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Abstract. In this paper, we consider a continuous-time Heston stochastic volatility model

with regime-switching, the asset and volatility dynamics are closely related to the value of

Markovian modulated process. Compared with the previous literatures, our propose is to

extend the one-stochastic volatility model to the double-stochastic volatility model. We are

interested in finding solutions to pricing the discretely-sampled volatility swaps under Hes-

ton’s framework. We also get a closed-form solution by deriving the characteristic function

of the lognormal asset price via a system of partial differential equations.

1. Introduction

Volatility, in the field of financial mathematics, refers to the variability of
financial assets over a certain period of time. Many investors have developed
great interest in volatility-related products. Volatility-related products can
diversify asset risks in the stock market, and the volatility swaps of such prod-
ucts can be directly linked to volatility, thus obtaining widespread attention.
In the last decades, with the rapid growth of transaction volatility swaps,
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correctly calculating volatility swaps becomes an active research topic and
many scholars have studied it. Heston [9] derived a closed-form solution for
the price of the European call option under the stochastic volatility model in
1993. Grunbichler and Longstaff [8] presented several closed-form expressions
for volatility futures and option prices. They also examined their implications
for the characteristics of these securities in 1996. Howison et al. [10] consid-
ered the pricing of volatility derivatives and gave a approximate solution to
a general partial differential equation (PDE) for volatility products in 2004.
Based on Heston’s model, Swishchuk [14] proposed a probabilistic approach
to study variance and volatility swaps in financial markets in 2004. Biswas et
al. [1] found the locally risk minimizing price of European type vanilla option
under the stochastic volatility model where the stock volatility dynamics to
be a semi-Markovian modulated square root mean reverting process in 2017.

Most papers with respect to pricing the volatility swaps just imply one-
factor stochastic volatility. It can capture the slope of the smirk while cannot
explain such largely independent fluctuations in its level and slope over time
such that the double-stochastic volatility is more suitable for the description
of markets. In 2008, Siu et al. [13] investigated the valuation of the European
and American currency options under a double Markovian-modulated stochas-
tic volatility model. In their paper, the first stochastic volatility component
was driven by a lognormal diffusion process, the second independent stochastic
volatility component was driven by a continuous-time finite-state Markovian
chain model. Christoffersen et al. [2] presented a double-stochastic volatility
model to illustrate some critical differences between one- and two-factor mod-
els in 2009. Zhu and Lian [16] found a closed-form exact solution for the PDE
system in the Heston’s double stochastic volatility model in 2011. Recently,
Mehrdoust [11] presented an efficient Monte Carlo simulation scheme with the
variance reduction methods and evaluated arithmetic average Asian options
under the double Heston’s stochastic volatility model with jumps. Zhang and
Sun [15] presented an extension of double Heston’s stochastic volatility model
by the stock price process, they also derived the characteristic function of the
lognormal price of a asset which can be substituted in the valuation of the
forward starting options.

Regime-switching is also a critical character of the financial market. In an
incomplete market, the regime-switching Esscher transform provides market
practitioners in a convenient and flexible method to determine an equivalent
martingale measure. Regime-switching has been considered in many litera-
tures. In 2005, Elliott et al. [5] considered the option pricing problem under
an incomplete market with Markov-modulated geometric Brownian motion
model and adopted a regime-switching random Esscher transform to deter-
mine an equivalent martingale pricing measure. Elliott and Siu [6] used a
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continuous-time Markovian regime-switching financial model to solve a risk
minimization problem in 2010. Elliott and Lian [7] examined the effect of
ignoring regime switching on pricing variance and volatility swaps in 2013.
Recently, Zhu et al. [17] applied a hidden Markovian regime-switching model
with a stochastic interest rate and volatility to evaluate a standard European
option.

Inspired by the models developed by [2] and [12], we extent the one-factor
stochastic volatility model to the two-factor stochastic volatility model to pric-
ing volatility swaps in the regime-switching environment. It has two advan-
tages in pricing volatility swaps. Firstly, it can describe different economic
conditions which can reflect the state of the economy and the mood of the
investors. Secondly, it can capture much more information of the market
than one-factor stochastic volatility model. Thus, our model can describe the
market more appropriately than other exist models. To our best knowledge,
there are still a few works on pricing volatility swaps with the double stochastic
volatility model in regime-switching environment. We also determine an equiv-
alent martingale measure in an incomplete market and get risk-neutral condi-
tions via the regime-switching Esscher transform. The characteristic function
of the lognormal price of an asset can be easily derived.

The rest of our paper is organized as follows. In section 2, we establish a
brand new model based on a continuous-time Markovian-modulated version of
Heston’s double stochastic volatility model. We also get the risk-neutral con-
ditions by using the regime-switching Esscher transform. In section 3, we give
the closed-form solution to pricing the discretely-sampled volatility-average
swaps under the Heston’s double-stochastic volatility framework. Finally, the
conclusion of the paper is reached.

2. Preliminaries

In this section, based on a continuous-time Markovian-modulated stochas-
tic volatility model, we use the PDE approach for the valuation of volatility
derivatives. Our model can be considered as the regime-switching augmenta-
tion modulated by [14] for pricing volatility swaps. This model can describe
the consequences for the asset price and volatility dynamics of the transitions
of observable macroeconomic factor’s states. The observable macroeconomic
factor can affect the asset prices and volatility dynamics, such as observable
economic indicators of business cycles or the sovereign ratings of the region
by some international rating agencies. In particular, the parameters of asset
price dynamics and stochastic volatility are determined by an economic index,
described by an observable Markovian chain.

We assume that the continuous-time financial model includes a risk-free
bound and a risk stock. Let P be the real probability measure with respect to
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a complete probability space (Ω,F ,P) and T denote the time index set with
interval [0,∞). Consider a continuous-time finite state observable Markovian
chain X := {Xt}t∈T on the probability space (Ω,F ,P), which states describe
the states of an observable economic indicator. Let {s1, s2, . . . , sN} be the set
of the state space S with si ∈ RN , i = 1, 2, . . . , N . In general, the unit vectors
{e1, e2, . . . , eN} ∈ RN can be used to identify the state space of the Markovian
chain X.

Let Π(t) be the generator, the dynamics of the Markovian chain are gen-
erated by the matrix Π(t) = [πij(t)]i,j=1,2,...,N under P. For i 6= j, πij is
the intensity of the transition of X from state ei to state ej in a small in-

terval of time, satisfying πij for i 6= j and
∑N

i=1 πij = 0. According to the
semi-martingale representation theorem in [4], the process X can be written
as

Xt = X0 +

∫ t

0
Π(s)Xsds+Mt. (2.1)

Here {Mt}t∈T is an RN -valued martingale increment process with respect to
the natural filtration generated by X under P.

LetW 1 := {W 1
t }t∈T ,W 2 := {W 2

t }t∈T ,W 3 := {W 3
t }t∈T andW 4 := {W 4

t }t∈T
be four standard Brownian motions on (Ω,F ,P), where W 1 is independent
with W 2 and W 4, and W 3 is independent with W 2 and W 4. We also let

W̃ 3
t := (W 1

t ,W
3
t ) and W̃ 4

t := (W 2
t ,W

4
t ). The correction of these Brownian

motions are

Cov(dW 1
t , dW

3
t ) = ρ1dt, Cov(dW 2

t , dW
4
t ) = ρ2dt,

where, ρ1 and ρ2 are two constants between 0 and 1. We also assume that X
is independent with {W i}, i = 1, 2, 3, 4.

Let r(t,Xt)t∈T be the instantaneous market interest rate of the bond de-
pending on the states of the economic indicator X so that

r(t,Xt) = 〈r,Xt〉, t ∈ T ,

where r = (r1, r2, . . . , rN ) with ri > 0 for i = 1, 2, . . . , N and 〈·, ·〉 denotes
the inner product in RN . For simplicity, we write rt for r(t,Xt). Thus, the
dynamics of the price process {Bt}t∈T for the bond can be written as follows:{

dBt = rtBtdt,
B0 = 1.

Similarly, let the expected appreciation rate {µt}t∈T which depends on states
of economic indicator X be the rate of the risky stock S and can be described
by

µt := µ(t,Xt) = 〈µ,Xt〉,
where µ := (µ1, µ2, . . . , µN ), with µi ∈ R, for i = 1, 2, . . . , N .
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Let {θit}t∈T be the long-term mean of the volatility for i = 1, 2. We also
suppose that θit depends on the states of the economic indicator X and{

θ1t := θ1(t,Xt) = 〈θ1, Xt〉,
θ2t := θ2(t,Xt) = 〈θ2, Xt〉,

where θi = (θi1, θi2, . . . , θiN ) with θig > 0 for g = 1, 2, . . . , N .
The parameters κ1, σ1 are the mean-reverting speed and the volatility of

volatility in the instantaneous volatility process V1(t), respectively. The pa-
rameters κ2, σ2 determine the speed of mean reversion and the volatility of
the volatility process V2(t). To simplify our model, we suppose the above
four parameters are constants. By combining the dynamics of the price pro-
cess {S(t)}t∈T and the volatility processes V1(t) and V2(t), we can get the
following system of stochastic differential equations (SDEs):

dS(t) = µtS(t)dt+
√
V1(t)S(t)dW 1

t +
√
V2(t)S(t)dW 2

t ,

dV1(t) = κ1(θ2
1t − V1(t))dt+ σ1

√
V1(t)dW 3

t ,

dV2(t) = κ2(θ2
2t − V2(t))dt+ σ2

√
V2(t)dW 4

t .

(2.2)

Let ρ̃i =
√

1− ρ2
i for i = 1, 2. Let W̃ 3 := {W̃ 3

t }t∈T , W̃ 4 := {W̃ 4
t }t∈T be

standard Brownian motions which are independent of W 1,W 2 and X. Thus,
we can rewrite equations (2.2) as follows:

dS(t) = µtS(t)dt+
√
V1(t)S(t)dW 1

t +
√
V2(t)S(t)dW 2

t ,

dV1(t) = κ1(θ2
1t − V1(t))dt+ ρ1σ1

√
V1(t)dW 1

t + ρ̃1σ1

√
V1(t)dW̃ 3

t ,

dV2(t) = κ2(θ2
2t − V2(t))dt+ ρ2σ2

√
V2(t)dW 2

t + ρ̃2σ2

√
V2(t)dW̃ 4

t .

Let Yt be the logarithmic return ln(S(t)/S(0)) over the internal [0, t]. Then,
we have

Yt =

∫ t

0

(
µu −

1

2
V1(u)− 1

2
V2(u)

)
du+

∫ t

0

√
V1(u)dW 1

u +

∫ t

0

√
V2(u)dW 2

u .

In our model, there are five sources of randomness: X,W 1,W 2,W 3 and

W 4. Let FX := {FXt }t∈T , FW 1
:= {FW 1

t }t∈T ,FW
2

:= {FW 2

t }t∈T ,FW
3

:=

{FW 3

t }t∈T and FW 4
:= {FW 4

t }t∈T be the P-augmentation of the natural
filtrations generated by {Xt}t∈T , {W 1

t }t∈T , {W 2
t }t∈T , {W 3

t }t∈T and {W 4
t }t∈T ,

respectively. Let FS = {FSt }t∈T denote the P-augmentation of the natural
filtration generated by {St}t∈T .

In an incomplete market, there are infinite numbers of equivalent martingale
pricing measures. So we need utilize the regime-switching Esscher transform to
establish an equivalent martingale pricing measure according to the volatility
swaps.
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Denote Gt := σ(FXt
⋃
FW 1

t

⋃
FW 2

t

⋃
FW 3

t

⋃
FW 4

t ) to be the σ-algebra aug-

mented by FXt and FW i

t (i = 1, 2, 3, 4), for each t ∈ T .

Let Θt := Θ
(
t,Xt,

√
V1(t),

√
V2(t)

)
be a regime switching Esscher process,

which can be written as:

Θt = Θ
(
t,Xt,

√
V1(t),

√
V2(t)

)
=
〈

Θ
(
t,
√
V1(t),

√
V2(t)

)
, Xt

〉
,

where

Θ
(
t,
√
V1(t),

√
V2(t)

)
=

(
Θ
(
t,
√
V1(t),

√
V2(t), e1

)
, . . . ,Θ

(
t,
√
V1(t),

√
V2(t), eN

))
.

We denote G1
t := σ(FW 3

t

⋃
FW 4

t ) to be the σ-algebra augmented by FW 3

t and

FW 4

t , so Θ
(
t,
√
V1(t),

√
V2(t), ei

)
is G1

t -measurable, for each i = 1, 2, . . . , N .

Denote G2
t := σ(FXt

⋃
FW 3

t

⋃
FW 4

t ). Then

Θ
(
t,Xt,

√
V1(t),

√
V2(t)

)
is an N -dimensional G2

t -measurable random vector.

Definition 2.1. Following the idea developed in [5], the regime-switching
Esscher transform QΘ ∼ P on Gt with respect to a family of parameters
{Θu}u∈[0,t] can be defined by

dQΘ

dP

∣∣∣∣
Gt

=
exp(

∫ t
0 ΘudYu)

EP

[
exp(

∫ t
0 ΘudYu)|G2

t

] , ∀t ∈ T . (2.3)

After G2
t is given, the Radon-Nikodym derivative of the regime-switching

Esscher transform can be written as

dQΘ

dP

∣∣∣∣
Gt

= exp

(∫ t

0
Θu

√
V1(u)dW 1

u

− 1

2

∫ t

0
Θ2
uV1(u)du+

∫ t

0
Θu

√
V2(u)dW 2

u −
1

2

∫ t

0
Θ2
uV2(u)du

)
.

Denote a process Θ̃ = {Θ̃t}t∈T to be the risk-neutral regime-switching Es-
scher parameters. On the condition of the process X, W 3 and W 4, the mar-
tingale condition is characterized by considering an enlarged filtration and
requiring

S0 = EQΘ̃

[
exp(−

∫ t

0
rsds)S(t)

∣∣G2
t )

]
.

This condition can be interpreted that the market’s agent acquires information
about the Markovian chain and the stochastic volatility process in advance.
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Similar to the argument in [5], we know that Θ̃t := Θ̃
(
t,Xt,

√
V1(t),

√
V2(t)

)
can be obtained by martingale condition (2.3) as follows

Θ̃t =
r(t,Xt)− µ(t,Xt)

V1(t)
+
r(t,Xt)− µ(t,Xt)

V2(t)

=
λ
(
t,Xt,

√
V1(t),

√
V2(t)

)
√
V1(t)

+
λ
(
t,Xt,

√
V1(t),

√
V2(t)

)
√
V2(t)

,

where λt := λ
(
t,Xt,

√
V1(t),

√
V2(t)

)
∈ Gt is the market price of risk at time

t.
Then, we can obtain

Θ̃t =
〈

Θ̃
(
t,
√
V1(t),

√
V2(t)

)
, Xt

〉
,

where

Θ̃
(
t,
√
V1(t),

√
V2(t)

)
=

(
r1 − µ1√
V1(t)

+
r1 − µ1√
V2(t)

, · · · , rN − µN√
V1(t)

+
rN − µN√
V2(t)

)
.

It is an N -dimensional G1
t -measurable random vector. Thus, the Radon-

Nikodym derivative of QΘ̃ with respect to P can be written as

dΘΘ̃

dP

∣∣∣∣
Gt

= exp

[∫ t

0

ru − µu√
V1(u)

dW 1
u +

∫ t

0

ru − µu√
V2(u)

dW 2
u

− 1

2

∫ t

0

(
ru − µu√
V1(u)

)2

du− 1

2

∫ t

0

(
ru − µu√
V2(u)

)2

du

 .
According to Girsanov’s theorem, we know that

W̃ 1
t = W 1

t +

∫ t

0

rs − µs√
V1(s)

ds

and

W̃ 2
t = W 2

t +

∫ t

0

rs − µs√
V2(s)

ds

are two standard Brownian motions with respect to {Gt}t∈T under Q
Θ̃

. Since

W̃ 3 and X are independent of W 1 and W̃ 4, X is independent of W 2, we can

see that W̃ 3 and W̃ 4 are two standard Brownian motions under Q
Θ̃

. Note
that X remains unchanged under the change of the probability measure from
P to Q

Θ̃
. Let

θ̃2
1t = θ2

1t − ρ1σ1(rt − µt), θ̃2
1t = θ2

2t − ρ2σ2(rt − µt).
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Then the dynamics (2.2) can be written as
dS(t) = rtS(t)dt+

√
V1(t)S(t)dW̃ 1

t +
√
V2(t)S(t)dW̃ 2

t ,

dV1(t) = κ1(θ̃2
1t − V1(t))dt+ ρ1σ1

√
V1(t)dW̃ 1

t + ρ̃1σ1

√
V1(t)dW̃ 3

t ,

dV2(t) = κ2(θ̃2
2t − V2(t))dt+ ρ2σ2

√
V2(t)dW̃ 2

t + ρ̃2σ2

√
V2(t)dW̃ 4

t .

(2.4)

Let W 3V
t := ρ1W̃

1
t + ρ̃1W̃

3
t and W 4V

t := ρ2W̃
2
t + ρ̃2W̃

4
t . Then{

dV1(t) = κ1(θ̃2
1t − V1(t))dt+ σ1

√
V1(t)dW 3V

t ,

dV2(t) = κ2(θ̃2
2t − V2(t))dt+ σ2

√
V2(t)dW 4V

t .
(2.5)

We remark that, if there is no regime-switching in the risk-neutral dynamics
(2.5) under Q

Θ̃
, then it reduces to the risk-neutral dynamics in [9]. We also

need the following lemma developed in [7].

Lemma 2.2. If X is a regime-switching Markovian chain which has the dy-
namics (2.1), then the characteristic function denoted by ft(φ) with respect to

the stochastic variable
∫ T
t 〈ν,Xs〉u(s)ds ∈ R is given by

ft(φ) = EQΘ̃

[
exp

(
φ

∫ T

t
〈ν,Xs〉u(s)ds

)∣∣∣∣FXt ] = 〈Φ(t, T ; ν)Xt, I〉 ,

where I = (1, 1, . . . , 1) ∈ RN and

Φ(t, T ; ν) = exp

(∫ T

t

(
Π′ + φu(s)diag[ν]

)
ds

)
,

here Π′ denotes the transposition of Π.

3. Main Results

In this section, we adopt a PDE approach to pricing discretely-sampled
volatility-average swaps. Volatility swaps are essentially annualized forward
contracts with realized volatility, which provide investors with a simple way to
trade future realized volatility against current implied volatility. A volatility
swap is a forward contract that relates to the historical fluctuations in the
specified equity index. The amount paid at expiration is based on the notional
amount multiplied by the difference between the realized volatility and the
implied volatility. Assume that the value of the volatility swap at expiry can
be written as (RV (0, N, Te) − Kvol) × L while the current time is 0, where
RV (0, N, Te) is the annualized realized volatility over the contract life [0, Te],
Kvol is the annualized delivery price for the volatility swap, and L is the
notional amount of the swap in dollars per annualized volatility point squared.
When the contract is entered, Kvol can let the value of a volatility swap be
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zero for both long and short positions. To a certain extent, it reflects the
market expectations of future realized volatility.

At the beginning of the contract of the volatility swap, it clearly defines
the details of the calculation of the volatility RV (0, N, Te). The important
factors for calculating the realized volatility include the underlying assets, the
observation frequency of the price of the assets, the annualization factors, the
lifetime of contracts, and the method of calculating the volatility.

Definition 3.1. According to [10], two different measures of realized volatility
can be defined as follows:

RVd1(0, N, Te) =

√√√√AF

N

N∑
k=1

(
S(tk)− S(tk−1)

S(tk−1)

)2

× 100 (3.1)

and

RVd2(0, N, Te) =

√
π

2NTe

N∑
k=1

∣∣∣∣S(tk)− S(tk−1)

S(tk−1)

∣∣∣∣× 100, (3.2)

where tk, k = 0 . . . N, is the kth observation time of the realized volatility in
the pre-specified time period [0, Te], t0 = 0, TN = Te and AF is the annualized
factor that converts this expression to annualized variance.

For most trading variance swaps or even over-the-counter transactions, the
sampling period is usually constant, which makes calculation of the realized
volatility easier. Therefore, in this paper we assume the discrete observational
values of equal intervals [0, Te]. Then, the annualized coefficient is a simple
expression AF = 1

∆t = N
Te

.
In order to make sure that the variance is always positive, we require that

2κiθ̃
2
it ≥ Vi(t), (i = 1, 2). Then we will begin our analysis on the risk-neutral

Heston’s model. The conditional expectation at time t is denoted by

E
QΘ̃
t = EQΘ̃ [ · |Ft],

where Ft is the filtration up to time t. The fair delivery price can be presented
by

Kvol = E
QΘ̃
0 [RV (0, N, Te)]

in the risk-neutral world as a given definition of realized volatility RV (0, N, Te)
via (2.4). In what follows, we illustrate a PDE approach to get a closed-form
solution to obtain the fair strike price of a discretely-sampled volatility-average
swap whose realized volatility depends on a specific measurement based on
(3.2).
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From the definition of RVd2(0, N, Te), we can simplify (3.2) as

Kvol = E
QΘ̃
0 [RVd2(0, N, Te)]

= E
QΘ̃
0

[√
π

2NTe

N∑
k=1

∣∣∣∣S(ti)− S(tk−1)

S(tk−1)

∣∣∣∣
]
× 100

=

√
π

2NTe

N∑
k=1

E
QΘ̃
0

[∣∣∣∣S(tk)− S(tk−1)

S(tk−1)

∣∣∣∣]× 100, (3.3)

where N denotes the whole sampling times of the swap contract. The problem
can be reduced to

E
QΘ̃
0

[∣∣∣∣S(tk)− S(tk−1)

S(tk−1)

∣∣∣∣] , (3.4)

for some fixed equal time interval ∆t and N different tensors tk = k∆t , k =
1 . . . N . We consider all the sampling points tk are known constants once the
specific discretization along the time [0, Te] is made.

We would like to point out that S(tk) and S(tk−1) are the underlying prices
at two future sampling points tk and tk−1 so that the two stochastic variable
S(tk) and S(tk−1) concurrently exist inside of the expectation operator, which
informs the difficulty to our pricing problem. To deal with such difficulty
and obtain the forward characteristic function, we suppose the current time
to be t and yT = lnS(T + ∆) − lnS(T ) defines the forward characteristic
function (FCF) f(φ; t, T,∆, V1(t), V2(t)) of yT as the Fourier transform of the
probability density function of yT , i.e.,

f(φ; t, T,∆, V1(t), V2(t)) = EQΘ̃

[
eφyT

∣∣∣∣yt, V1(t), V2(t),FXt
]
, t < T. (3.5)

Note that imaginary unit i =
√
−1 has been absorbed into the parameter

φ. For simplicity, the explicit exposition of i does not alter the essence of this
function, so we still call it the FCF. In what follows, we will give the detail
about how to obtain the explicit exposition of the condition value. To get
the characteristic function, we firstly consider the evaluation of the condition
value, or price, of a derivative given the information about the sample path
of the Markovian chain X from time 0 to T + ∆ as well as FXT+4. After

giving the filtration FXT+4 and a realization path of Xt, the parameters rt and

θ̃2
jt, j = 1, 2 can be considered to be time-dependent deterministic functions.

The conditional characteristic function is given by the following theorem.
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Theorem 3.2. If the value of the underlying asset is given by (2.5), then the
FCF of the stochastic variable yT = lnS(T + ∆)− lnS(T ) can be obtained by

f(φ; t, T,∆, V1(t), V2(t)|FXT+∆) = EQΘ̃ [eφyT |yt, V1(t), V2(t),FXT+∆]

= eC(φ,T )g

 2∑
j=1

Dj(φ, T ); t, T, V1(t), V2(t)

 , j = 1, 2,
(3.6)

where

C(φ, t) =

∫ T+∆

t

〈
rφ+

2∑
j=1

κj θ̃
2
jDj(φ, s), Xs

〉
ds,

Dj(φ, t) =
aj + bj
σ2
j

1− ebj(T+∆−t)

1− gjebj(T+∆−b) ,

aj = κj − ρjσjφ, bj =
√
a2
j + σ2

j (φ− φ2), gj =
aj + bj
aj − bj

, j = 1, 2.

(3.7)

and 

g(φ; t, T, V1(t), V2(t)) = e

2∑
j=1

Fj(φ,t)+
2∑

j=1
Gj(φ,t)Vj(t)

,

Fj(φ, t) =

∫ T

t

〈
κj θ̃

2
jGj(φ, s), Xs

〉
ds,

Gj(φ, t) =
2κjφ

σ2
jφ+ (2κj − σ2

jφ)ekj(T−t) , j = 1, 2.

(3.8)

Proof. Assuming the current time is t(t < T ). Let

yT = lnS(T + ∆)− lnS(T ),

where S(t) is the underlying price according to the Heston’s model. When

given the filtration FXT+∆, the parameters rt and θ̃2
jt(j = 1, 2) can be consid-

ered to be time-dependent deterministic functions, and the FCF of yT can be
defined as

f(φ; t, T,∆, V1(t), V2(t)) = EQΘ̃ [eφyT |yt, V1(t), V2(t)]. (3.9)

Then, by using the tower rule of expectation, one has

f(φ; t, T,∆, V1(0), V2(0))

= EQΘ̃

[
EQΘ̃ [eφyT |yT , V1(T ), V2(T )]|yt, V1(t), V2(t)

]
. (3.10)

The inner expectation EQΘ̃ [eφyT |yT , V1(T ), V2(T )] can be solved by utiliz-
ing the Feynman-Kac theorem, which has been presented in [9]. We define
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U(φ; t,X, V1(t), V2(t)) = EQΘ̃ [eφyT |yT , V1(T ), V2(T )] with T ≤ t ≤ T + 4,
such that

∂U

∂t
+ [κ1(θ̃2

1t − V1(t))]
∂U

∂V1(t)
+ [κ2(θ̃2

2t − V2(t))]
∂U

∂V2(t)

+
1

2
σ2

1V1(t)
∂2U

∂V1(t)2
+

1

2
σ2

2V2(t)
∂2U

∂V2(t)2

+ [r − 1

2
(V1(t) + V2(t))]

∂U

∂X
+

1

2
(V1(t) + V2(t))

∂2U

∂X2

+ σ1V1(t)ρ1
∂2U

∂X∂V1(t)
+ σ2V2(t)ρ2

∂2U

∂X∂V2(t)
= 0,

U(φ;T + ∆, X, V1(t), V2(t)) = eφX ,

(3.11)

where X = lnSt − lnST (T < t < T + ∆). Inspired by the solution proposed
by [9], we assume that the solution has the following form:

U(φ; t,X, V1(t), V2(t)) = eC(φ,t)+D1(φ,t)V1(t)+D2(φ,t)V2(t)+φX , (3.12)

then we can get

C
′
+D

′
1V1(t) +D

′
2V2(t) + [κ1(θ̃2

1t − V1(t))]D1 + [κ2(θ̃2
2t − V2(t))]D2

+
1

2
σ2

1V1(t)D2
1 +

1

2
σ2

2V2(t)D2
2 + φ[r(t)− 1

2
(V1(t) + V2(t))]

+
1

2
φ2(V1(t) + V2(t)) + φD1σ1ρ1V1(t) + φD2σ2ρ2V2(t) = 0.

Thus, the PDE (3.11) reduces to the ordinary differential equations (ODEs):
− ∂C

∂t
= r(t)φ+ κ1θ̃2

1tD1 + κ2θ̃2
2tD2,

∂D1

∂t
=

1

2
(φ− 1)φ+ (σ1ρ1φ− κ1)D1 +

1

2
σ2

1D
2
1,

∂D2

∂t
=

1

2
(φ− 1)φ+ (σ2ρ2φ− κ2)D2 +

1

2
σ2

2D
2
2,

with initial conditions 
C(φ, T + ∆) = 0,

D1(φ, T + ∆) = 0,

D2(φ, T + ∆) = 0.

These ODEs can be solved by the solutions

U(φ; t,X, V1(t), V2(t)) = eC(φ,t)+D1(φ,t)V1(t)+D2(φ,t)V2(t)+φX , T ≤ t ≤ T + ∆,
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where,

C(φ, t) =

∫ T+∆

t

r(s)φ+
2∑
j=1

κj θ̃2
j (s)Dj(s)

 ds,
Dj(φ, t) =

aj + bj
σ2
j

1− ebj(T+∆−t)

1− gjebj(T+∆−b) ,

aj = κj − ρjσjφ, bj =
√
a2
j + σ2

j (φ− φ2), gj =
aj + bj
aj − bj

, j = 1, 2.

(3.13)

At time T , one has X = lnS(T )− lnS(T ) = 0. Thus, we can obtain

EQΘ̃ [eφyT |yT , V1(T ), V2(T )] = U(φ;T,X, V1(T ), V2(T ))

= eC(φ,T )+D1(φ,T )V1(T )+D2(φ,T )V2(T ).

Let 
g1(φ, t, T, V1(t)) = EQΘ̃ [eφV1(T )|yT , V1(T )],

g2(φ, t, T, V2(t)) = EQΘ̃ [eφV2(T )|yT , V2(T )],

g(φ, t, T, V1(t), V2(t)) = g1(φ, t, T, V1(t))g2(φ, t, T, V2(t)).

Applying the characteristic function g(φ, t, T, V1(t), V2(t)) of the stochastic
variable V1(T ) and V2(T ), the affine-form solution facilitates the calculation
of the exterior expectation (0 ≤ t ≤ T ). Utilizing the Feynman-Kac theorem
again, we can find the solution of g(φ, t, T, V1(t), V2(t)) satisfies the following
PDEs: {

∂g1

∂t + 1
2σ

2
1V1

∂g2
1

∂V 2
1

+ [κ1(θ̃2
1t − V1) ∂g1

∂V1
] = 0,

g1(φ, T, T, V1) = eφV1

and {
∂g2

∂t + 1
2σ

2
2V2

∂g2
2

∂V 2
2

+ [κ2(θ̃2
2t − V2) ∂g2

∂V2
] = 0,

g2(φ, T, T, V2) = eφV2 .

Following the solution procedure developed by [9], we can solve the two PDEs
by firstly guessing that the solution might be the form{

g1(φ, t, T, V1) = eF1(φ,t)+G1(φ,t)V1(t),

g2(φ, t, T, V2) = eF2(φ,t)+G2(φ,t)V2(t).
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The functions G1(φ, t), G2(φ, t) and F1(φ, t), F1(φ, t) can be found by solving
the two Riccati ODEs:

− dG1

dt
= −κ1G1 +

1

2
σ2

1G
2
1,

− dF

dt
= κ1θ̃

2
1G1

and 
− dG2

dt
= −κ2G2 +

1

2
σ2

2G
2
2,

− dF

dt
= κ2θ̃

2
2G2

with initial conditions

F1(φ, T ) = 0, F2(φ, T ) = 0, G1(φ, T ) = φ, G2(φ, T ) = φ.

Then we can get the solutions
F1(φ, t) =

∫ T

t
κ1θ̃

2
1(s)G1(s)ds,

G1(φ, t) =
2κ1φ

σ2
1φ+ (2κ1 − σ2

1φ)eκ1(T−t)

and 
F2(φ, t) =

∫ T

t
κ2θ̃

2
2(s)G2(s)ds,

G2(φ, t) =
2κ2φ

σ2
2φ+ (2κ2 − σ2

2φ)eκ2(T−t) .

Thus,

g(φ, t, T, V1(t), V2(t)) = g1g2 = eF1(φ,t)+G1(φ,t)V1(t)+F2(φ,t)+G2(φ,t)V2(t).

This completes the proof. �

In the sequel, we will get the expectation of (3.6), where rt and θ̃2
jt depend

on the path of X process up to time T + ∆. Firstly, we have

f(φ; t, T,∆, V1(t), V2(t))

= EQΘ̃

[
eφyT |yt, V1(t), V2(t),FXt

]
= EQΘ̃

[
EQΘ̃

[
eφyT |yt, V1(t), V2(t),FXT+∆

]
|yt, V1(t), V2(t),FXt

]
(3.14)
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= EQΘ̃

eC(φ,T ) g

 2∑
j=1

Dj(φ, T ); t, T, V1(t), V2(t)

∣∣∣∣∣∣ yt, V1(t), V2(t),FXt


= EQΘ̃

exp

∫ T+∆

T

〈
rφ+

2∑
j=1

κj θ̃
2
jDj(φ, s), Xs

〉
ds

+

∫ T

t

〈
2∑
j=1

κj θ̃
2
jGj(Dj(φ, T ), s), Xs

〉
ds

+

2∑
j=1

2κjDj(φ, T )

σ2
jDj(φ, T ) + (2κj − σ2

jDj(φ, T ))eκj(T−t)Vj(t)

∣∣∣∣∣∣ yt, V1(t), V2(t),FXt


= EQΘ̃

[
exp

(∫ T+∆

t
〈J1(s) + J2(s), Xs〉ds

)∣∣∣∣ yt, V1(t), V2(t),FXt
]

× exp

 2∑
j=1

Vj(t)Gj(Dj(φ, T ), t)

 .

Here, functions J1(t) and J2(t) are given by{
J1(t) = κ1θ̃

2
1G1(D1(φ, T ), t)(1−HT (t)) + (rφ+ κ1θ̃

2
1D1(φ, t))HT (t),

J2(t) = κ2θ̃
2
2G2(D2(φ, T ), t)(1−HT (t)) + (rφ+ κ2θ̃

2
2D2(φ, t))HT (t),

and HT (t) is a Heaviside unit step function, when t ≥ T , HT (t) = 1, or else
HT (t) = 0. The core calculation involved in equation (3.14) can be simply
represented in the form

EQΘ̃

[
exp

(∫ T

t
〈ν,Xs〉u(s)ds

) ∣∣∣∣FXt ] ,
where ν is an RN vector and u(s) is a general deterministic integrable function.

Utilizing Lemma 2.2 and all the derivation procedures above, we can obtain
the characteristic function of yT = lnS(T +4) − lnS(T ) under the regime-
switching environment as follows

f(φ; t, T,∆, V1(t), V2(t) = EQΘ̃

[
eφyT |yt, V1(t), V2(t),FXt

]
= exp

 2∑
j=1

Vj(t)Gj(Dj(φ, T ), t)

 〈Φ(t, T + ∆; J1 + J2)Xt, I〉,
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where

Dj(φ, t) =
aj + bj
σ2
j

1− ebj(T+∆−t)

1− gjebj(T+∆−t)

and

Gj(φ, t) =
2κjφ

σ2
jφ+ (2κj − σ2

jφ)eκj(T−t) , j = 1, 2.

Here

aj = κj − ρjσjφ, bj =
√
a2
j + σ2

j (φ− φ2), gj =
aj + bj
aj − bj

and

φ(t, T + ∆; J1 + J2) = exp

(∫ T+∆

t
(2Π′ + diag[J1(s)] + diag[J2(s)])ds

)
with

Jj(t) = κj θ̃
2
jGj(Dj(φ, T )t)(1−HT (t))+

(
rφ+ κj θ̃

2
jDj(φ, t)

)
HT (t), j = 1, 2.

In the sequel, we will obtain the closed-form pricing formula for the volatility
swaps. By utilizing the FCF, we denote p(ytk−1,tk) as the probability density
function of the stochastic variable ytk−1,tk = lnS(tk) − lnS(tk − 1) which
can be obtained by presenting the inverse Fourier transform. We also let
Qk:=prob(ytk−1,tk > 0) be the probability of the event ytk−1,tk > 0. Based
on the relationship between the characteristic function and the cumulative
function, we can write Qk as follows:

Qk =

∫ ∞
0

P (ytk−1,tk)dytk−1,tk

=
1

2
+

1

π

∫ ∞
0

Re

[
f(φi; tk−1, tk,∆t, V1(0), V2(0))

φi

]
dφ.

(3.15)

We indicate that the function

q(ytk−1,tk) = e(ytk−1,tk
−r∆t)p(ytk−1,tk)(∆t = tk − tk−1)

satisfies the following two properties via equation (3.15)

(i) q(ytk−1,tk) ≥ 0;

(ii)
∫ +∞
−∞ q(ytk−1,tk)dytk−1,tk = 1.

Therefore, it can be concluded that the function q(ytk−1,tk) is a probability
density function of q(ytk−1,tk), whose characteristic function

f̃(φ; tk−1, tk,∆t, V1(0), V2(0))
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can be defined as follows:

f̃(φ; tk−1, tk,∆t, V1(0), V2(0)) = F [e(ytk−1,tk
−r∆t)p(ytk−1,tk)]

= e−r∆tF [eytk−1,tkp(ytk−1,tk)]

= e−r∆tf(φi+ 1; tk−1, tk,∆t, V1(0), V2(0)).
(3.16)

We note that

f(φi; tk−1, tk,∆t, V1(0), V2(0)) = F [p(ytk−1,tk)]

and the Fourier transform is defined as

F [Ψ(x)] =

∫ +∞

−∞
eiφxΨ(x)dx.

Similarly, we can get the probability

Q̃k =

∫ +∞

0
e

(y
tk−1,t

−∆t
k

)
p(ytk−1,tk)dytk−1,tk

=
1

2
+

1

π

∫ +∞

0
Re

[
e−r∆tf(φi+ 1; tk−1, tk,∆t, V1(0), V2(0))

φi

]
dφ.

Based on the above procedures, the expectation in (3.4) can be written as:

E
QΘ̃
0

[∣∣∣∣ S(tk)

S(tk−1)
− 1

∣∣∣∣∣∣∣∣ y0, V1(0), V2(0),FX0 )]

=

∫ +∞

−∞
|eytk−1,tk − 1|p(ytk−1,tk)dytk−1,tk

=

∫ +∞

0
(eytk−1,tk − 1)p(ytk−1,tk)dytk−1,tk

+

∫ 0

−∞
(1− eytk−1,tk )p(ytk−1,tk)dytk−1,tk

= −
∫ +∞

0
p(ytk−1,tk)dytk−1,tk +

∫ 0

−∞
p(ytk−1,tk)dytk−1,tk

+ er∆t
(∫ +∞

0
p(ytk−1,tk)dytk−1,tk −

∫ 0

−∞
p(ytk−1,tk)dytk−1,tk

)
= 1− 2Qk + er∆t(2Q̃k − 1)

=
2

π

∫ ∞
0

Re[Mk]dφ,

where

Mk =
f(φi+ 1; tk−1, tk,∆t, V1(0), V2(0))− f(φi; tk−1, tk,∆t, V1(0), V2(0))

φi
.
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Thus, (3.3) can be carried out all the way with k ranging from 1 to N which
indicates to the final pricing formula for the volatility swaps as follows:

Kvol = E
QΘ̃
0 [RVd2(0, N, Te)]

= E
QΘ̃
0

[√
π

2NTe

N∑
k=1

∣∣∣∣S(tk)− S(tk−1)

S(tk−1)

∣∣∣∣
]
× 100

=

√
2

πNTe

∫ ∞
0

N∑
k=1

Re[Mk]dφ× 100.

Therefore, we get the closed-form solution with respect to the fair strike price
for the volatility swaps.

Remark 3.3. We would like to point out that the double stochastic volatility
model can be expanded to a multi-stochastic volatility model, which can be
derived to obtain the characteristic function to pricing the volatility swaps.
As a result, it depicts market risks and other uncertainties more accurately.

4. Conclusion

In this paper, we develop a pricing volatility derivatives model to analyze the
double-stochastic volatility swaps via a continuous-time Markovian-modulates
version of Heston’s stochastic volatility model. In general case, the market in
the framework of Markovian-modulated model is incomplete with many equiv-
alent martingale pricing measures. To overcome this difficult, we define a mar-
tingale pricing measure to value the volatility swaps via the regime switching
Esscher transform by [5]. We also use the Heston’s stochastic volatility model
to describe the underlying asset’s price and extend the one-factor volatility to
the double stochastic volatility. Then, we obtain a closed-form solution to the
discretely-sampled volatility swaps where the realized volatility is defined as
the average value of the asset price of the absolute percentage increment. It
can be considered as an appropriate progress in the field of pricing volatility
swaps.

This study also shows that the proposed solution can be used to calculate
the lower limit of the corresponding standard derived swaps, in which the
volatility is defined as the square root of the average value of the variance. In
addition, the efficiency of the calculation is improved significantly in helping
the practitioners pricing volatility swaps by using the new analytical formula
developed in this paper. However, we do not consider the case (3.2) in our
model, which is also important in pricing volatility swaps and should be further
investigated.
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