)c2‖xn − yn‖

+ λ3n(1− δn)‖yn+1 −G2(yn)‖+ λ3nδn‖xn+1 − yn+1‖+ λ3nδn‖yn+1 − yn‖
=
(
λ1nc+ λ3n(1− δn)c+ λ2n

)
||xn − yn||+ λ3nδn‖xn+1 − yn+1‖

+ λ3n(1− δn)‖yn+1 −G2(yn)‖+ λ3nδn‖yn+1 − yn‖.
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Since {yn}∞n=1 and {G2(yn)}∞n=1 are bounded [5], let

M2 = max

{
sup
n
‖yn+1 −G2(yn)‖, sup

n
‖yn+1 − yn‖

}
.

Then

‖xn+1 − yn+1‖

≤ λ1nc+ λ3n(1− δn)c+ λ2n
1− λ3nδn

||xn − yn||+
λ3n

1− λ3nδn
M2

=

(
1− (1− λ2n − λ3nδn)(1− c)

1− λ3nδn

)
||xn − yn||+

λ3n
1− λ3nδn

M2

=

(
1− (1− λ2n − λ3nδn)(1− c)

1− λ3nδn

)
||xn − yn||+

λ3n
1− λ3nδn

M2

= (1− βn)||xn − yn||+
λ3n

(1− λ2n − λ3nδn)(1− c)
βnM2, (3.17)

where βn = (1−λ2n−λ3nδn)(1−c)
1−λ3nδn

. From the given condition, it follows that

lim sup
n→∞

λ3n
(1− λ2n − λ3nδn)

≤ 0.

Apply Lemma 2.8 with γn = 0 to (3.17) to get that ||xn− yn|| → 0 as n→∞.
Furthermore, suppose ||yn − p|| → 0 as n→∞, it follows that,

||xn − p|| = ||xn − yn + yn − p||
≤ ||xn − yn||+ ||yn − p||
= ||yn − p||
→ 0 (as n→∞).

Similary, suppose ||xn − p|| → 0 as n→∞, it follows that,

||yn − p|| = ||yn − xn + xn − p||
≤ ||yn − xn||+ ||xn − p||
= ||xn − p||
→ 0 (as n→∞).

�

Corollary 3.6. ([17]) Let E be a uniformly smooth Banach space and K
a nonempty closed convex subset of E. Let T : K → K be a nonexpansive
mapping with F (T ) 6= ∅ and G : K → K a generalized contraction mapping.
Pick any x0 ∈ K. Let {xn}∞n=1 be a sequence generated by

xn+1 = anG(xn) + bnxn + cnT (snxn + (1− sn)xn+1) , (3.18)
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where {an}∞n=1 , {bn}
∞
n=1 and {cn}∞n=1 are three sequences in [0, 1] satisfying

the following conditions:

(i) an + bn + cn = 1;

(ii)

∞∑
n=1

an =∞, lim
n→∞

an = 0;

(iii)
∞∑
n=1

|bn+1 − bn| <∞ and 0 < lim inf
n→∞

bn ≤ lim sup
n→∞

bn < 1;

(iv) 0 < ε ≤ sn ≤ sn+1 < 1 for all n ∈ N.
Then {xn}∞n=1 converges strongly to a fixed point p of the nonexpansive map-
ping T, which is also the solution of the variational inequality (1.5).

Proof. Observe that λ1n = an, λ
2
n = bn and λ3n = cn, by comparing (1.6) and

(3.18). Taking G1 = G, δn = 1−sn and G2 to be the identity mapping of K in
(1.6), we obtain (3.18). Hence, the conclusion follows from Theorem 3.4. �

Corollary 3.7. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E. Let T be a nonexpansive self-mapping defined on
K with F (T ) 6= ∅. Assume that the real sequences {λn}∞n=1 ⊂ (0, 1) and
{δn}∞n=1 ⊂ (0, 1) satisfy the conditions:

(i) lim
n→∞

λn = 0;

(ii)
∞∑
n=1

λn =∞;

(iii)
∞∑
n=1

|λn+1 − λn| <∞;

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.
Then the iterative sequence {xn}∞n=1 which is defined from an arbitrary x1 ∈ K
by

xn+1 = λnxn + (1− λn)T ((1− δn)xn + δnxn+1) (3.19)

converges strongly to a fixed point p of T which solves the variational inequality
(1.5).

Proof. The result follows from Theorem 3.4 by simply taking G1 = G2 to be
the identity mappings of K in (1.6). �

Corollary 3.8. ([1]) Let E be a uniformly smooth Banach space and K a
nonempty closed convex subset of E. Let T : K → K be a nonexpansive
mapping with F (T ) 6= ∅ and G : K → K an α-contraction. Suppose that the
real sequences {an} ⊂ (0, 1), {bn} ⊂ [0, 1) and {cn} ⊂ (0, 1) are such that
an + bn + cn = 1, for all n ∈ N and satisfy the following conditions:

(i) lim
n→∞

an = 0;
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(ii)

∞∑
n=1

an =∞;

(iii) 0 < lim inf
n→∞

bn ≤ lim sup
n→∞

bn < 1;

(iv) lim
n→∞

|bn+1 − bn| = 0.

For an arbitrary x1 ∈ K, define the iterative sequence {xn} by

xn+1 = anG(xn) + bnxn + cnT

(
xn + xn+1

2

)
, n ∈ N. (3.20)

Then the sequence {xn} converges in norm to a fixed point p of T, where p is
the unique solution in F (T ) to the variational inequality (1.5).

Proof. It is known that a generalized contraction is more broad that an α-
contraction. Comparing (1.6) and (3.20), it is noted that λ1n = an, λ

2
n = bn

and λ3n = cn. Taking G2 to be the identity mappings of K and δn = 2 for all
n ∈ N in (1.6), it reduces to (3.20) with G1 = G. Therefore, the desire result
follows from Theorem 3.4. �

Corollary 3.9. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E. Let T be a nonexpansive self-mapping defined on K
with F (T ) 6= ∅. Assume that the real sequence {λn}∞n=1 ⊂ (0, 1) satisfies the
following conditions:

(i) lim
n→∞

λn = 0;

(ii)
∞∑
n=1

λn =∞;

(iii)

∞∑
n=1

|λn+1 − λn| <∞.

Then the iterative sequence {xn}∞n=1 which is defined from an arbitrary x1 ∈ K
by

xn+1 = λnxn + (1− λn)T (
xn + xn+1

2
) (3.21)

converges strongly to a fixed point p of T which solves the variational inequality
(1.5).

Proof. The result follows from Theorem 3.4 by simply taking G1 = G2 to be
the identity mappings of K and δn = 2 for all n ∈ N. Therfore, this improves
and extend the results of Alghamdi et al. [2]. �
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