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Abstract. In this paper, we establish weak and strong convergence theorems using three
step iteration schemes which is defined by Xu and Noor, for an asymptotically firmly type

nonexpansive mappings in Banach spaces.

1. INTRODUCTION

Let X be a normed linear space and E be a closed subset of X. Let T : E — E
be a mapping which has at least one fixed point. In the second half of the
twentieth century iterative procedures play a major role in the approximation
of fixed points. Banach [1] in 1922 used one step iteration scheme {x,} (that
is, Picard iteration)

20 € B, xpy1 =Txy,n >0, (1.1)

to approximate fixed point for the contraction mappings in a complete metric
space.
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Later, Mann [6] defined new one step iteration scheme {z,} in matrix form
in the year 1953. In 1976, Rhoades [9] generalized the Mann iteration scheme
as

x0 € E,xpyr = (1 —ap)zn + anTzp,n >0, (1.2)

where {a,} C [0,1] and he proved that this iteration scheme {z,} converges
to a fixed point of a continuous non-decreasing mappings. The iteration (1.2)
is called a Krasnoselskii-Mann iteration.

In 1974, Ishikawa [5] introduced two step iteration scheme as

xo € E;
Tn+l = (1 - an)xn + anTyn; (13)
Yn = (1 = Bn)zn + BnTxpn, n >0,

where {ay }, {8,} C [0,1] and he approximate the fixed point for Lipschitizian
pseudocontractive mappings.

In 1991, Schu [10] defined the modification of Mann iteration as
0 € B, xpny1 = (1 — ap)zn + anT"(zy,), n >0, (1.4)

and the modification of Ishikawa iteration as

X € E;
Tnt1 = (1 — ap)xy + anT"yn; (1.5)
Yn = (1 - Bn)$n + BT 2y, n>0.

He proved the strong convergence of fixed points for asymptotically nonex-
pansive mappings by using (1.4). He also proved strong convergence of fixed
points for asymptotically pseudocontractive mappings by using (1.5).

Glowinski and Tallec [3] used three step iterative schemes to find the ap-
proximate solutions of the elasto viscoplasticity problem, eigen value problem
and liquid crystal theory. Also they showed that this iterative schemes per-
form better numerically. Haubruge et al.[4] studied the three step iteration
schemes of Glowinski and Tallec and they introduced new splitting type algo-
rithm for solving variational inequalities, separable convex programming, and
minimization of a sum of convex functions.

This paper is organized as follows. In Section II we recall three step iter-
ation schemes and the definition of asymptotically firmly type nonexpansive
mappings with an example. We extend the Lemma 1.2 in [10] to the three step
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iteration schemes, and Section III contains weak and strong convergence the-
orem for asymptotically firmly type nonexpansive mappings in Banach spaces
using three step iteration schemes.

2. THREE STEP ITERATION SCHEMES

In 2002, Xu and Noor [12] introduced the following three step iterative
schemes. For an initial guess xg € E, compute the sequences
Tpt1 = (1 — an)xn + anT"yn;
Yn = (1 = Bn)xn + BT 2p; (2.1)
zn =1 —Y)xn + T "xn, n >0,
where {a, }, {Bn}, {7} are sequences of real numbers in [0,1], and they proved

strong convergence of fixed points for asymptotically nonexpansive mappings.
The iteration (2.1) is called Noor’s iteration schemes.

Here we recall the definition of asymptotically firmly type nonexpansive
mapping.
Definition 2.1. ([7]) Let E be a nonempty subset of a normed linear space X.
A mapping T : E — F is said to be asymptotically firmly type nonexpansive
mapping if there exists a sequence {k,} C [1,00),k, — 1 as n — oo and
k € (0,00) such that

|77 = T"y[* < dn(2,y),

where ¢, (2,y) = knllz — y||? — kl|(x —y) — (T"x — T"y)||?, for all 2,y € E,
n>1.

Example 2.2. Let B denote the unit ball in the Hilbert space [? and let
T : B — B be defined as: T'(x,y) = (xy, %) Let a = (x1,y1) and b = (z2,y2)

in B. Then
2
| T"a T |* = N 7 T
M2 T2 2 2
(11" — w2y2™)? N (y1 — y2)?
— et .
[T 4 4
_ (" — " % (21 — x9)? N (y1 — y2)?
T1 — X H?:_()l 4i 4n
_calm—x9)® | (y1— )
- 4n + 4qn .
1
maxtliend, g

hS qn
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where

. 4" T1y1" — Toy2"
S Nt 1 — X2
=0

2
) , T1 F To.
Since
I (a—=b) = (T"a=T") [P<| a=b|* + | T"a = T"b 1%,
it implies that

max{l,c,}

I (@ —b) ~ (T —T7%) [~ o b o< "W Lonbyy py2
Now
n " 2max{l,¢c,} max{1, ¢y}
R e L P
2max{l,c, n n
J2medlendy, e - by — (T - T 2

<
41’1
< klla—b? k| (a—b)— (T —T") |2,

2max{1,¢c,}

where k, =1+ "

For x1 = x9,

and k € (0,1].

2
Ty Ty Y1 Y2
T"a —T"b ||* = — = =
H a || (1—[?2—01 oi H?z_ol 9i 2N 2n>
_ ot — ) (g — )
= —
[[i=o 4 a
_ _ _ 2
_ 21? (1 —y2) (™ " Py + ") N (y1 — y2)?
[T 4 o
_ duyr — 42)° n (y1 — 92)°
N 4n 4n
max{1,d,}
< T”Ha —blf?,
A" § n—1 n—2 n—1)2
where d,, = Hn_l 5 (y1 +y1" " Yy + .+ ) . Clearly d, — 0 as
i=0
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Now
2max{1,d,} max{1,d,}
|2 < 2ldnly, oy medl d

U

la — ||

2max{l,d,} " "
< (1 TR I bR | (0 - b) — (T T |
< Ealla=b[? k|l (a—b) = (T"a—T"0) |,
2 1,d,
where k, = 1 + ma;;{n,} and k € (0,1]. Hence T is an asymptotically

firmly type nonexpansive mapping.
Definition 2.3. ([8]) A Banach space X is said to satisfy Opial’s condition if
for any sequence z,, € X, x, — x implies

limsup ||z, — z|| < limsup ||z, — y||,
n—o00 n—oo
for all y € X, with = # v.

Definition 2.4. ([2]) A mapping T is called demiclosed at zero if x,, — = and
Tx, — 0, then Tz = 0.

Lemma 2.5. ([11]) Let X be a normed linear space. Then for all x,y € X
and t € 0,1], then

[tz + (1 = t)y|* < tllz]|* + (1 — 1) [ly]|.
Lemma 2.6. ([2]) Suppose that {u,} and {v,} are two sequences of non-

negative numbers such that up11 < up+uvy, for alln > 1. If Y7 | v, converges,
then lim,, oo U, €TISES.

Lemma 2.7. ([10]) Let E be a nonempty convex subset of a normed lin-
ear space X and T : E — E be a uniformly L-Lipschitzian mapping. For
{an}, {Bn} C [0,1] and xo € E, define zpi1 = (1 — an)xn + anT™(yn), and
yn = (1 = Bp)xn + BT (xy),n > 0. Then

| & — T(xp) ||< en + a1 L(1 + 3L + 2L?),
where ¢, =|| xn, — T™(xy) ||, for all n € N.

We extend the above Lemma 2.7 into three step iteration (Noor’s Iteration)
schemes.

Lemma 2.8. Let E be a nonempty conver subset of a normed linear space X
and T : E — E be a uniformly L-Lipschitzian mapping. For {can},{Bn}, {m} C
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[0,1] and z¢ € E, define xpt1 = (1—an)Tn+anT™Yn, yn = (1=05p)xn+6,T" 2y,
and z, = (1 — yp)xn + T xn,n > 0. Then
| 2n — T(xn) |< en + a1 L(2 + 20 + 212 + LP),
where ¢p, =|| xp — T"(zy,) ||, for all n € N.

Proof. Let 1 € E and for n € N, dy, = ||y, — T"Ynl,en = ||2n — ynl|, fn =

[yn—1 — Znll, gn = lTnt1 — zull, b = (|20 — T2l = |20 — 20ll, mp =
lzn_1 — T ‘x| and ky, = ||z, — T" x|, respectively. Then we have

dn = lzn =T"ynll < |20 =T xn | + | T" 20 — T yul|
< cp+ Lljzp — ynl| = cn + Lep, < (1+ L+ L¥)ey,

en = o0 —ynll = |z — BuT" 20 — (1 = Bp)znll = Bullzn — T" 20|
= Bnhp < hp = (14 L)cy,,

fo = Nyn—1 = 2all <llyn—1 — zn-a1ll + [2n-1 — 20|l < €n—1+ gn—1
< 1+ Lepor+ A+ L+ L¥epo1=(2+2L+ L¥)ep1,

I = zns1 — 2all = lenTyn + (1 — an)zn — 2|l = anl|[T"yn — 0|
= apdy, <dp < (14 L+ L¥)cy,

b = |lon =Tz < |lzn — T 2|l + | T" 20 — T" 2|
< ep+ L||xy — znl|| = en + Ll < (14 L)cy,

b = lon =20l = lzn — T 20 — (1 — )20l

TnCn < Cn,

My = |Jzn—1 —T" 'z,
< lwp-1 — Tnilxn—lH + ||Tn71xn—1 - Tnill’nH
< ep1+ L1 < (L+L+L?+ LP)eyy,

kn = |lzn — T oy
< lzn — zn-al + lzn—1 — Tn_lmnHa
= Ggn-1t+tmy
< A+L+L%cp+ 1+ L+ L%+ L%c,

(24 2L +2L% + L?)c, 1.
Hence we have
2n — T'(2n)]

< lan = T"p|| + [[T"2n — Tan|

< e+ LT 2y, — 2|

< ep+ L2+ 2L 4207 + L¥)c,_1.

This completes the proof. O
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3. CONVERGENCE RESULTS

Theorem 3.1. Let X be a real reflexive space that satisfies Opial’s condi-
tion. Let E be a non-empty closed convexr subset of X andT : E — E be an
asymptotically firmly type nonerpansive mapping with the sequence {kp} C
[1,00),3(kn, — 1) < oo and assume Fix(T) = {x : Te = z} # 0. Let
{an}, {Bn} and {v,} be real sequences in [0, 1] with
(i) 0 < liminf,, o0 ap < limsup,,_ .o an < 1,
(ii) 0 < liminf, s B < limsup,, . Bn < 1,
(iii) 0 < liminf, o0 vn < limsup,,_,o 1 < 1.

Then the sequence of iteration defined in (2.1) converges weakly to some fized
point of T if (I-T) is demiclosed at zero.

Proof. Let p € Fiz(T). Then we have

(an(wmp) = knuxn _pH2 - kan - TnmnHZ?

(Z)n(zmp) = kn”zn _pH2 - kHZn - Tnan2
EnlvnT"2n + (1 — vn)2n _PH2 — kllzn — T"ZnHz

< kn{(1 =)z — plI* + yndn(zn, p)} — Kllzn — Tz
and
Gn(Yn,p) = knllyn — P = Ellyn — T"ynll®
=kl BT 20 + (1 = Bu)wn — plI* = Kllyn — T"yal®
< k(1= Bo)llen — pI* + Budn(zn, 0)} — Ellyn — Tyl
Now

[Zns1 = plI* = llanT™yn + (1 = an)zn — p||*
< (1= om)|lzn = plI* + ndn(yn, p)
< (1= an)|len —pl?
+ anlkn{(1 = Bn)l2n — plI* + Budn(zn:P)} — Ellyn — T"ynl*]
< {1 = an + ankn(1 = Bu) Hlzn = pII? + cnknBrdn(zn, p)
— kanlyn — T"yal?
< {1 = ap + ankn(1 = Ba)}Hzs — p|®
+ ankinBulkn{ (1 = ) |lZn — DI + nn (20, p)}
— kllzn — Tz |*] = ke llyn — T"yn|?
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< {1 — an + ankn(1 = Bo)Hlwn — plI* + ankn®Bn(1 — y)llzn — pl?
+ ankn” Bundn (0, p) — kanknfallzn — T 2,1
— kan|lyn — T"ynl?
< {1 — an + ankn(1 = Bn) + ankn®Bn(1 — ) Hlzn — plI?
+ ankn® B {kn |0 — plI* = kllzn — T 2, )} (3.1)
— kanknBullzn — T"zal” — kanlyn — Tyl
< {1 — an 4 ankn(l = Bn) + ank,?Bn(1 — 4n)
+ ankn” Bun | wn — plI? = kenkn® Buyallan — T |?
— kanknBullzn — T"zal® — kawnlyn — T yal*.
Hence, we have
[Zni1 = plI* < {1+ an(kn — 1D)(Buvnkn® + Bukn + 1)}zn — pl?
- kankn26nfyn\|xn - T"aan2 (3.2)
— kanknBnllzn — T"ZnHz — ko |lyn — TnynHZ)~
Thus
|Zns1 = plI* < {1+ (ko — D(ka® + kn + 1}z — p?
< {1+ (kn® = D} lzn — pl®
<{L+ Mt lzn —pI? Oni=ka® 1) (3.3)
S {1+ A H1+ Aa} - {1+ M} | — pl®
< eXi=i M oy —p?.
Therefore, we have
|#ns1 = pl| < eXi= D |2y — .

This implies that {||z,, —p||} is non-increasing and so it is bounded. Also from
(3.3), we have

|20 = plI> + (kn® = 1) |20 — p|?
|20 = pII” + ftn,

where g, = (k,® — 1) ||z, — p||* . Since 3 k,® — 1 < 00, 321", ptn < 00 and by
Lemma 2.6, we can get that

lznss —pl* <
<

lim ||z, —p|| ezists.
n—oo
From (3.2), we deduce the following:
kankn® Buynllen — Tenl|® < ||z, — pH2 = [lentr — p”2 + M(kn —1), (34)
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kanlyn = T"ynl® < llzn = pl* = |lns1 = pl* + M(kn — 1) (3.5)
and
kankn Bl 2n — T zn|? < |2, — sz = lenta — pH2 + M(kn - 1). (3.6)

Since liminf, o an > 0, liminf, .o 6, > 0 and liminf, ,. v, > 0, there
exist some a,b,c > 0 and ng,ni,ne € N such that

an >a forall n>ng, B >0b forall n>ny and -y, >c for all n > ns.
Therefore, from (3.4)
kkn2abe < kamkn?Baynllzn — T"2n||? < |2 — p)|* = [|#ng1 — pl|* + M (kn — 1).

This implies that
lim ||z, — T"zy,| = 0.
n—oo
Similarly from (3.5) and (3.6), we get
lim ||y, —T"yn|| =0 and lim ||z, —T"z,|| = 0.
n—oo n—o0

Since T is uniformly L-Lipschitzian, from Lemma 2.8, we have ||z, —T (z,)| —
0 as n — oo.

Since E is reflexive, there exists a subsequence {z,,} of {z,} such that
{zn, } weakly convergent to some point p. Then by the hypothesis that 1 — T
is demiclosed at zero, we have (I — T)p = 0. That is, p = T'p.

Let g be an another weak limit of {z,, } and p # ¢. Then we can choose
a subsequence {xnj} that weakly converges to y. And also, we have T'q = q.
Since limy, o0 ||z — p|| exists for each p € Fiz(T'), we have

lim |z, —p| = limsup ||z, —pl
n—oo k?—)OO

< limsup ||z, — q||
k—o00

— limsup [z, —
k—o0

< limsup [[2,; — pl|
j—00

= lim |z, —p|.
n—oo

This is a contradiction, and hence p = q.

Further, ||z, — z,|| = W||T"%n — x4|| — 0 as n — oo, and ||y, — zy|| =
BullT" 2, — zp|| < en + L||xn — 2zn]] — 0 as n — oo. That is, lim, oo Y = p
and lim,, .o z, = p. This completes the proof. |

Lemma 3.2. Let E be a non-empty closed convex subset of a Banach space X .
Let T : E — E be continuous and the sequence {x,} be defined in E such that
limy, 00 || Zn —p || exists for each p € F(T). Suppose there exists a convergent
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subsequence {xy, } such that || x,, — T (zp,) || 0. Then {z,} converges to a
fized point of T.

Proof. Let {xy, } be a subsequence of {z,,} that converges to some point x € E.
Since T is continuous and || @, — T'(zp,) ||— 0, we have Tz = z. Therefore
{zn} converges to a fixed point z of 7. O

Theorem 3.3. Let E be a non-empty closed convexr subset of a uniformly
conver Banach space X and T : E — E be an asymptotically firmly type
nonexpansive mapping with the sequence {kn} C (1,00], > (k, — 1) < 00 and
Fix(T) # 0. Let {an}, {Bn} and {7n} be real sequences in [0, 1] with
(i) 0 < liminf,, o0 oy, < limsup,, o an < 1,
(i) 0 < liminf, o By < limsup,_,o Bn <1,
(iii) 0 < liminf, o vy < limsup, . vn < 1.

Suppose T is completely continuous. Then the sequence of iteration {x,} de-
fined in (2.1) converges strongly to some fized point of T'.

Proof. From the proof of Theorem 3.1, we have || z, —T'(z,) || = 0 as n — oc.
Since T is completely continuous, we can find a subsequence {z,, } of {z,}
such that || z,, —T(zy,) ||[— 0. Also from the proof of Theorem 3.1, we have
limy, oo || ©n — p || exists for each p € Fiz(T). Then by Lemma 3.2, we can
get {x,} converges strongly to a fixed point p of T. O
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