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1. Introduction

In this paper, we consider the following m-order nonlinear integrodifferential
equation in N variables

u(x) = g(x) +

∫
Ω
K(x, y;u(y), D1u(y), · · · , Dm

1 u(y))dy, (1.1)

where x = (x1, · · · , xN ) ∈ Ω = [0, 1]N and g : Ω→ R, K : Ω×Ω×Rm+1 → R
are given functions. Denote by Di

1u = ∂iu
∂xi1

, the partial derivative of order

i = 1,m of a function u(x) defined on Ω, with respect to the first variable.

It is well known that, integral and integrodifferential equations have at-
tracted the interest of scientists not only because of their major role in the
fields of functional analysis but also because of their important role in nu-
merous applications, for example, mechanics, physics, population dynamics,
economics and other fields of science, see Corduneanu [5], Deimling [6]. In
general, existence results of integral and integrodifferential equations in one
variable or N variables, have been obtained via the fundamental methods in
which the fixed point theorems are often applied, see [1]-[20] and the references
given therein.

In [17], based on the applications of the well-known Banach fixed point
theorem coupled with Bielecki type norm and a certain integral inequality
with explicit estimate, Pachpatte proved uniqueness and other properties of
solutions of the following Fredholm type integrodifferential equation

x(t) = g(t) +

∫ b

a
f(t, s, x(s), x′(s), · · · , x(n−1)(s))ds, t ∈ [a, b],

where x, g, f are real valued functions and n ≥ 2 is an integer. With the
same methods, Pachpatte studied the existence, uniqueness and some basic
properties of solutions of the Fredholm type integral equation in two variables
as follows, see [18],

u(x, y) = f(x, y) +

∫ a

0

∫ b

0
g (x, y, s, t;u(s, t), D1u(s, t), D2u(s, t)) dtds,

and those of certain Volterra integral and integrodifferential equations in two
variables, see [19].

In [4], El-Borai et al. have proved the existence of a unique solution of a
nonlinear integral equation of type Volterra-Hammerstein in n-dimensional of
the form

µφ(x, t) = f(x, t) + λ

∫ t

0

∫
Ω
F (t, τ)K(x, y)γ (τ, y, φ(y, τ)) dydτ,
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where x = (x1, · · · , xn), y = (y1, · · · , yn); µ, λ are constants. After that, in
[1], Abdou et al. investigated the following mixed nonlinear integral equation
of the second kind in n−dimensional

µφ(x, t) = λ

∫
Ω
k(x, y)γ (t, y, φ(y, t)) dy

+λ

∫ t

0

∫
Ω
G(t, τ)k(x, y)γ (τ, y, φ(y, τ)) dydτ

+λ

∫ t

0
F (t, τ)φ(x, τ)dτ + f(x, t),

where x = (x1, · · · , xn), y = (y1, · · · , yn). Also using the Banach fixed point
theorem, the existence of a unique solution of these equations were proved.

Abdou et al. also considered the existence of integrable solution of nonlinear
integral equation, of type Hammerstein–Volterra of the second kind, by using
the technique of measure of weak noncompactness and Schauder fixed point
theorem, see [2].

In [11], Lauran established sufficient conditions for the existence of solutions
of the integral equation of Volterra type by using the concepts of nonexpansive
operators, contraction principles and the Schaefer’s fixed point theorem.

In [3], Aghajani et al. proved some results on the existence, uniqueness and
estimation of the solutions of Fredholm type integro-differential equations in
two variables, by using Perov’s fixed point theorem.

Recently, in [8], [12]-[16], using tools of functional analysis and a fixed point
theorem of Krasnosel’skii type, we have investigated solvability and asymptot-
ically stable of nonlinear functional integral equations in one variable or two
variables, or N variables.

Motivated by the above mentioned works, in this paper, we consider (1.1)
and prove two existence theorems. First, applying the Banach theorem, we
obtain the unique existence of a solution of (1.1) in Theorem 2.2. Next, ap-
plying the Schauder theorem, the existence of solutions of (1.1) will be given
in Theorem 3.2. Furthermore, the compactness of solutions set is also proved.
In order to illustrate the results obtained here, two examples are given.

2. The unique existence

We begin this section by constructing an appropriate Banach space for (1.1)
as follows. By X = C(Ω;R), we denote the space of all continuous functions
from Ω into R equipped with the standard norm

‖u‖X = sup
x∈Ω
|u(x)| , u ∈ X. (2.1)
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Put

Xm = {u ∈ X = C(Ω;R) : Di
1u ∈ X, i = 1,m}. (2.2)

We remark that C1(Ω;R) \ Xm 6= φ, Xm \ C1(Ω;R) 6= φ, Xm∩C1(Ω;R) 6=
φ, Xm 6= Ck(Ω;R) for all k = 1, 2, · · · , m = 2, 3, · · · .

Indeed,

(i) with u(x) =
∣∣x1 − 1

2

∣∣ (x1 − 1
2

) ∣∣x2 − 1
2

∣∣ (x2 − 1
2

)
· · ·
∣∣xN − 1

2

∣∣ (xN − 1
2

)
,

we have u ∈ C1(Ω;R), but u /∈ Xm. Hence C1(Ω;R) \ Xm 6= φ;
(ii) with v(x) = xm+1

1

∣∣x2 − 1
2

∣∣ + ex3+···+xN , we have v ∈ Xm, but v /∈
C1(Ω;R). So Xm \ C1(Ω;R) 6= φ;

(iii) Xm ∩ C1(Ω;R) 6= φ holds, by w ≡ 0 ∈ Xm ∩ C1(Ω;R);
(iv) Xm 6= Ck(Ω;R) for all k = 1, 2, · · · , hold, because Xm \ C1(Ω;R) 6= φ.

Lemma 2.1. Xm is a Banach space with the norm defined by

‖u‖Xm
= ‖u‖X +

∑m

i=1

∥∥Di
1u
∥∥
X

=
∑m

i=0

∥∥Di
1u
∥∥
X
, u ∈ Xm. (2.3)

Proof. Let {up} ⊂ Xm be a Cauchy sequence in Xm. Then

‖up − uq‖Xm
= ‖up − uq‖X +

∑m

i=1

∥∥Di
1up −Di

1uq
∥∥
X
→ 0, as p, q →∞.

It implies that {up} and {Di
1up} are also the Cauchy sequences in X. Since

X is complete, {up} converges to u and {Di
1up} converges to v(i) in X, i.e.,

‖up − u‖X → 0,
∥∥∥Di

1up − v(i)
∥∥∥
X
→ 0, as p→∞, i = 1,m. (2.4)

We have to prove Di
1u = v(i), i = 1,m. For i = 1, we have

up(x1, x
′)− up(0, x′) =

∫ x1

0
D1up(s, x

′)ds, ∀(x1, x
′) ∈ Ω. (2.5)

By ‖up − u‖X → 0, we get

up(x1, x
′)− up(0, x′)→ u(x1, x

′)− u(0, x′), ∀(x1, x
′) ∈ Ω. (2.6)

On the other hand, it follows from
∥∥D1up − v(1)

∥∥
X
→ 0 that∫ x1

0
D1up(s, x

′)ds→
∫ x1

0
v(1)(s, x′)ds, ∀(x1, x

′) ∈ Ω, (2.7)

since ∣∣∣∣∫ x1

0
D1up(s, x

′)ds−
∫ x1

0
v(1)(s, x′)ds

∣∣∣∣
≤
∫ x1

0

∣∣∣D1up(s, x
′)− v(1)(s, x′)

∣∣∣ ds
≤
∥∥∥D1up − v(1)

∥∥∥
X
→ 0.
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Combining (2.5)-(2.7) yields

u(x1, x
′)− u(0, x′) =

∫ x1

0
v(1)(s, x′)ds, ∀(x1, x

′) ∈ Ω. (2.8)

It implies that D1u = v(1) ∈ X. Let Di
1u = v(i), i = 1, · · · , r < m. We shall

show that Dr+1
1 u = v(r+1). We have

Dr
1up(x1, x

′)−Dr
1up(0, x

′) =

∫ x1

0
Dr+1

1 up(s, x
′)ds, ∀(x1, x

′) ∈ Ω. (2.9)

Because of ‖Dr
1up −Dr

1u‖X → 0 and
∥∥Dr+1

1 up − v(r+1)
∥∥
X
→ 0, we obtain

Dr
1u(x1, x

′)−Dr
1u(0, x′) =

∫ x1

0
v(r+1)(s, x′)ds, ∀(x1, x

′) ∈ Ω. (2.10)

Then Dr+1
1 u = v(r+1) ∈ X. By induction, we deduce that Di

1u = v(i), i = 1,m.
Therefore u ∈ Xm and up → u in Xm. Lemma 2.1 is proved. �

Now, we make the following assumptions.

(A1) g ∈ Xm;

(A2) K ∈ C(Ω× Ω× Rm+1;R),
such that D1K,D

2
1K, · · · , Dm

1 K ∈ C(Ω× Ω× Rm+1;R),

and there exist nonnegative functions k0, k1, · · · , km : Ω× Ω→ R satisfying

(i) β =
∑m

i=0 sup
x∈Ω

∫
Ω ki(x, y)dy < 1,

(ii)
∣∣Di

1K(x, y;u0, · · · , um)−Di
1K(x, y; ū0, · · · , ūm)

∣∣
≤ ki(x, y)

∑m
j=0 |uj − ūj | , ∀(x, y) ∈ Ω×Ω, ∀(u0, · · · , um), (ū0, · · · , ūm)

∈ Rm+1, i = 0,m.

Theorem 2.2. Let the functions g, K in (1.1) satisfy the assumptions (A1),
(A2). Then the equation (1.1) has a unique solution in Xm.

Proof. For every u ∈ Xm, we put

(Au)(x) = g(x) +

∫
Ω
K(x, y;u(y), D1u(y), · · · , Dm

1 u(y))dy, x ∈ Ω. (2.11)

A simple verification shows that Au ∈ Xm for all u ∈ Xm. It is obvious that
A : Xm → Xm is a contraction map, if we show that

‖Au−Aū‖Xm
≤ β ‖u− ū‖Xm

, ∀u, ū ∈ Xm. (2.12)

For every u, ū ∈ Xm, for all x ∈ Ω, using (A2) and (ii) with i = 0, (2.11)
implies
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|(Au)(x)− (Aū)(x)| ≤
∫

Ω
|K(x, y;u(y), D1u(y), · · · , Dm

1 u(y))

−K(x, y; ū(y), D1ū(y), · · · , Dm
1 ū(y))| dy

≤
∫

Ω
k0(x, y)

∑m

j=0

∣∣∣Dj
1u(y)−Dj

1ū(y)
∣∣∣ dy

≤
(

sup
x∈Ω

∫
Ω
k0(x, y)dy

)
‖u− ū‖Xm

.

Thus we have

‖Au−Aū‖X ≤
(

sup
x∈Ω

∫
Ω
k0(x, y)dy

)
‖u− ū‖Xm

. (2.13)

Similarly, by

Di
1(Au)(x) = Di

1g(x) +

∫
Ω
Di

1K(x, y;u(y), D1u(y), · · · , Dm
1 u(y))dy, x ∈ Ω,

using (A2) and (ii) with i = 1,m, we get∣∣Di
1(Au)(x)−Di

1(Aū)(x)
∣∣ ≤ ∫

Ω

∣∣Di
1K(x, y;u(y), D1u(y), · · · , Dm

1 u(y))

−Di
1K(x, y; ū(y), D1ū(y), · · · , Dm

1 ū(y))
∣∣ dy

≤
∫

Ω
ki(x, y)

∑m

j=0

∣∣∣Dj
1u(y)−Dj

1ū(y)
∣∣∣ dy

≤
(

sup
x∈Ω

∫
Ω
ki(x, y)dy

)
‖u− ū‖Xm

.

Hence we have∥∥Di
1(Au)−Di

1(Aū)
∥∥
X
≤
(

sup
x∈Ω

∫
Ω
ki(x, y)dy

)
‖u− ū‖Xm

. (2.14)

From (2.13) and (2.14), (2.12) holds. Applying the Banach fixed point theo-
rem, Theorem 2.2 is proved. �

3. The compactness of solutions set

In this section, by applying the Schauder fixed point theorem, we prove that
the existence of solutions of (1.1) in Xm and the compactness of solutions set
can be obtained by making the following assumptions:

(A1) g ∈ Xm;
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(Ā2) K ∈ C(Ω× Ω× Rm+1;R) such that
D1K, D

2
1K, · · · , Dm

1 K ∈ C(Ω× Ω× Rm+1;R),

and there exist nonnegative functions k̄0, k̄1, · · · , k̄m : Ω× Ω→ R satisfying

(i) β̄ =
∑m

i=0 sup
x∈Ω

∫
Ω k̄i(x, y)dy < 1,

(ii)
∣∣Di

1K(x, y;u0, · · · , um)
∣∣ ≤ k̄i(x, y)

(
1 +

∑m
j=0 |uj |

)
, ∀(x, y) ∈ Ω × Ω,

∀(u0, · · · , um) ∈ Rm+1, i = 0,m.

For the above purpose, we need a sufficient condition for relatively compact
subsets of Xm as follows.

Lemma 3.1. Let F ⊂ Xm. Then F is relatively compact in Xm if and only
if the following conditions are satisfied

(i) ∃M > 0 : ‖u‖Xm
≤M, ∀u ∈ F ;

(ii) ∀ε > 0, ∃δ > 0 : ∀x, x̄ ∈ Ω, |x− x̄| < δ =⇒ sup
u∈F

[u(x)− u(x̄)]F < ε,

(3.1)
where [u(x)− u(x̄)]F = |u(x)− u(x̄)|+

∑m
i=1

∣∣Di
1u(x)−Di

1u(x̄)
∣∣ .

Proof. (a) Let F be relatively compact in Xm. Then F is bounded, so we have
(i). It remains to show that (ii) holds. For every ε > 0, considering a collection
of open balls in Xm, with center at u ∈ F and radius ε

3 , as follows

B(u, ε3) = {ū ∈ Xm : ‖u− ū‖Xm
< ε

3}, u ∈ F .

It is not difficult to verify that F ⊂
⋃
u∈F B(u, ε3). Since F compact in Xm,

the open cover {B(u, ε3), u ∈ F} of F contains a finite subcover, it means that

there are u1, · · · , uq ∈ F such that F ⊂
⋃q
j=1B(uj ,

ε
3).

The functions uj , D
i
1uj , i = 1,m, j = 1, q are uniformly continuous on Ω,

so there exists δ > 0 such that

∀x, x̄ ∈ Ω, |x− x̄| < δ =⇒ [uj(x)− uj(x̄)]F <
ε

3
, ∀j = 1, q.

For all u ∈ F , note that u ∈ B(uj0 ,
ε
3) for some j0 = 1, q. Thus, for all x,

x̄ ∈ Ω, if |x− x̄| < δ then we get

[u(x)− u(x̄)]F ≤ [u(x)− uj0(x)]F + [uj0(x)− uj0(x̄)]F + [uj0(x̄)− u(x̄)]F

≤ 2 ‖u− uj0‖Xm
+ [uj0(x)− uj0(x̄)]F

<
2ε

3
+
ε

3
= ε.

This implies that (ii) holds.
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(b) Conversely, let (3.1) hold. Then we have to prove that F is relatively
compact in Xm. Let {up} be a sequence in F , we have to show that there
exists a convergent subsequence of {up}.

By (3.1), F1 = {up : p ∈ N} and F i2 = {Di
1up : p ∈ N} are uniformly

bounded and equicontinuous in X. Hence an application of the Ascoli-Arzela
theorem to F1 implies that it is relatively compact in X, so there exists a
subsequence {upk} of {up} and u ∈ X such that

‖upk − u‖X → 0, as k →∞.

Remark that {Di
1upk : k ∈ N} ⊂ F i2 is also uniformly bounded and equicon-

tinuous in X, so it is also relatively compact in X. We deduce the existence
of a subsequence of {Di

1upk}, denoted by the same symbol, and v(i) ∈ X, such
that ∥∥∥Di

1upk − v
(i)
∥∥∥
X
→ 0, as k →∞.

By the fact that

upk(x1, x
′)− upk(0, x′) =

∫ x1

0
D1upk(s, x′)ds, ∀(x1, x

′) ∈ Ω,

furthermore ‖upk − u‖X → 0 and
∥∥D1upk − v(1)

∥∥
X
→ 0, we obtain

u(x1, x
′)− u(0, x′) =

∫ x1

0
v(1)(s, x′)ds, ∀(x1, x

′) ∈ Ω.

It implies that D1u = v(1) ∈ X.
Let Di

1u = v(i), i = 1, · · · , r < m. We shall show that Dr+1
1 u = v(r+1).

We have

Dr
1up(x1, x

′)−Dr
1up(0, x

′) =

∫ x1

0
Dr+1

1 up(s, x
′)ds, ∀(x1, x

′) ∈ Ω. (3.2)

From ‖Dr
1up −Dr

1u‖X → 0 and
∥∥Dr+1

1 up − v(r+1)
∥∥
X
→ 0, we obtain

Dr
1u(x1, x

′)−Dr
1u(0, x′) =

∫ x1

0
v(r+1)(s, x′)ds, ∀(x1, x

′) ∈ Ω. (3.3)

Then Dr+1
1 u = v(r+1) ∈ X. By induction, we deduce that Di

1u = v(i), i = 1,m.
Therefore u ∈ Xm and upk → u in Xm. This completes the proof. �

Theorem 3.2. Let the functions g, K in (1.1) satisfy the assumptions (A1),
(Ā2). Then the equation (1.1) has a solution in Xm. Furthermore, the set of
solutions of this equation is compact.

Proof. Considering the operator A as in (2.11). It is not hard to verify
A : Xm → Xm. For ρ > 0, considering a closed ball in Xm as follows

Bρ = {u ∈ Xm : ‖u‖Xm
≤ ρ}.
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We can show that there exists ρ > 0 such that A : Bρ → Bρ. Indeed, for every
u ∈ Bρ, for all x ∈ Ω, we have

|(Au)(x)| ≤ |g(x)|+
∫

Ω
|K(x, y;u(y), D1u(y), · · · , Dm

1 u(y))| dy

≤ ‖g‖X +

∫
Ω
k̄0(x, y)

(
1 +

∑m

i=0

∣∣Di
1u(y)

∣∣) dy
≤ ‖g‖X +

∫
Ω
k̄0(x, y)

(
1 + ‖u‖Xm

)
dy

≤ ‖g‖X + (1 + ρ)

(
sup
x∈Ω

∫
Ω
k̄0(x, y)dy

)
,

it implies that

‖Au‖X ≤ ‖g‖X + (1 + ρ)

(
sup
x∈Ω

∫
Ω
k̄0(x, y)dy

)
. (3.4)

Similarly, we have∣∣Di
1(Au)(x)

∣∣ ≤ ∣∣Di
1g(x)

∣∣+

∫
Ω

∣∣Di
1K(x, y;u(y), D1u(y), · · · , Dm

1 u(y))
∣∣ dy

≤
∥∥Di

1g
∥∥
X

+ (1 + ρ)

(
sup
x∈Ω

∫
Ω
k̄i(x, y)dy

)
,

therefore ∥∥Di
1(Au)

∥∥
X
≤
∥∥Di

1g
∥∥
X

+ (1 + ρ)

(
sup
x∈Ω

∫
Ω
k̄i(x, y)dy

)
. (3.5)

This yields

‖Au‖Xm
≤ ‖g‖Xm

+ (1 + ρ)
∑m

i=0
sup
x∈Ω

∫
Ω
k̄i(x, y)dy ≤ ‖g‖Xm

+ (1 + ρ) β̄.

(3.6)

Choosing ρ ≥ ‖g‖Xm
+ (1 + ρ) β̄, i.e. ρ ≥ ‖g‖Xm

+β̄

1−β̄ . Then A : Bρ → Bρ.

Now we show that the operator A satisfies two conditions as below.

(i) A : Bρ → Bρ is continuous.
(ii) F = A(Bρ) is relatively compact in Xm.

To prove (i), let {up} ⊂ Bρ, ‖up − u‖Xm
→ 0, as p → ∞, we have to prove

that

‖Aup −Au‖X → 0 and
∑m

i=1

∥∥Di
1(Aup)−Di

1(Au)
∥∥
X
→ 0, (3.7)

as p→∞.
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Note that

|(Aup)(x)− (Au)(x)| ≤
∫

Ω
|K(x, y;up(y), D1up(y), · · · , Dm

1 up(y)) (3.8)

−K(x, y;u(y), D1u(y), · · · , Dm
1 u(y))| dy.

Give ε > 0. Since the function K is uniformly continuous on Ω × Ω ×
[−ρ, ρ]m+1, there exists δ > 0 such that for all (u0, · · · , um), (ū0, · · · , ūm) ∈
[−ρ, ρ]m+1, ∑m

i=0
|ui − ūi| < δ.

Hence

|K(x, y;u0, · · · , um)−K(x, y; ū0, · · · , ūm)| < ε,

for all (x, y) ∈ Ω× Ω.

By ‖up − u‖X +
∑m

i=1

∥∥Di
1up −Di

1u
∥∥
X
→ 0, there is p0 ∈ N such that for

all p ∈ N with p ≥ p0,

‖up − u‖X +
∑m

i=1

∥∥Di
1up −Di

1u
∥∥
X
< δ.

It follows that for all p ∈ N, with p ≥ p0,

|K(x, y;up(y), D1up(y), ..., Dm
1 up(y))−K(x, y;u(y), D1u(y), ..., Dm

1 u(y))| < ε,

for all (x, y) ∈ Ω× Ω. So we have

|(Aup)(x)− (Au)(x)| < ε, ∀x ∈ Ω, ∀p ≥ p0,

it means that

‖Aup −Au‖X < ε, ∀p ≥ p0, (3.9)

i.e., ‖Aup −Au‖X → 0, as p→∞.
By the same way, we get

∥∥Di
1(Aum)−Di

1(Au)
∥∥
X
→ 0, as p → ∞, for all

i = 1,m.

To prove (ii), we use Lemma 3.1. Condition (3.1) (i) holds because of F =
A(Bρ) ⊂ Bρ. It remains to show (3.1) (ii). We have

[(Au)(x)− (Au)(x̄)]F

≤ [g(x)− g(x̄)]F +

∫
Ω

[K(x, y;u(y), D1u(y), · · · , Dm
1 u(y))

−K(x̄, y;u(y), D1u(y), · · · , Dm
1 u(y))]F dy, (3.10)

for all x, x̄ ∈ Ω, and u ∈ Bρ.
Let ε > 0. By the fact that Di

1K, i = 0,m are uniformly continuous on
Ω× Ω× [−ρ, ρ]m+1, there exists δ1 > 0 such that for all x, x̄ ∈ Ω,

|x− x̄| < δ1 =⇒ [K(x, y; v0, · · · , vm)−K(x̄, y; v0, · · · , vm)]F <
ε

2
,
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for all (y, v0, · · · , vm) ∈ Ω× [−ρ, ρ]m+1. Then, for all x, x̄ ∈ Ω, |x− x̄| < δ1,

[K(x, y;u(y), D1u(y), ..., Dm
1 u(y))−K(x̄, y;u(y), D1u(y), ..., Dm

1 u(y))]F <
ε

2
,

for all (y, u) ∈ Ω×Bρ. Hence, for all x, x̄ ∈ Ω, |x− x̄| < δ1,∫
Ω

[K(x, y;u(y), D1u(y), · · · , Dm
1 u(y))

−K(x̄, y;u(y), D1u(y), · · · , Dm
1 u(y))]Fdy

<
ε

2
, ∀u ∈ Bρ.

Since Di
1g, i = 0,m are also uniformly continuous on Ω, there is δ2 > 0 such

that

∀x, x̄ ∈ Ω, |x− x̄| < δ2 =⇒ [g(x)− g(x̄)]F <
ε

2
.

Choose δ̄1 = min{δ1, δ2}, it yields

∀x, x̄ ∈ Ω, |x− x̄| < δ̄1 =⇒ [(Au)(x)− (Au)(x̄)]F <
ε

2
+
ε

2
= ε, ∀u ∈ Bρ.

(3.11)
Lemma 3.1 implies that F = A(Bρ) is relatively compact in Xm.
Applying the Schauder fixed point theorem, the existence of a solution is

proved. Finally, we show that the set of solutions, S = {u ∈ Bρ : u = Au},
is compact in Xm. From the compactness of the operator A : Bρ → Bρ and
S = A(S), we only prove that S is closed. Let {up} ⊂ S, ‖up − u‖Xm

→ 0.
The continuity of A leads to

‖u−Au‖Xm
≤ ‖u− up‖Xm

+ ‖up −Au‖Xm

= ‖u− up‖Xm
+ ‖Aup −Au‖Xm

→ 0,

so u = Au ∈ S. This completes the proof. �

4. Examples

In this section, we present two examples to illustrate the results obtained
in sections 2, 3.

Example 4.1. Consider (1.1), with the functions g, K as follows K(x, y;u0, ..., um)=k(x)
[
yα0

1 ...yα0
N sin

(
πu0

2w0(y)

)
+
∑m

i=1 y
αi
1 ...yαi

N cos
(

2πui
Di

1w0(y)

)]
,

g(x) = w0(x)−
∑m

j=0
1

(1+αj)N
k(x),

(4.1)



786 L. T. P. Ngoc, H. T. H. Dung, P. H. Danh and N. T. Long

where

w0(x) = ex1 + xγ11 |x2 − α|γ2 +
N∑
i=3

|xi − α| , (4.2)

k(x) = xγ̃11 |x2 − α̃|γ̃2 +

N∑
i=3

|xi − α̃| ,

and α, γ1, γ2, α̃, γ̃1, γ̃2, α0, α1, · · · , αm are positive constants satisfying
0 < α, α̃ < 1, 0 < γ2, γ̃2 ≤ 1, γ1 > m, γ̃1 > m,

2π
∑m

j=0
1

(1+αj)N

[(
1 +

∑m
i=1 i!C

i
γ̃1

)
max{α̃γ̃2 , (1− α̃)γ̃2}

+(N − 2) max{α̃, 1− α̃}
]
< 1,

(4.3)

with Ciγ̃1 =
γ̃1 (γ̃1 − 1) · · · (γ̃1 − i+ 1)

i!
. Then we have

w0(x) = ex1 + xγ11 |x2 − α|γ2 +
N∑
i=3

|xi − α| ,

Di
1w0(x) = ex1 + i!Ciγ1x

γ1−i
1 |x2 − α|γ2 ,

so w0, Di
1w0 ∈ X and w0(x) ≥ 1, Di

1w0(x) ≥ 1.HenceK ∈ C(Ω×Ω×Rm+1;R).

We can prove that (A1), (A2) hold. It is easy to see that (A1) holds, since
w0, k ∈ Xm.

Assumption (A2) holds, by the fact that:
First, we have Di

1k ∈ X,

Di
1K = Di

1k(x)

[
yα0

1 · · · y
α0
N sin

(
πu

2w0(y)

)
+

m∑
i=1

yαi
1 · · · y

αi
N cos

(
2πui

Di
1w0(y)

)]
,

so Di
1K ∈ C(Ω× Ω× Rm+1;R);

| K(x, y;u0, · · · , um)−K(x, y; ū0, · · · , ūm) |

≤ k(x)

[
yα0

1 · · · y
α0
N

π |u0 − ū0|
2w0(y)

+

m∑
i=1

yαi
1 · · · y

αi
N

2π |ui − ūi|
Di

1w0(y)

]

≤ 2πk(x)

m∑
i=0

yαi
1 · · · y

αi
N

∑m

j=0
|uj − ūj |

≡ k0(x, y)
∑m

j=0
|uj − ūj | , (4.4)
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in which k0(x, y) = 2πk(x)
∑m

i=0 y
αi
1 · · · y

αi
N . Similarly, we have

∣∣Di
1K(x, y;u0, · · · , um)−Di

1K(x, y; ū0, · · · , ūm)
∣∣ ≤ ki(x, y)

∑m

j=0
|uj − ūj | ,

(4.5)
with ki(x, y) = 2π

∣∣Di
1k(x)

∣∣∑m
i=0 y

αi
1 · · · y

αi
N , i = 1,m.

Next, we have∫
Ω
ki(x, y)dy = 2π

∣∣Di
1k(x)

∣∣ ∫
Ω

m∑
j=0

y
αj

1 ...y
αj

N dy = 2π
∑m

j=0

1

(1 + αj)N
∣∣Di

1k(x)
∣∣ .

(4.6)

We also have the following lemma, its proof is easy so we omit.

Lemma 4.2. Let positive constants α, γ2, γ1 satisfy 0 < α < 1, γ1 > 0,
0 < γ2 ≤ 1. Then

0 ≤ xγ11 |x2 − α|γ2 ≤ max{αγ2 , (1− α)γ2}, ∀x1, x2 ∈ [0, 1].

Now, using Lemma 4.4, we obtain

0 ≤ k(x) = xγ̃11 |x2 − α̃|γ̃2 +
N∑
i=3

|xi − α̃| (4.7)

≤ max{α̃γ̃2 , (1− α̃)γ̃2}+ (N − 2) max{α̃, 1− α̃};
0 ≤ D1k(x) = γ̃1x

γ̃1−1
1 |x2 − α̃|γ̃2 ≤ γ̃1 max{α̃γ̃2 , (1− α̃)γ̃2},

...

0 ≤ Di
1k(x) = i!Ciγ̃1x

γ̃1−i
1 |x2 − α|γ̃2 ≤ i!Ciγ̃1 max{α̃γ̃2 , (1− α̃)γ̃2}, i = 1,m,

so

sup
x∈Ω

∫
Ω
k0(x, y)dy

≤ 2π

m∑
j=0

1

(1 + αj)N

[
max{α̃γ̃2 , (1− α̃)γ̃2}+ (N − 2) max{α̃, 1− α̃}

]
,

sup
x∈Ω

∫
Ω
ki(x, y)dy ≤ 2π

m∑
j=0

1

(1 + αj)N
i!Ciγ̃1 max{α̃γ̃2 , (1− α̃)γ̃2}, i = 1,m.
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Consequently

β =

m∑
i=0

sup
x∈Ω

∫
Ω
ki(x, y)dy

≤ 2π
m∑
j=0

1

(1 + αj)N

[(
1 +

m∑
i=1

i!Ciγ̃1

)
max{α̃γ̃2 , (1− α̃)γ̃2}

+ (N − 2) max{α̃, 1− α̃}
]

< 1. (4.8)

Therefore, Theorem 2.2 holds. Furthermore, w0 ∈ Xm is also a unique solution
of (1.1).

Example 4.3. Considering (1.1), with the functions K, g defined by{
K(x, y;u0, · · · , um) = k(x)K1(y;u0, · · · , um),

g(x) = w0(x)−
∑m

j=0
1

(1+αj)N
k(x),

(4.9)

where 
K1(y;u0, · · · , um) =

∑m
i=0 y

αi
1 · · · y

αi
N

∣∣∣ ui
Di

1w0(y)

∣∣∣ 1
i+2

,

w0(x) = ex1 + xγ11 |x2 − α|γ2 +
∑N

i=3 |xi − α| ,
k(x) = xγ̃11 |x2 − α̃|γ̃2 +

∑N
i=3 |xi − α̃| ,

(4.10)

and α, γ1, γ2, α̃, γ̃1, γ̃2, α0, α1, · · · , αm are positive constants satisfying
0 < α, α̃ < 1, 0 < γ2, γ̃2 ≤ 1, γ1 > m, γ̃1 > m,
m∑
j=0

1
(1+αj)N

[(
1 +

m∑
i=1

i!Ciγ̃1

)
max{α̃γ̃2 , (1− α̃)γ̃2}

+(N − 2) max{α̃, 1− α̃}
]
< 1.

(4.11)

We can prove that (A1), (Ā2) hold, because of the following.

First, w0, Di
1w0 ∈ X and w0(x) ≥ 1, Di

1w0(x) ≥ 1. Then K ∈ C(Ω ×
Ω × Rm+1;R). By Di

1k ∈ X, Di
1K = Di

1k(x)K1(y, u0, · · · , um), so Di
1K ∈

C(Ω× Ω× Rm+1;R).

Applying the inequality a ≤ 1 + aq, ∀a ≥ 0, ∀q ≥ 1, we obtain

|K1(y;u0, ..., um)| ≤
m∑
i=0

yαi
1 ...yαi

N

(
1+

|ui|
Di

1w0(y)

)
≤

m∑
i=0

yαi
1 ...yαi

N

1+
m∑
j=0

|uj |

 ,

(4.12)
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it gives

∣∣Di
1K(x, y;u0, ..., um)

∣∣ =
∣∣Di

1k(x)
∣∣ |K1(y;u0, ..., um)| ≤ k̄i(x, y)

1 +
m∑
j=0

|uj |

 ,

(4.13)
with k̄i(x, y) =

∣∣Di
1k(x)

∣∣∑m
j=0 y

αj

1 · · · y
αj

N , i = 0,m.

Next,∫
Ω
k̄i(x, y)dy =

∣∣Di
1k(x)

∣∣ ∫
Ω

m∑
j=0

y
αj

1 · · · y
αj

N dy =
∣∣Di

1k(x)
∣∣ m∑
j=0

1

(1 + αj)N
,

so

β̄ =

m∑
i=0

sup
x∈Ω

∫
Ω
k̄i(x, y)dy

≤
m∑
j=0

1

(1 + αj)N

[(
1 +

m∑
i=1

i!Ciγ̃1

)
max{α̃γ̃2 , (1− α̃)γ̃2}

+ (N − 2) max{α̃, 1− α̃}
]

< 1. (4.14)

Theorem 3.2 is fulfilled. Furthermore, w0 ∈ Xm is also a solution of (1.1).

Acknowledgments: The authors wish to express their sincere thanks to the
Editor and the referees for the suggestions, remarks and valuable comments.
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