
Nonlinear Functional Analysis and Applications
Vol. 24, No. 4 (2019), pp. 801-811

ISSN: 1229-1595(print), 2466-0973(online)

http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2019 Kyungnam University Press

KUPress

THE EDGE METRIC DIMENSION OF CAYLEY GRAPHS
Γ(Zn ⊕ Z2) AND ITS BARYCENTRIC SUBDIVISIONS

Zahid Raza1 and Nida Siddiqui2

1Department of Mathematics
University of Sharjah, Sharjah 27272, U.A.E

e-mail: zraza@sharjah.ac.ae

2Department of Mathematics
University of Sharjah, Sharjah 27272, U.A.E

e-mail: nsiddiqui@sharjah.ac.ae

Abstract. The main objective of this study is to determine the edge metric dimen-

sion(EMD) of the Cayley graphs Γ(Zn ⊕ Z2) and its barycentric subdivision. Infact, it

is proved that the Cayley graphs and its subdivisions have constant EMD and its edge met-

ric generator(EMG) set contains only three vertices to resolve all the edges of Cayley graphs

Γ(Zn⊕Z2) and its barycentric subdivisions. In particular EMD remains invariant under the

barycentric subdivisions of Γ(Zn⊕Z2). On the contrary, in [4] it was proved that the metric

dimension of the Cayley graphs Γ(Zn ⊕ Z2) does not remain invariant under its barycentric

subdivisions.

1. Introduction

Let G = (V,E) be a connected graph. Then the distance between the vertex
x and the edge e = uv ∈ E is defined as dG(e, x) = min{dG(u, x), dG(v, x)}.
A vertex x ∈ V distinguishes two edges e, f ∈ E if dG(x, e) 6= dG(x, f). Let
∅ 6= S ⊂ V be an edge metric generator (EMG) for G if for any e1 and e2
in E(G), there is at least one vertex v ∈ S such that dG(e1, v) and dG(e2, v)
are distinct. Then an EMG with the minimum size is referred to as an edge
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metric basis (EMB) for G, and its size is said to be an edge metric dimension
(EMD), which is denoted by dime(G). This theory was first dealt by Kelenc,
Tratnik and Yero in [14].

The idea of metric dimension was first mentioned by Slater in 1975 to ad-
dress the issue of exclusively identifying the position of an intruder in a network
[16]. Let ∅ 6= S ⊂ V be a metric generator for G, if for any two vertices of G,
say x and y, there is at least one vertex v ∈ S such that d(x, v) 6= d(y, v). A
metric generator of minimum size is called a metric basis for G and its size is
the metric dimension of G, which is denoted by dim(G).

Harary and Melter went on to explore the concepts further. This graph
parameter is useful in the fields of robotics, chemical and computer sciences,
for further applications readers can refer to [1, 2, 3]. The families of graphs
with constant metric dimension have been characterized by many different
authors, one can see [4-11]. There are some other variants of the standard
metric dimension that have been studied in recent years. For more details
refer to [2, 13].

The new parameter EMD has been recently introduced, and the authors in
[14] determined its value for various graphs. Since the determination of the
EMD is NP hard, so one has to consider particular classes of graphs to find the
EMD. In [19], the author characterized the graphs for which dime(G) = n−1.
In 2018, Peterin and Yero computed the EMD of some graph products in terms
of the graphs of the products. In particular, they give the results for the join,
lexicographic and the corona products of the graphs[15]. More recently, a
characterization of graphs with maximum EMD has been given in [20]. It was
proved in [14] that the metric dimension of the wheel graph is strictly less
than the EMD, i.e. dim(Wn,1) < dime(Wn,1). The authors asked to find some
classes of the graph G for which dim(G) < dime(G), dim(G) > dime(G) or
dim(G) = dime(G). The metric dimension of the wheel related families have
been determined in [17, 18].

The barycentric subdivision of a graph G is the subdivision in which one
new vertex is inserted in the interior of each edge[6]. The barycentric sub-
division of any graph is a loopless bipartite graph. A planar graph can be
characterized with the help of the subdivision process. A graph G is planar
iff every subdivision of G is planar.

Let S ⊂ G a nonempty subset of a semi group of G. Then the Cayley
graph Γ(G,S) of G with respect to the set S is a graph with vertex set G,
and two vertices x, y are adjacent if sx = y for some s ∈ S. These graphs
corresponding to groups play important role in both group theory and graph
theory. For any group G the corresponding graph Γ(G,S) is symmetric or
undirected iff S = S−1. The Cayley graph Γ(Zn ⊕ Z2), n ≥ 3 is a cubic
graph. In particular, the Cayley graph Γ(Zn ⊕Z2) ,n ≥ 3 consists of an outer
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n-cycle y1, y2, . . . , yn, an inner n-cycle x1, x2, . . . , xn,and a set of n spokes
xiyi, i = 1, 2, . . . , n. We have number of vertices, edge and face sets of the
Cayley graph Γ(Zn ⊕ Z2) as |V (Γ(Zn ⊕ Z2)| = 2n, |E(Γ(Zn ⊕ Z2)| = 3n and
|F (Γ(Zn⊕Z2)| = n+2. The metric dimension of Cayley graph Γ(Zn⊕Z2) and
its barycentric subdivision have been determined in [1] and [4] respectively.
In the same paper, the author noted that under the subdivisions, the metric
dimension does not remain same. There are several characterization of families
of graph with constant metric dimension, where the metric dimension does not
depend on the number of the vertices of the corresponding graphs, for more
details, one can see the references [4-12].

The main objective of this paper is to study the EMD of the Cayley graphs
Γ(Zn⊕Z2) and its barycentric subdivisions. We prove that the Cayley graphs
and its subdivisions of have constant EMD and only three vertices are sufficient
to resolve all the edges of the graph Γ(Zn⊕Z2) and its barycentric subdivision.

2. The edge metric dimension of Cayley graphs Γ(Zn ⊕ Z2)

In this section the EMD of the graph Γ(Zn ⊕Z2) has been determined and
its always greater or equal to the metric dimension of Γ(Zn⊕Z2). The follow-
ing figure shows the Cayley graph Γ(Zn ⊕ Z2) and corresponding barycentric
subdivision of the Cayley graph Γ(Zn ⊕ Z2).

1(a) Cayley graph 1(b) Barycentric subdivision

Theorem 2.1. Let Γ(Zn ⊕ Z2) be the Cayley graphs of the group Zn ⊕ Z2,
n ≥ 5. Then

dime(Γ(Zn ⊕ Z2)) = 3.
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Proof. Let us consider the vertex set of the Cayley graph Γ(Zn ⊕ Z2) as
V (Cay(Zn⊕Z2)) = {x1, x2, . . . , xn}∪{y1, y2, . . . , yn}. Then the edge set will be
a union of three types of edges given by E(Γ(Zn⊕Z2)) = {xiyi, xixi+1, yiyi+1 :
i = 1, 2, . . . , n}, where the indices are taken under mod n. Let S = {y1, y2, yk+1}
be the set of vertices of the Cayley graphs Γ(Zn ⊕Z2). We claim that S is an
EMG for the Cayley graphs Γ(Zn ⊕ Z2). The distance vector depends on the
type of n. So we consider two cases:

Even Case. If n is even, i.e. n = 2l, with l = 3, 4, 5, . . .. Let e be an edge of
the Cayley graphs Γ(Zn⊕Z2). Consider the following cases depending on the
type of edge e.

1. If e = xiyi for some i ∈ {1, 2, 3, . . . , n}, then

d(xiyi;S) =

 (0, 1, l), i = 1;
(i− 1, i− 2, l − i + 1), 2 ≤ i ≤ l + 1;
(n− i + 1, n− i + 2, i− l − 1), l + 2 ≤ i ≤ n.

2. If e = xixi+1 for some i ∈ {1, 2, 3, . . . , n− 1}, then

d(xixi+1;S) =


(0, 0, l − 1), i = 1;
(i− 1, i− 2, l − i), 2 ≤ i ≤ l;
(l − 1, l − 1, 0), i = l;
(n− i, n− i + 1, i− l − 1), l + 2 ≤ i ≤ n.

3. If e = yiyi+1 for some i ∈ {1, 2, 3, . . . , n− 1}, then

d(yiyi+1;S) =


(1, 1, l), i = 1;
(i, i− 1, l − i + 1), 2 ≤ i ≤ l;
(l, l, 1), i = l;
(n− i + 1, n− i + 2, i− l), l + 2 ≤ i ≤ n.

Thus the distance vector representation for any two distinct edges are different,
hence dime(Γ(Zn ⊕ Z2)) ≤ 3.

Let S be an EMG for the graph Γ(Zn ⊕ Z2) with size r. We proved that
r ≥ 3. Now, we need to prove that r ≤ 3. Assume on the contrary that there
is an EMG S ⊂ V (Γ(Zn ⊕ Z2)) such that r ≤ 2. Then we have three cases to
consider:

1. If S = {xi, xj} such that 1 ≤ i , j ≤ l + 1 and i < j, then observe that
• d(xjxj+1|S) = d(xjyj |S) = (j − i, 0) for j − i < l,
• d(xj−1xj |S) = d(xjxj+1|S) = (l − 1, 0) for j − i = l.

2. If S = {yi, yj}, then the result would be similar to the above case 1.

3. If S = {xi, yj}, then we have
• d(xnyn|S) = d(x2y2|S) = (1, 1) for i = j = 1,
• d(xi−1yi−1|S) = d(xi+1yi+1|S) = (1, 1) for i = j 6= 1,
• d(xixi+1|S) = d(xiyi|S) = (0, j − i) for i < j,
• d(yjyj+1|S) = d(xjyj |S) = (i− j, 0) for i > j,
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which is a contradiction in all three cases, hence, S is not an EMG. Thus
|S| ≥ 3 and dime(Γ(Zn ⊕ Z2)) = 3.

Odd Case. If n is odd, i.e. n = 2l − 1, with l = 3, 4, .... Let e be an edge
of the Cayley graphs Γ(Zn ⊕ Z2). Consider the following cases on the type of
the edge e.

1. If e = xiyi for some i ∈ {1, 2, 3, . . . , n}, then

d(xiyi;S) =


(0, 1, l − 1), i = 1;
(i− 1, i− 2, l − i + 1), 2 ≤ i ≤ l;
(l − 1, l − 1, 0), i = l;
(n− i + 1, n− i + 2, i− l − 1), l + 2 ≤ i ≤ n.

2. If e = xixi+1 for some i ∈ {1, 2, 3, . . . , n− 1}, then

d(xixi+1;S) =

 (0, 0, l − 1), i = 1;
(i− 1, i− 2, l − i), 2 ≤ i ≤ l;
(n− i, n− i + 1, i− l − 1), l + 1 ≤ i ≤ n.

3. If e = yiyi+1 for some i ∈ {1, 2, 3, . . . , n− 1}, then

d(yiyi+1;S) =

 (1, 1, l), i = 1;
(i, i− 1, l − i + 1), 2 ≤ i ≤ l;
(n− i + 1, n− i + 2, i− l), l + 1 ≤ i ≤ n.

Thus the distance vector representation for any two distinct edges are different,
hence dime(Γ(Zn ⊕ Z2)) ≤ 3.

Let S be an EMG for the graph Γ(Zn ⊕ Z2) with size r. We proved that
r ≥ 3. Now, we need to prove that r ≤ 3. Assume on the contrary that there
is an EMG S ⊂ V (Γ(Zn ⊕ Z2)) such that r ≤ 2. Then we have three cases to
consider:

1. If S = {xi, xj} such that 1 ≤ i , j ≤ l + 1 and i < j, then observe that
• d(xjxj+1|S) = d(xjyj |S) = (j − i, 0) for j − i < l,
• d(xj−1xj |S) = d(xjyj |S) = (l − 1, 0) for j − i = l,

which is a contradiction, hence, S is not an EMG.

2. If S = {yi, yj}, then the result would be similar to above case 1.

3. If S = {xi, yj}, then we have
• d(xnyn|S) = d(x2y2|S) = (1, 1) for i = j = 1,
• d(xi−1yi−1|S) = d(xi+1yi+1|S) = (1, 1) for i = j 6= 1,
• d(xixi+1|S) = d(xiyi|S) = (0, j − i) for i < j,
• d(yjyj+1|S) = d(xjyj |S) = (i− j, 0) for i > j,

which is a contradiction, thus, S is not an EMG.
Therefore, r ≥ 3 and dime(Γ(Zn ⊕ Z2)) = 3. �

.
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3. The edge metric dimension of barycentric subdivision of
Cayley graphs Γ(Zn ⊕ Z2)

Let Γ(Zn ⊕ Z2) be the Cayley graph. Then its barycentric subdivision is
obtained by adding a new vertex on every edge of Γ(Zn ⊕ Z2). In particular,
we will add vertices ai and ci on the edges of the inner cycle and outer cy-
cle, respectively, and add vertices bi in between the vertices xi and yi of the
graph Γ(Zn⊕Z2). It is clear that the resulting barycentric subdivisions graph
BΓ(Zn ⊕ Z2) has 5n vertices and 6n edges.

For the sake of simplicity, the cycle induced by {xi, ai : 1 ≤ i ≤ n}, will be
called the inner cycle, the cycle induced by {yi, ci : 1 ≤ i ≤ n}, will be called
the outer cycle and set of vertices {bi : 1 ≤ i ≤ n}, will be called the set of
interior vertices of the barycentric subdivision graph BΓ(Zn⊕Z2). The figure
1(b) depicts the the barycentric subdivision graph BΓ(Zn⊕Z2) of the Cayley
Graphs Γ(Zn ⊕ Z2).

Theorem 3.1. If n ≥ 4, then dime(BΓ(Zn ⊕ Z2)) = 3.

Proof. The distance vector depends on the type of n. So we consider two
cases:

Even Case. If n is even, i.e. n = 2l, with l = 3, 4, . . .. Let us consider the
subset S = {x1, x2, xl+1} of the vertices of the barycentric subdivision graph
BΓ(Zn ⊕ Z2). We claim that S is an EMG for the graph BΓ(Zn ⊕ Z2). Let e
be an edge of the barycentric subdivisions graph BΓ(Zn ⊕ Z2). Consider the
following cases on the type of the edge e.

1. If e = xibi for some i ∈ {1, 2, 3, . . . , 2l}, then

d(xibi;S) =


(0, 2, 2l), i = 1;
(2, 0, 2l − 2), i = 2;
(2i− 2, 2i− 4, 2l − 2i + 2), 3 ≤ i ≤ l + 1;
(4l − 2i + 2, 4l − 2i + 4, 2i− 2l − 2), l + 2 ≤ i ≤ 2l.

2. If e = yibi for some i ∈ {1, 2, 3, . . . , 2l}, then

d(yibi;S) =


(1, 3, 2l + 1), i = 1;
(3, 1, 2l − 1), i = 2;
(2i− 1, 2i− 3, 2l − 2i + 3), 3 ≤ i ≤ l + 1;
(4l − 2i + 3, 4l − 2i + 5, 2i− 2l − 1), l + 2 ≤ i ≤ 2l.

3. If e = yici for some i ∈ {1, 2, 3, . . . , 2l}, then
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d(yici;S) =


(2, 3, 2l + 1), i = 1;
(2i, 2i− 2, 2l − 2i + 3), 2 ≤ i ≤ l;
(2l + 1, 2l, 2), i = l + 1;
(4l − 2i + 3, 4l − 2i + 5, 2i− 2l), l + 2 ≤ i ≤ 2l.

4. If e = xiai for some i ∈ {1, 2, 3, . . . , 2l}, then

d(xiai;S) =


(0, 1, 2l − 1), i = 1;
(2i− 2, 2i− 4, 2l − 2i + 1), 2 ≤ i ≤ l;
(2l − 1, 2l − 2, 0), i = l + 1;
(4l − 2i + 1, 4l − 2i + 3, 2i− 2l − 2), l + 2 ≤ i ≤ 2l.

5. If e = ciyi+1 for some i ∈ {1, 2, 3, . . . , 2l}, then

d(ciyi+1;S) =


(3, 2, 2l), i = 1;
(2i + 1, 2i− 1, 2l − 2i + 2), 2 ≤ i ≤ l;
(2l, 2l + 1, 3), i = l + 1;
(4l − 2i + 2, 4l − 2i + 4, 4l − 2i + 1), l + 2 ≤ i ≤ 2l.

6. If e = aixi+1 for some i ∈ {1, 2, 3, . . . , 2l}, then

d(aixi+1;S) =


(1, 0, 2l − 2), i = 1;
(2i− 1, 2i− 3, 2l − 2i), 2 ≤ i ≤ l;
(2l − 2, 2l − 1, 1), i = l + 1;
(4l − 2i, 4l − 2i + 2, 4l − 2i− 1), l + 2 ≤ i ≤ 2l.

Thus the distance vector representation for any two distinct edges are different,
hence dime(BΓ(Zn ⊕ Z2)) ≤ 3.

Let S be an EMG for the graph BΓ(Zn ⊕ Z2) with size r. We proved that
r ≤ 3. Now, we need to prove that r ≥ 3. Assume on the contrary that there
is an EMG S ⊂ V (BΓ(Zn ⊕ Z2)) such that r ≥ 2. We restrict the range of n
to l due to the symmetry of the graph. Then we have the following cases to
consider:

Case 1. Let S be the set of vertices from the inner cycle such that |S| = 2.
Then we have following subcases:

Subcase 1a. Let S = {xi, xj} s. t. 1 ≤ i, j ≤ l. If i < j. Then we
have d(ai−1xi, S) = (0, 2j − 2i) = d(bixi, S) and if j = l + 1, i = 1, then
d(x1an, S) = (0, 2l − 1) = d(x1a1, S), which is a contradiction.

Subcase 1b. If S = {ai, aj} s. t. 1 ≤ i, j ≥ l and i < j, then we obtain
that d(ai−1xi, S) = (1, 2j − 2i + 1) = d(bixi, S) and if j = l + 1, i = 1, then
d(x1a1, S) = (0, 2l − 1) = d(x2a1, S), which is a contradiction.

Subcase 1c. Let S = {xi, aj} s. t. 1 ≤ i, j ≤ l. If i < j, then
we obtained d(ai−1xi, S) = (0, 2j − 2i + 1) = d(bixi, S) and if i > j, then
d(aj−1xj , S) = (1, 2i − 2j) = d(bj−1xj−1, S) and for S = {x1, al+1}, we have
d(a1x1, S) = (0, 2l − 1) = d(b1x1, S) and similarly for S = {xl+1, a1}, we have
d(al+1xl+1, S) = (0, 2l − 1) = d(bl+1xl+1, S), which is a contradiction.
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Case 2. Let S = {bi, bj} s. t. 1 ≤ i, j ≤ l + 1. If i < j. Then it is obvious
that d(xibi, S) = (0, 2j − 2i + 1) = d(biyi, S), which is a contradiction.

Case 3. Let S be the set of vertices from the outer cycle such that |S| = 2.
In particular S = {yi, ci} for every 1 6 i 6 n. Then due to graph symmetry,
this case is similar to Case 1.

Case 4. Let S ⊆ {xi, al, bj}, ∀ {1 6 i, j, l 6 n}. Then we have the following
two cases to consider depending on the types of the vertices of the set S.

Subcase 4a. If S = {xi, bj} s. t. 1 6 i, j 6 l and if i < j, then it is clear
that d(ai−1xi, S) = (0, 2j − 2i+ 1) = d(bixi, S) and if i > j, then d(aixj , S) =
(0, 2i−2j+1) = d(bixi, S) and for i = j then d(ai−1xi, S) = (0, 1) = d(aixi, S),
which is a contradiction.

Subcase 4b. If S = {ai, bj} s. t. 1 6 i, j 6 l and if i < j, then it
is clear that d(ai−1xi, S) = (1, 2j − 2i + 1) = d(bixi, S) and if i > j, then
d(aixi, S) = (1, 2i − 2j + 1) = d(bixi, S) and for i = j then d(ai+1xi+1, S) =
(1, 3) = d(bi+1xi+1, S), which is a contradiction.

Subcase 4c. If i = 1, j = l + 1 s. t. S = {a1, bl+1} then d(cny1, S) =
d(c1y1, S) = (3, 2l). If i = l+1, j = 1, s. t. S = {al+1, b1} then d(cl+1yl+1, S) =
d(clyl+1, S) = (3, 2l), which is a contradiction.

Case 5. Let S ⊆ {yi, ci, bi}. Then due to graph symmetry, this case is similar
to case 4.

Case 6. If S ⊆ {xi, yj , al, cl}
Subcase 6a. If S = {xi, yj} s. t. 1 6 i, j 6 l and if i < j, then it is

easy to see that d(ai−1xi, S) = (0, 2j − 2i + 2) = d(bixi, S) and if i > j, then
d(aixi, S) = (0, 2i − 2j + 2) = d(bixi, S) and for i = j then d(ai−1xi, S) =
(0, 2) = d(aixi, S), which si a contradiction.

If i = 1, j = l + 1 s. t. S = {x1, yl+1} then d(a2lx1, S) = d(a1x1, S) =
(0, 2l + 1) and if i = l + 1, j = 1, s. t. S = {xl+1, y1} then d(a2lx1, S) =
d(a1x1, S) = (2, 2l − 1), which is a contradiction.

Subcase 6b. If S = {xi, cj} s. t. 1 6 i, j 6 l + 1 and if i < j, then it is
easy to see that d(aixi, S) = (0, 2j − 2i + 2) = d(bixi, S) and if i > j, then
d(ai−1xi, S) = (0, 2i− 2j) = d(bixi, S) and if i = j then d(ci−1yi, S) = (1, 1) =
d(biyi, S), which si a contradiction.

If i = 1, j = l + 1 s. t. S = {x1, cl+1} then d(clyl+1, S) = d(blyl, S) =
(1, 2l + 1) and if i = l + 1, j = 1, then S = {xl+1, c1} then d(c2ly1, S) =
d(b1y1, S) = (1, 2l + 1), which is a contradiction.

Subcase 6c. If S = {ai, yi}, then it is similar to 6b.
Subcase 6d. If S = {ai, cj} s. t. 1 6 i, j 6 l + 1 and if i < j + 2 and j 6=

i, i+1, then it is clear that d(ai+1xi+1, S) = (1, 2j−2i+4) = d(bi+1xi+1, S) and
if i > j+2 and i 6= j, j+1, then d(ci+1yi+1, S) = (2, 2i−2j+1) = d(bi+1yi+1, S).
For i + 1 = j , S = {aici+1} d(ciyi, S) = (3, 2) = d(bi+2xi+2, S), which is
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a contradiction. If i = j, then d(aixi, S) = d(aixi+1, S) = (0, 3). If S =
{ai+1, ci}, then d(aixi, S) = (2, 3) = d(bi+2yi+2, S). If S = {a1, cl+1}, then
d(a1x2, S) = (0, 2l + 1) = d(a1x2, S). If S = {al+1, c1}, then d(al+1xl+1, S) =
(0, 2l + 1) = d(al+1xl+2, S), which is a contradiction.

Odd Case. If n is odd, i.e. n = 2l + 1, with l = 3, 4, . . .. Let us consider the
subset S = {x1, x2, al+1} of the vertices of the barycentric subdivision graph
BΓ(Zn ⊕ Z2). We claim that S is an EMG for the graph BΓ(Zn ⊕ Z2). Let
e be an edge of the barycentric subdivision graph BΓ(Zn ⊕Z2). Consider the
following cases on the type of the edge e.

1. If e = xibi for some i ∈ {1, 2, 3, . . . , 2l + 1}, then

d(xibi;S) =


(0, 2, 2l + 1), i = 1;
(2i− 2, 2i− 4, 2l − 2i + 3), 2 6 i 6 l + 1;
(2l, 2l, 1), i = l + 2;
(4l − 2i + 4, 4l − 2i + 6, 2i− 2l − 3), l + 3 ≤ i ≤ 2l + 1.

2. If e = yibi for some i ∈ {1, 2, 3, . . . , 2l + 1}, then

d(xibi;S) =


(1, 3, 2l + 2), i = 1;
(2i− 1, 2i− 3, 2l − 2i + 4), 2 6 i 6 l + 1;
(2l + 1, 2l + 1, 2), i = l + 2;
(4l − 2i + 5, 4l − 2i + 7, 2i− 2l − 2), l + 3 ≤ i ≤ 2l + 1.

3. If e = yici for some i ∈ {1, 2, 3, . . . , 2l + 1}, then

d(yici;S) =


(0, 1, 2l), i = 1;
(2i− 2, 2i− 4, 2l − 2i + 2), 2 ≤ i ≤ l + 1;
(2l − 1, 2l, 1), i = l + 2;
(4l − 2i + 3, 4l − 2i + 5, 2i− 2l − 3), l + 3 ≤ i ≤ 2l + 1.

4. If e = xiai for some i ∈ {1, 2, 3, . . . , 2l + 1}, then

d(xiai;S) =


(0, 1, 2l), i = 1;
(2i− 2, 2i− 4, 2l − 2i + 2), 2 ≤ i ≤ l + 1;
(2l − 1, 2l, 1), i = l + 2;
(4l − 2i + 3, 4l − 2i + 5, 2i− 2l − 3), l + 3 ≤ i ≤ 2l + 1.

5. If e = ciyi+1 for some i ∈ {1, 2, 3, . . . , 2l + 1}, then

d(ciyi+1;S) =


(3, 2, 2l + 1), i = 1;
(2i + 1, 2i− 1, 2l − 2i + 3), 2 ≤ i ≤ l;
(2l + 2, 2l + 1, 3), i = l + 1;
(4l − 2i + 4, 4l − 2i + 6, 2i− 2l), l + 2 ≤ i ≤ 2l + 1.

6. If e = aixi+1 for some i ∈ {1, 2, 3, . . . , 2l}, then

d(aixi+1;S) =


(1, 0, 2l − 1), i = 1;
(2i− 1, 2i− 3, 2l − 2i + 1), 2 ≤ i ≤ l;
(2l, 2l − 1, 0), i = l + 1;
(4l − 2i + 2, 4l − 2i + 4, 2i− 2l − 2), l + 2 ≤ i ≤ 2l + 1.
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Thus the distance vector representation for any two distinct edges are different,
hence dime(BΓ(Zn ⊕Z2)) ≤ 3. The converse is the same as for the even case,
so we omit the proof. This completes the proof of theorem. �

4. Conclusion

To find the EMD of a graph is an NP-complete problem. In this paper,
the EMD for Cayley graphs and its barycentric subdivisions have been deter-
mined. It is proved that these families of graphs have constant EMD and only
three vertices are sufficient to resolve all the edges of the Cayley graphs and
its barycentric subdivisions subdivisions(chosen appropriately). The EMD re-
mains unchanged under the barycentric subdivisions of Cayley graphs. There-
fore, it is natural to asked the following question.

Open Problem: If B(G) denote the graph obtained after the barycentric
subdivision of the graph G, then under what conditions on graphs does one
has the following equality dime(BG) = dime(G).

Acknowledgments: The authors acknowledge the suggestions/reccomnda-
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