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Abstract. In this work, we present the notion of an α-β-ψ-G-proximal contraction in metric

spaces endowed with graph. We investigate the existence and uniqueness of best proximity

points for this modified contractive mapping. The results obtained extended and generalized

some fixed and best proximity points results in literature. Examples are given to validate

the main results.

1. Introduction

The importance of fixed point theory emerges from the fact that it fur-
nishes a unified approach and constitutes an important tool in solving equa-
tions which are not necessarily linear. A large number of problems can be
formulated as nonlinear equations of the form T (x) = x, where T is a self-
mapping in some framework. Nevertheless, an equation of the type T (x) = x
does not necessarily possess a solution if T happens to be a nonself-mapping.
In this case, one seeks an appropriate solution that is optimal in the sense that
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d(x, T (x)) is minimum. That is, we resolve a problem of finding an element x
such that x is in best proximity to T (x) in some sense.

Best proximity point theorem analyzes the condition under which the op-
timization problem, namely, infx∈A d(x, Tx), has a solution. Te point x is
called the best proximity point of T : A → B, if d(x, Tx) = d(A,B), where
d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. Note that the best proximity point
reduces to a fixed point if T is a self-mapping. A best proximity point problem
is a problem of achieving the minimum distance between two sets through a
function defined on one of the sets to the other. The very popular best approxi-
mation theorem is due to Fan [1]. If A is a nonempty compact subset of a Haus-
dorff locally convex topological vector space B and T : A→ B is a continuous
mapping, then there exists an element x ∈ A such that d(x, Tx) = d(A, Tx).
Fans results are not without shortcomings; the best approximation theorem
only ensures the existence of approximate solutions, without necessarily yield-
ing an optimal solution. But the best proximity point theorem provides suffi-
cient conditions that ensure the existence of approximate solutions which are
also optimal. Afterwards many authors such as Eldred and Veeramani [2] have
derived extensions of Fans Theorem and the best approximation theorems in
many directions. Significant best proximity point results are in [3, 4, 5, 6, 7, 8]
and other references therein.

Our purpose here is to establish best proximity point theorems in complete
metric spaces endowed with graph. We recall the following notation and def-
initions. Let (X, d) be a metric space and let A and B be nonempty subsets
of X.

A0 := {x ∈ A : d(x, y) = d(A,B) for some y ∈ B},
B0 := {y ∈ B : d(x, y) = d(A,B) for some x ∈ A}.

In 2011, Basha [9] gave the following definition of a proximal contraction
for non-self mappings in a metric space:

Definition 1.1. ([9]) Let T : A→ B be a non-self mapping. Then T is called
a proximal contraction if there exists k ∈ [0, 1) and for every u, v, x, y ∈ A,

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ d(u, v) ≤ kd(x, y).

Next, we recall some mappings and notions regarding a graph.

Let (X, d) be a metric space and ∆ := {(x, x) : x ∈ X} be the diagonal
of X×X. Let G be a directed graph such that the set V (G) of its vertices
coincides with X and ∆ ⊂ E(G), where E(G) is the set of edges of the graph.
Assume also that G has no parallel edges, and thus one can identify G with
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the pair (V (G), E(G)). We say a metric space (X, d) is endowed with a graph
G, if G is a directed graph such that V (G) = X and ∆ ⊆ E(G).

We denote by Ψ a family of functions ψ : [0,∞)→ [0,∞) such that for each
ψ ∈ Ψ and t > 0,

(i) ψ is non-decreasing,

(ii)
∞∑
n=1

ψn(t) < +∞, where n is the n-th iterate of ψ.

Remark 1.2. If ψ ∈ Ψ, then ψn(t)→ 0 as n→∞, for all t ≥ 0 and ψ(t) < t,
for all t > 0.

Definition 1.3. ([10]) Let (X,�) be a partially ordered space with metric d.
We say that f : X → X is an α-β-ψ-contractive mapping if there exist three
functions α, β : X×X → [0,∞), ψ ∈ Ψ such that

α(x, y)d(f(x), f(y)) ≤ β(x, y)ψ
(
d(x, y)

)
,

for all x, y ∈ X with x � y.

Definition 1.4. ([10]) Let f : X → X, α, β : X×X → [0,∞) and Cα > 0,
Cβ ≥ 0. We say that f is an α-β-admissible mapping, if for all x, y ∈ X with
x � y hold

(i) α(x, y) ≥ Cα ⇒ α(fx, fy) ≥ Cα,
(ii) β(x, y) ≤ Cβ ⇒ β(fx, fy) ≤ Cβ,

(iii) 0 ≤ Cβ
Cα
≤ 1.

In 2015, Asgari and Badehian [10], proved fixed point theorems for α-β-ψ-
contractive mappings in partially ordered space with complete metric.

Theorem 1.5. ([10]) Let (X,�) be a partially ordered space with complete
metric d. Let f : X → X be a non-decreasing, α-β-ψ-contractive mapping
satisfying the following conditions:

(i) f is continuous,
(ii) f is α-β-admissible,

(iii) there exists x0 ∈ X such that x0 � fx0,
(iv) there exist Cα > 0, Cβ ≥ 0 such that α(fx0, x0) ≥ Cα, β(fx0, x0) ≤

Cβ.

Then, f has a fixed point.

The next Section, we introduce a notion of α-β-G-proximal admissible map-
pings and α-β-ψ-G-proximal contractive mappings that we consider to prove
our main results, we draw some corollaries and provide examples in support
of our main results.
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2. Preliminaries

Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d)
endowed with a graph G. A mapping T : A→ B is said to be

(i) proximally G-edge-preserving if for each x, y, u, v ∈ A with (x, y) ∈
E(G):

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ (u, v) ∈ E(G).

(ii) α-β-G-proximal admissible if there exist functions α, β : A×A →
[0,∞), and Cα > 0, Cβ ≥ 0 two constants such that for all x, y, u, v ∈ A
with (x, y) ∈ E(G):
(a) α(x, y) ≥ Cα, d(u, Tx) = d(v, Ty) = d(A,B) ⇒ α(u, v) ≥ Cα;
(b) β(x, y) ≤ Cβ, d(u, Tx) = d(v, Ty) = d(A,B) ⇒ β(u, v) ≤ Cβ;

(c) 0 ≤ Cβ
Cα
≤ 1.

If (a), (b) and (c) hold for α(x, y) = 1 = β(x, y), for all x, y ∈ A,
then we say that T is G-proximal admissible.

(iii) G-proximal contraction if there exist a constant k ∈ [0, 1) such that
for all x, y, u, v ∈ A with (x, y) ∈ E(G):

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ d(u, v) ≤ kd(x, y);

(iv) α-β-ψ-G-proximal contraction if there exist functions α, β : A×A →
[0,∞), ψ ∈ Ψ such that for all x, y, u, v ∈ A with (x, y) ∈ E(G):

d(u, Tx) = d(A,B)
d(v, Ty) = d(A,B)

}
⇒ α(x, y)d(u, v) ≤ β(x, y)ψ

(
d(x, y)

)
.

3. Main results

In this section, we will prove best proximity point theorems for an α-β-ψ-
G-proximal contraction in a complete metric space endowed with a graph.

Theorem 3.1. Let A and B be nonempty closed subsets of a complete metric
space (X, d) endowed with a graph G with A0 6= ∅. Let T : A→ B be a non-self
mapping which satisfies the following properties:

(i) T is continuous;
(ii) T is proximally G-edge-preserving, α-β-G-proximal admissible and α-

β-ψ-G-proximal contraction such that T (A0) ⊆ B0;
(iii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and (x0, x1) ∈ E(G).

(iv) there exist Cα > 0, Cβ ≥ 0 such that α(x0, x1) ≥ Cα, β(x0, x1) ≤ Cβ.
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Then T has a best proximity point in A, that is, there exists an element w ∈ A
such that d(w, Tw) = d(A,B). Further, the sequence {xn}, defined by

d(xn, Txn−1) = d(A,B), ∀ n ∈ N,

converges to the element w.

Proof. From the condition (iii), there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and (x0, x1) ∈ E(G). (3.1)

Since T (A0) ⊆ B0, we have Tx1 ∈ B0 and hence there exits x2 ∈ A0 such that

d(x2, Tx1) = d(A,B). (3.2)

By the proximally G-edge preserving of T and using both (3.1) and (3.2), we
get (x1, x2) ∈ E(G). By continuing this process, we can form the sequence
{xn} in A0 such that

d(xn, Txn−1) = d(A,B) with (xn−1, xn) ∈ E(G), ∀ n ∈ N. (3.3)

Next, we will show that T has a best proximity point in A. Suppose that
there exists n0 ∈ N, such that xn0 = xn0+1. By using (3.3), we obtain that
d(xn0 , Txn0) = d(xn0+1, Txn0) = d(A,B) and so xn0 is a best proximity point
of T . Now, we assume with out loss of generality that any two consecutive
elements of {xn} are distinct.

As T is α-β-G-proximal admissible, condition (iv) and (3.3), the following
holds:

α(x0, x1) ≥ Cα, β(x0, x1) ≤ Cβ
(x0, x1) ∈ E(G)
d(x1, Tx0) = d(A,B)
d(x2, Tx1) = d(A,B)

 ⇒ α(x1, x2) ≥ Cα, β(x1, x2) ≤ Cβ.

(3.4)
Since T is an α-β-ψ-G-proximal contraction and by (3.4), we have

Cαd(x1, x2) ≤ α(x0, x1)d(x1, x2)

≤ β(x0, x1)ψ
(
d(x0, x1)

)
≤ Cβψ

(
d(x0, x1)

)
,

therefore

d(x1, x2) ≤
Cβ
Cα

ψ
(
d(x0, x1)

)
≤ ψ

(
d(x0, x1)

)
. (3.5)
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Again, since T is an α-β-G-proximal admissible, (3.3) and (3.4), we have

α(x1, x2) ≥ Cα, β(x1, x2) ≤ Cβ
(x1, x2) ∈ E(G)
d(x2, Tx1) = d(A,B)
d(x3, Tx2) = d(A,B)

 ⇒ α(x2, x3) ≥ Cα, β(x2, x3) ≤ Cβ.

(3.6)
By the fact that T is an α-β-ψ-G-proximal contraction, we have

Cαd(x2, x3) ≤ α(x1, x2)d(x2, x3)

≤ β(x1, x2)ψ
(
d(x1, x2)

)
≤ Cβψ

(
d(x1, x2)

)
,

from (3.5), we have

d(x2, x3) ≤
Cβ
Cα

ψ
(
d(x1, x2)

)
≤ ψ

(
d(x1, x2)

)
≤ ψ2

(
d(x0, x1)

)
.

On continuing this process, we obtain

α(xn−1, xn) ≥ Cα,
β(xn−1, xn) ≤ Cβ

(xn−1, xn) ∈ E(G)
d(xn, Txn−1) = d(A,B)
d(xn+1, Txn) = d(A,B)

 ⇒ α(xn, xn+1) ≥ Cα, β(xn, xn+1) ≤ Cβ,

for n = 1, 2, 3, . . . and

d(xn, xn+1) ≤ ψn
(
d(x0, x1)

)
.

Since ψ ∈ Ψ, we have ψn
(
d(x0, x1)

)
→ 0 as n→ 1.

Now, we show that {xn} is a Cauchy sequence. We fix ε > 0 and choose

n0 ∈ N such that
∞∑

n=n0

ψn
(
d(x0, x1)

)
< ε. Let m,n ∈ N with m > n > n0.

Therefore by applying triangle inequality, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ ψn
(
d(x0, x1)

)
+ ψn+1

(
d(x0, x1)

)
+ · · ·+ ψm−1

(
d(x0, x1)

)
=

m−1∑
n=n0

ψn
(
d(x0, x1)

)
≤

∞∑
n=n0

ψn
(
d(x0, x1)

)
< ε

Hence {xn} is a Cauchy sequence in A. Since A is a closed subset of a complete
metric space and hence it is complete, so there exists w ∈ A such that xn → w.



Best proximity points of α-β-ψ-proximal contractive mappings 765

By the continuing of T , we have Txn → Tw as n→∞. As the metric function
is continuous, we obtain

d(xn+1, Txn)→ d(w, Tw) as n→∞.

This implies that w ∈ A is a best proximity point of T .
Indeed, the sequence {xn} defined by

d(xn+1, Txn) = d(A,B), n ∈ N,

converges to an element w. The proof is completed. �

If we drop the continuity assumption from Theorem 3.1, we obtain the
following result.

Theorem 3.2. Let A and B be nonempty closed subsets of a complete metric
space (X, d) endowed with a graph G, with a nonempty and closed set A0. Let
T : A→ B be a non-self mapping which satisfies the following properties:

(i) T is proximally G-edge-preserving, α-β-G-proximal admissible and α-
β-ψ-G-proximal contraction such that T (A0) ⊆ B0;

(ii) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and (x0, x1) ∈ E(G).

(iii) there exist Cα > 0, Cβ ≥ 0 such that α(x0, x1) ≥ Cα, β(x0, x1) ≤ Cβ.
(iv) If {xn} is a sequence in A such that (xn, xn+1) ∈ E(G), α(xn, xn+1) ≥

Cα, β(xn, xn+1) ≤ Cβ for all n and xn → x as n→∞, then there ex-
ists a subsequence {xnk} of {xn} such that (xnk , x) ∈ E(G), α(xnk , x) ≥
Cα, β(xnk , x) ≤ Cβ for all k.

Then there exists an element z ∈ A such that d(z, Tz) = d(A,B). Further,
the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B), ∀ n ∈ N,

converges to the element z.

Proof. Following the proof of Theorem 3.1, there exists a sequence {xn} in A0

satisfying

d(xn, Txn−1) = d(A,B) with (xn−1, xn) ∈ E(G),
α(xn−1, xn) ≥ Cα, β(xn−1, xn) ≤ Cβ,

(3.7)

for all n ∈ N, and xn → w. Since A0 is closed, we get w ∈ A0. By (i), we have
T (A0) ⊆ B0, so Tw ∈ B0. Then there exists z ∈ A such that

d(z, Tw) = d(A,B). (3.8)
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By (iv), there exists a subsequence {xnk} of {xn} such that (xnk , w) ∈ E(G),
α(xnk , w) ≥ Cα, β(xnk , w) ≤ Cβ, for all k ∈ N. Indeed, by the fact that T is
an α-β-ψ-G-proximal contraction, we get

Cαd(xnk+1, z) ≤ α(xnk , w)d(xnk+1, z)

≤ β(xnk , w)ψ
(
d(xnk , w)

)
≤ Cβψ

(
d(xnk , w)

)
and therefore

d(xnk+1, z) ≤
Cβ
Cα

ψ
(
d(xnk , w)

)
.

Since ψ ∈ Ψ, we get
d(xnk+1, z) < d(xnk , w).

If n→∞, we obtain z = w. Therefore there exists z ∈ A such that d(z, Tz) =
d(A,B). The proof is completed. �

The following corollaries are obtained directly from Theorems 3.1 and 3.2.

Corollary 3.3. Let A and B be nonempty closed subsets of a complete metric
space (X, d) endowed with a graph G with A0 6= ∅. Let T : A → B be prox-
imally G-edge-preserving, α-β-G-proximal admissible and α-β-ψ-G-proximal
contraction such that T (A0) ⊆ B0. Assume that there exist x0, x1 ∈ A0 such
that

d(x1, Tx0) = d(A,B) and (x0, x1) ∈ E(G)

and there exist Cα > 0, Cβ ≥ 0 such that α(x0, x1) ≥ Cα, β(x0, x1) ≤ Cβ.
Suppose that either

(i) T is continuous or
(ii) If {xn} is a sequence in A such that (xn, xn+1) ∈ E(G), α(xn, xn+1) ≥

Cα, β(xn, xn+1) ≤ Cβ for all n and xn → x as n→∞, then there ex-
ists a subsequence {xnk} of {xn} such that (xnk , x) ∈ E(G), α(xnk , x) ≥
Cα, β(xnk , x) ≤ Cβ for all k and A0 is closed.

Then there exists an element z ∈ A such that d(z, Tz) = d(A,B). Further,
the sequence {xn}, defined by

d(xn+1, Txn) = d(A,B), ∀ n ∈ N,
converges to the element z.

Lemma 3.4. In addition to the hypotheses of Theorem 3.1 (Theorem 3.2),
if x is a best proximity point of T with (x, u) ∈ E(G), α(x, u) ≥ Cα and
β(x, u) ≤ Cβ for some u ∈ A0, then there exists a sequence {un} ⊆ A0 such
that d(un, Tun−1) = d(A,B), (x, un) ∈ E(G), for all n ∈ N and un → x as
n→∞.
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Proof. Let x be a best proximity point of T, i.e.,

d(x, Tx) = d(A,B). (3.9)

Let u ∈ A0 such that (x, u) ∈ E(G). We set u0 = u. Since T (A0) ⊆ B0 and
u = u0 ∈ A0, we have Tu0 ∈ B0. Hence there exists u1 ∈ A such that

d(u1, Tu0) = d(A,B). (3.10)

By the definition of A0 and B0, we have u1 ∈ A0. Since T is proximally
G-edge-preserving on A0, from (x, u0) ∈ E(G), (3.9) and (3.10), we have
(x, u1) ∈ E(G).

On continuing this process we can construct a sequence {un} in A0 such
that

d(un, Tun−1) = d(A,B), (3.11)

satisfying

(x, un) ∈ E(G), ∀ n ∈ N. (3.12)

By assumption, from (3.9) and (3.10) we have

α(x, u0) ≥ Cα, β(x, u0) ≤ Cβ
(x, u0) ∈ E(G)
d(x, Tx) = d(A,B)
d(u1, Tu0) = d(A,B)

 ⇒ α(x, u1) ≥ Cα, β(x, u1) ≤ Cβ. (3.13)

Since T is an α-β-ψ-G-proximal contraction we have

Cαd(x, u1) ≤ α(x, u0)d(x, u1)

≤ β(x, u0)ψ
(
d(x, u0)

)
≤ Cβψ

(
d(x, u0)

)
,

and it follows that

d(x, u1) ≤
Cβ
Cα

ψ
(
d(x, u0)

)
≤ ψ

(
d(x, u0)

)
= ψ

(
d(x, u)

)
.

From (3.9), (3.11), (3.12) and (3.13) we have

α(x, u1) ≥ Cα, β(x, u1) ≤ Cβ
(x, u1) ∈ E(G)
d(x, Tx) = d(A,B)
d(u2, Tu1) = d(A,B)

 ⇒ α(x, u2) ≥ Cα, β(x, u2) ≤ Cβ, (3.14)

T is an α-β-ψ-G-proximal contraction we have

Cαd(x, u2) ≤ α(x, u1)d(x, u2)

≤ β(x, u1)ψ
(
d(x, u1)

)
≤ Cβψ

(
d(x, u1)

)
,
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and it follows that

d(x, u2) ≤
Cβ
Cα

ψ
(
d(x, u1)

)
≤ ψ

(
d(x, u1)

)
≤ ψ2

(
d(x, u)

)
.

On continuing this process, we obtain

d(x, un) ≤ ψn
(
d(x, u)

)
→ 0 as n→∞.

i.e., un → x as n→∞. �

Theorem 3.5. Suppose that all the hypotheses of Theorem 3.1 (Theorem 3.2)
are satisfied. We Assume the following hypothesis.
(?) There exists u ∈ A0 such that for every x, y ∈ A0 with (x, u), (y, u) ∈ E(G),

α(x, u) ≥ Cα and (x, u) ≤ β
α(y, u) ≥ Cα and (y, u) ≤ β.

(3.15)

Then T has a unique best proximity point in A0.

Proof. By the proof of Theorem 3.1 (Theorem 3.2), the set of best proximity
points of T is nonempty. Let x, y be two best proximity points of T in A0. By
our assumption, we have there exists u ∈ A0 such that (x, u), (y, u) ∈ E(G),
α(x, u) ≥ Cα and α(x, u) ≤ Cβ, α(y, u) ≥ Cα and α(y, u) ≤ Cβ. Now by
applying Lemma 3.4, it follows that there exists a sequence {un} ⊆ A0 such
that un → x and un → y as n → ∞. Hence by the uniqueness of limits we
have x = y. �

Corollary 3.6. Let A and B be nonempty closed subsets of a complete metric
space (X, d) endowed with a graph G with A0 6= ∅. Let T : A→ B be a non-self
mapping which satisfies the following properties:

(i) T is a G-proximal contraction;
(ii) T is continuous;

(iii) T is proximally G-edge-preserving, G-proximal admissible and G-
proximal contraction such that T (A0) ⊆ B0;

(iv) there exist x0, x1 ∈ A0 such that (x0, x1) ∈ E(G) and d(x1, Tx0) =
d(A,B).

Then T has a best proximity point in A0.

Proof. Follows by choosing ψ(t) = kt, t ≥ 0, and α(x, y) = β(x, y) = 1, for all
x, y in A, with Cα = Cβ = 1 in Theorem 3.1. �

If the continuity assumption is removed from Corollary 3.6, we have the
following result.
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Corollary 3.7. Let A and B be nonempty closed subsets of a complete metric
space (X, d) endowed with a graph G with A0 6= ∅. Let T : A→ B be a non-self
mapping which satisfies the following properties:

(i) T is a G-proximal contraction;
(ii) If {xn} is a sequence in A such that (xn, xn+1) ∈ E(G) for all n and

xn → x as n→∞, then there exists a subsequence {xnk} of {xn} such
that (xnk , x) ∈ E(G) for all k and A0 is closed;

(iii) T is a proximally G-edge-preserving, G-proximal admissible and G-
proximal contraction such that T (A0) ⊆ B0;

(iv) there exist x0, x1 ∈ A0 such that

d(x1, Tx0) = d(A,B) and (x0, x1) ∈ E(G).

Then T has a best proximity point in A0

Example 3.8. Let X = R2, with an Euclidean metric d. Let G be a directed
graph with V (G) = X and E(G) = {

(
(x, y), (u, v)

)
: x ≥ u and y ≥ v}, for all

(x, y), (u, v) ∈ X.
Let A = {−1} × [0,∞) = A0, B = {1} × [0,∞) = B0. Clearly d(A,B) = 2.

We define T : A→ B by

T (−1, x) =

{
(1, x6 ) if x ∈ [0, 1],

(1, 76x− 1) if x > 1.

Clearly T is continuous and T (A0) ⊆ B0. Next, we show that T is proxi-
mally G-edge-preserving. Let (−1, x), (−1, y), (−1, u) and (−1, v) ∈ A with(
(−1, x), (−1, y)

)
∈ E(G) such that

d
(
(−1, u), T (−1, x)

)
= d
(
(−1, v), T (−1, y)

)
= d(A,B) = 2. (3.16)

We now show that
(
(−1, u), (−1, v)

)
∈ E(G).

Case I: x, y ∈ [0, 1] with x ≥ y, from (3.16), we obtain u = x
6 ≥

y
6 = v then(

(−1, u), (−1, v)
)
∈ E(G).

Case II: y ∈ [0, 1] and x > 1, from (3.16), we obtain u = 7x
6 − 1 > x

6 >
y
6 = v

then
(
(−1, u), (−1, v)

)
∈ E(G).

Case III: x ≥ y > 1, from (3.16), we obtain u = 7x
6 − 1 ≥ 7y

6 − 1 = v then(
(−1, u), (−1, v)

)
∈ E(G).

From all the above cases, we conclude that T is proximally G-edge-preserving.

Now, we define functions α, β : A×A→ [0,∞) by

α
(
(−1, x), (−1, y)

)
=

{
5
6 if x, y ∈ [0, 1] with

(
(−1, x), (−1, y)

)
∈ E(G),

0 otherwise
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and

β
(
(−1, x), (−1, y)

)
=

{
1
2 if x, y ∈ [0, 1] with

(
(−1, x), (−1, y)

)
∈ E(G),

0 otherwise.

Let ψ(t) = t
3 for all t ≥ 0. We now show that T is α-β-ψ-G-proximal contrac-

tive mapping, let (−1, x), (−1, y), (−1, u), (−1, v) ∈ A with
(
(−1, x), (−1, y)

)
∈

E(G) such that

d
(
(−1, u), T (−1, x)

)
= d
(
(−1, v), T (−1, y)

)
= d(A,B) = 2. (3.17)

Consider the case x, y ∈ [0, 1] with x ≥ y. Then α
(
(−1, x), (−1, y)

)
= 5

6

and β
(
(−1, x), (−1, y)

)
= 1

2 . From (3.17), we obtain u = x
6 and v = y

6 ∈ [0, 16 ].
Therefore

α
(
(−1, x), (−1, y)

)
d
(
(−1, u), (−1, v)

)
= 5

6

∣∣u− v∣∣
≤
∣∣u− v∣∣ = 1

2

(∣∣x−y∣∣
3

)
= β

(
(−1, x), (−1, y)

)
ψ
((

(−1, x), (−1, y)
))
.

For the other possible cases we have α
(
(−1, x), (−1, y)

)
= β

(
(−1, x), (−1, y)

)
=

0. Therefore

α
(
(−1, x), (−1, y)

)
d
(
(−1, u), (−1, v)

)
≤ β

(
(−1, x), (−1, y)

)
ψ
((

(−1, x), (−1, y)
))
.

Hence T is an α-β-ψ-G-proximal contractive mapping. We now show that T
is an α-β-G-proximal admissible. For this purpose, we choose Cα = 3

4 and

Cβ = 1
2 Clearly 0 ≤ Cβ

Cα
≤ 1. Let (−1, x), (−1, y), (−1, u) and (−1, v) ∈ A with

x, y ∈ [0, 1] and
(
(−1, x), (−1, y)

)
∈ E(G) such that

(i) α
(
(−1, x), (−1, y)

)
= 5

6 ≥
3
4 = Cα and

d
(
(−1, u), T (−1, x)

)
= d
(
(−1, v), T (−1, y)

)
= d(A,B) = 2,

(ii) β
(
(−1, x), (−1, y)

)
= 1

2 ≤
1
2 = Cβ and

d
(
(−1, u), T (−1, x)

)
= d
(
(−1, v), T (−1, y)

)
= d(A,B) = 2.

From (i) and (ii), we obtain u = x
6 and v = y

6 in [0, 1]. Since x ≥ y, it follows

that u ≥ v or
(
(−1, u), (−1, v)

)
∈ E(G). Therefore

α
(
(−1, u), (−1, v)

)
=

5

6
≥ 3

4
= Cα and β

(
(−1, u), (−1, v)

)
=

1

2
≤ 1

2
= Cβ.
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Hence T is an α-β-G-proximal admissible. We choose x0 = (−1, 1), x1 =
(−1, 16) in A0. Then

(
x0, x1) ∈ E(G) and d

(
(−1, 14), T (−1, 1)

)
= 2 = d(A,B).

Also,

α
(
(−1, 1), (−1, 16)

)
= 5

6 ≥
3
4 = Cα and β

(
(−1, 1), (−1, 16)

)
= 1

2 ≤
1
2 = Cβ.

Hence all the hypotheses of Theorem 3.1 are satisfied and (−1, 0) and (−1, 2)
are two best proximity points of T . Here we observe that Condition (?) of
Theorem 3.5 fails to hold: if u = (−1, x0) ∈ A0 with x0 > 0, we choose
x = (−1, 0), y = (−1, 2) so that

(
x, u

)
/∈ E(G); if u = (−1, 0) then

(
x, u

)
∈

E(G) and
(
y, u
)
∈ E(G), α(x, u) = 5

6 > 3
4 = Cα, β(x, u) = 1

2 = Cβ and

β(y, u) = 0 < 1
2 = Cβ. But α(y, u) = 0 6≥ 3

4 = Cα. Hence Condition (?) of
Theorem 3.5 fails to hold.

The following example is in support of Theorem 3.5 in which T is not
continuous.

Example 3.9. Let X = [0, 5]× [0, 5] with an Euclidean metric d. Let G be a
directed graph with V (G) = X and E(G) = {

(
(x, y), (u, v)

)
: x ≥ u and y ≥

v}, for all (x, y), (u, v) ∈ X.
Let A = {0} × [0, 5] = A0, B = {1} × [0, 5] = B0. We define T : A→ B by

T (0, x) =

{
(1, x2

1+2x) if x ∈ [0, 1],

(1, 23x) if x ∈ (1, 5].

Clearly d(A,B) = 1, T is not continuous, T is proximally G-edge-preserving,
T (A0) ⊆ B0 and A0 is closed.

Now, we define functions α, β : A×A→ [0,∞) by

α
(
(0, x), (0, y)

)
=

{
3
4 if x, y ∈ [0, 1] with

(
(0, x), (0, y)

)
∈ E(G),

0 otherwise

and

β
(
(0, x), (0, y)

)
=

{
2
5 if x, y ∈ [0, 1] with

(
(0, x), (0, y)

)
∈ E(G),

0 otherwise.

Let ψ(t) = 7
8 for all t ≥ 0. We now show that T is α-β-ψ-G-proximal con-

tractive mapping, let (0, x), (0, y), (0, u) and (0, v) ∈ A with
(
(0, x), (0, y)

)
∈

E(G) such that

d
(
(0, u), T (0, x)

)
= d
(
(0, v), T (0, y)

)
= d(A,B) = 1. (3.18)

Let us consider the case x, y ∈ [0, 1] with
(
(0, x), (0, y)

)
∈ E(G). Then

α
(
(0, x), (0, y)

)
= 3

4 and β
(
(0, x), (0, y)

)
= 2

5 . From (3.18), we obtain u =
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x2

1+2x ∈
[
0, 13
]

and v = y2

1+2y ∈
[
0, 13
]
. Therefore

α
(
(0, x), (0, y)

)
d
(
(0, u), (0, v)

)
= 3

4

∣∣u− v∣∣ = 3
4

∣∣∣ x2

1+2x −
y2

1+2y

∣∣∣
= 3

4

(∣∣x−y∣∣(x+y+2xy)

1+2(x+y+2xy)

)
≤ 7

20 |x− y| =
2
5

(
7|x−y|

8

)
= β

(
(0, x), (0, y)

)
ψ
((

(0, x), (0, y)
))
.

For the other possible cases we have α
(
(0, x), (0, y)

)
= β

(
(0, x), (0, y)

)
= 0.

Therefore

α
(
(0, x), (0, y)

)
d
(
(0, u), (0, v)

)
≤ β

(
(0, x), (0, y)

)
ψ
((

(0, x), (0, y)
))
.

Hence T is an α-β-ψ-G-proximal contractive mapping.
We now show that T is an α-β-G-proximal admissible. For this purpose,

we choose Cα = 2
3 and Cβ = 1

2 . Clearly 0 ≤ Cβ
Cα
≤ 1. Let (0, x), (0, y), (0, u)

and (0, v) ∈ A with x ≥ y such that

(a) α
(
(0, x), (0, y)

)
= 3

4 ≥
2
3 = Cα and

d
(
(0, u), T (0, x)

)
= d
(
(0, v), T (0, y)

)
= d(A,B) = 1,

(b) β
(
(0, x), (0, y)

)
= 2

5 ≤
1
2 = Cβ and

d
(
(0, u), T (0, x)

)
= d
(
(0, v), T (0, y)

)
= d(A,B) = 1.

From (a) and (b), we obtain u = x2

1+2x and v = y2

1+2y in [0, 13 ]. Since x ≥ y, it

follows that u ≥ v or
(
(−1, u), (−1, v)

)
∈ E(G). Therefore

α
(
(0, u), (0, v)

)
=

3

4
≥ 2

3
= Cα and β

(
(0, u), (0, v)

)
=

2

5
≤ 1

2
= Cβ.

Hence T is an α-β-G-proximal admissible.
Now, we choose x0 = (0, 12), x1 = (0, 17), such that d

(
(0, 17), T (0, 12)

)
=

1, α
(
(0, 12), (0, 17)

)
= 3

4 ≥
2
3 = Cα, β

(
(0, 12), (0, 17)

)
= 2

5 ≤
1
2 = Cβ and(

x0, x1
)
∈ E(G). Finally, If {xn} is a sequence in A such that xn ≥ xn+1,

α(xn, xn+1) ≥ Cα, β(xn, xn+1) ≤ Cβ for all n and xn → x as n→∞, then by
definition of α and β, xn ∈ [0, 1]. Thus x ∈ [0, 1] and there exists a subsequence
{xnk} ⊆ [0, 1] such that xnk ≥ x, α(xnk , x) ≥ Cα, β(xnk , x) ≤ Cβ for all k.
Hence all the hypotheses of Theorem 3.5 are satisfied and (0, 0) is the unique
best proximity point of T .
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