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Abstract. In this paper some inequalities for the maximum modulus of the polar derivative
for polynomials with restricted zeros are obtained by using the boundary Schwarz lemma
of Osserman. Our results generalize and refine some well-known results concerning the

polynomials due to Turdn, Dubinin and others.

1. INTRODUCTION AND PRELIMINARIES

Let P,, denote the class of all algebraic polynomials of the form:

n
P(z) = Zajzj, an #0, n>1.
j=o
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It was conjectured by Erdos and later verified by Lax [9] that if P € P,, does
not vanish in |z| < 1, then
max |P'(2)] < = max |P(2)]. (1.1)
|z|=1 2 |z=1
On the other hand Turdn [15] showed that if P € P, has all its zeros in |z| < 1,
then
max | P'(2)] > = max |P()]. (1.2)
|z|=1 2 |z|=1
Equality in (1.1) and (1.2) holds for P(z) = az™ + b, |a|] = |b] # 0.
As an extension of (1.2), Govil [8] proved that if P € P,, and P(z) has all
its zeros in |z| < k,k > 1, then

max |P'(2)| > ma
|z\:)1{‘ (2)] = 1+ kn |z\:)1{

[P(2)] (1.3)

The result is sharp as shown by the polynomial P(z) = 2" + k™.
By involving the minimum modulus of P(z) on |z| = 1, Aziz and Dawood
[2] proved under the hypothesis of inequality (1.2) that

wax|P/(9)] > 5 {max [P(2)] + win | P(2)] | (1.4
Equality in (1.4) holds for P(z) = az™ + b, |a|] = |b] # 0.

In literature, there exist several generalizations and extensions of (1.2), (1.3)
and (1.4) (see [1]-[5], [11], [13], [14]). Dubinin [7] obtain a refinement of (1.2)
by involving some of the coefficients of polynomial P € P, in the bound of
inequality (1.2). More precisely, proved that if all the zeros of the polynomial
P € P, lie in |z| < 1, then

1 |an| — |aol
max |P'(z Z<n—|—n max |P(z)]. 1.5
‘Z|:1| ()23 an] F 0| ‘Z|:1| (2)] (1.5)

The polar derivative D, P(z) of P € P,, with respect to the point a € C is
defined by

DoP(2) :=nP(2) + (a — 2)P'(2).

The polynomial D,P(z) is of degree at most n — 1 and it generalizes the
ordinary derivative P’(z) of P(z) in the sense that
lim PaP(2)
a—00 o
uniformly for |z| < R, R > 0.
Aziz [1], Aziz and Rather ([4], [5]) obtained several sharp estimates for max-
imum modulus of D,P(z) on |z| = 1 and among other things they extended
inequality (1.3) to the polar derivative of a polynomial by showing that if

= P(2)
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P € P,, and P(z) has all its zeros in |z| < k, k > 1, then for every a € C with
ol >k

n(’()&’ — k)
max DaP > ———— " max|P . 1.6
|z|=1 ’ (Z)’ T 14k z=1 | (Z)| ( )

In this paper, we are interested in estimating the lower bound for the max-
imum modulus of the polar derivative of P(z) on |z| = 1 for P € P, not
vanishing in the region |z| > k where £ > 1 and establish some refinements
and generalizations of the inequalities (1.2), (1.3), (1.4), (1.5) and (1.6).

For the proof of theorems, we need following lemmas. The first lemma is a
special case of a result due to Aziz and Rather[3, 4].
Lemma 1.1. If P € P, and P(z) has its all zeros in |z| < 1 and Q(z) =
2"P(1/z), then for |z| =1,

Q(2)] < [P (2)].

Lemma 1.2. If all the zeros of P € P, lie in a circular region C and w is any
zero of D, P(z), the polar derivative of P(z), then at most one of the points
w and o may lie outside C.

The above Lemma is due to Laguerre (see [10]). Next lemma is due to
Frappier, Rahman and Ruscheweyh [6].

Lemma 1.3. If P € P, is a polynomial of degree n > 1, then for R > 1,

max | P(2) < B'max |P(2)| — (R = R")PO)] i n>1 (17

and

‘Iﬁi}é|P(z)| < R|I?|E:u1( |P(2)] — (R—1)|P(0)] if n=1. (1.8)

From above lemma, we deduce:

Lemma 1.4. If P € Pp = an [[j_, (2 — z;) is a polynomial of degree n > 2
having no zeros in |z| < 1, then for every v € C with |y] <1 and R > 1,
R"+1 R"—1
P < P — in |P
max [P(2)] < —5—max|P(2)] = |y|=— min [P(2)]
<R" -1 R2-1

n n—2

(1.9)

> IP'(0)]  if n>2
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and
2
1
g [P(2)] < 5 max | P()
z|l= R2 2_—1 (R B 1)2 (110)
= Il lrr‘lir}\P(z)l—T\P’(on if n=2.

Proof. By hypothesis, all the zeros of P(z) liein |2| > 1. Let m = minj,|—; |P(2)].
Then m < |P(z)| for |z| = 1. Applying Rouche’s theorem, it follows that the
polynomial G(z) = P(z) + ymz" has all its zeros in |z| > 1 for every v with
|v] < 1 (this is trivially true for m = 0). Now for each 6, 0 < 6 < 27, we have

. . R . .
G(Re®) — G(e™) = / e0G (16) 1. (1.11)

1
This gives with the help of (1.7) of Lemma 1.3 and inequality (1.1) for n > 2,

R
GRe?) ~ G(”)| < /1 G () | dt

n R R
<3 </ t”ldt> 1|m|a>1<|G(z)y—/ (t" 1 —¢"73) at|G'(0)]
1 2= 1

n _ n n—2
_E lm%W@%<R LR 1)P@L

2 z=1 n n—2

so that for n > 2 and 0 < 6 < 27, we have
o] o) - e o

R"+1 R"—1 R"2_1
= — — P 0)].
5 max|G(2)] ( - — )\ (0)]

Replacing G(z) by P(z) + ymz", we get for |z| =1,
n

1
|P(Rz) +ymR"2"| < i+

lmlax |P(2) + ymz"|
z|=1

(-2 P

n n—2

(1.12)

Choosing argument of « in the left hand side of (1.12) suitably, we obtain for
n > 2 and |z] =1,

o R"+1
P + it < B L )+ ol

- (B - E ) o

n n—2
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equivalently for n > 2, |7| < 1 and |z| = 1, we have

R"+1 R"—1
|P(Rz)| < ﬁi}1<|P(z)| — Il min |P(2)]
R"—-1 R"Z2-1
— — P!
( - — > [P (0)],

which proves inequality (1.9) for n > 2 and |y| < 1. Similarly we can prove
inequality (1.10) for n = 2 by using (1.8) of Lemma 1.3 instead of (1.7). For
|7] = 1, the result follows by continuity. This completes the proof of Lemma
1.4. Il

Next we prove the following lemma:

Lemma 1.5. If P € P, has all its zeros in |z| < k where k > 1, then for
0<li<1,

n v —1
P(2)| > P in |P
an_llanfﬂ k1 B kn—2_ 1 N .
k41 n n=-2 )
and
22 k? —1
P(2)| > =2 P(2)| 4+ 1 —— ) min |P
x| PG| > 2w PG|+ 1) min PG -

k(k‘—l)Qlal‘ .

22 P fp=2.

k2—|—1 s I n

Proof. Since all the zeros of P € P, liein |z| < k, k > 1, therefore, all the zeros
of g(z) = P(kz) liein |z| < 1 and hence ¢g*(z) = 2"g(1/Z) = 2" P(k/Z) does not
vanish in |z| < 1. Applying (1.9) of Lemma 1.4 to g*(2) with R =%k < 1,|7| < 1
and m = min, |, |P(2)| = min|,—; |g*(z)[, we obtain for n > 2,

kK41 kKt —1
* < * _
maclg™ ()] < £ maxlg” ()] - (£ )

n_1 n72_1
— <k — K >k:"_1\an1].
n n—2

k41 k" —1

Fmax ()| < 0 max P - bl (S
v =1 Ev2—-1\ .,

_< n o n-2 )k [an-1l;

This implies for n > 2,
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which on simplification yields inequality (1.13). In a similar manner we can
prove inequality (1.14) by applying inequality (1.10) of lemma 1.4 instead of
inequality (1.9) to the polynomial ¢g*(z). This proves Lemma 1.5. O

Finally we need the following lemma due to Osserman [12], known as bound-
ary Schwarz lemma.

Lemma 1.6. Let the following conditions satisfy:
(a) f(z) is analytic for |z] < 1,
(b) [f(= )\<1f07"|Z!<1
(c) f(0) =
(d) for some b with |b| = 1, f(z) extends continuously to b, |f(b)] =1 and
1'(b) exists.
Then we have

, 2
10>

2. MAIN RESULTS

Theorem 2.1. If all the zeros of polynomial P € P, of degree n > 2 lie in
|z| < k,k > 1, then for every a € C with |a| > k,

|O‘| k k‘"|an| |a0| ‘an71|
max D,P(z)| > + — aX P(z ¢ k

+ |nag + aay [Y(k),

(2.1)

n n—2

where ¢(k) = (kn*l - kan*l) or (k;1)2 and (k) = (1 — 1/k%) or (1 —1/k)

according as n > 2 orn = 2.

Proof. Let f(z) = P(kz). Since P € P,, has all its zeros in |z| < k where k > 1,
therefore, f € P, and f(z) has all its zeros in |z| < 1. If Q(2) = 2" f(1/%),
then it is easy to verify that

Q' (2)| =Inf(z) —2f'(z)]  for |z|=1.

By using Lemma 1.1, we get
If'(2)] = Inf(z) — 2f'(2)]  for [z]=1. (2.2)
Now for every o € C with |a| > k, we have for |z| = 1,
Doyt (2)| = [nf(2) + (a/k = 2) f'(2)|
>|a/k|lf'(2)| = Inf(2) = 2f'(2)],
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which gives with the help of (2.2) for |z| =1 and |«o| > &,

Dansl = ()i 23)
consequently,
gl‘gfg\DaP(Z)\ = (o] = k) ﬁglP (2)]- (2.4)

Again since all the zeros of f(z) = P(kz) lie in |z] < 1 and hence all the
zeros of polynomial 2" f(1/2) lie in |z| > 1. Therefore, the function

= f(2) _ 0 Y (kz— 2
) H<k—> (25)

is analytic in |z| < 1 with F'(0) = 0 and |F(z)| = 1 for |2| = 1. Further for
|z| = 1, this gives

) ) +<zf’(z)>

F(z) f(z) f(2)
so that
Re(zgég)> —1—n+2Re (Z;;S) > (2.6)

Also, we have from (2.5),

zF’ 12,2
Z(!kz—z]\2>>0 for J#l=1,

as such,
2F'(z)  |2F'(2)| | . B
7o) F) | |F"(2)] for |z| =1.
Using this fact in (2.6), we get for points z on |z| = 1 with f(z) # 0,
Zf/(z)> '
1—n+2Re< = |F"(2)]. 2.7
7 =) (2.7

Applying Lemma 1.6 to F'(z), we obtain for all points z on |z| = 1 with

F(z) #0,
. . z2f'(2) 2
! +M<f@>21HP@V

that is, for |z| = 1 with f(z) # 0,

22\ [ k"an] — |ag
&<ﬂa>z2@+www+m0'
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This implies

2f'(2) 1< k" |an| — \ao!>
>—|ln+ ——— for |z| =1, f(2) #0,
fz) |~ 2 k" |an| + laol i fle) #
and hence,
/ 1 k"|an| — |aol
> Z f =1 2.
72 5 (n+ e L for (23)

Replacing f(z) by P(kz), we obtain
k"|an| — |a0\>
n+ ———— || P(k2)|, for |z| =1,
(1 e o) 1P(0e) 4
which implies,
1 k™ an| — |aol
P’ > B ) N b | P )
fﬁi’é' (@)= 5 <"+ k™| an| + |ao gﬁ)ﬁ’ )
Combining this with inequality (2.4), we get
(la| — k) k" |an| — |ao|
D,P > — —_ P(z)|. 2.9
max|DaP(2)] 2 “—p={ n+ o)) B IP@)L - (29)

Further since D, P(z) is a polynomial of degree at most n — 1, by inequality
(1.7) of Lemma 1.3, we have for n > 2

mm}; |DoP(2)] < R*1 Tn‘znl{ |DoP(2)] — (R" ™ — R"®)|nag + aa|. (2.10)
Z|= zZ|l=

Using inequality (2.10) with R = k£ > 1 and (1.13) of Lemma 1.5 with { =0
in (2.9), we obtain for n > 2,

gl max |DoP(2)] — ("1 — k") |nag + aay]|
(lol — k) k"an| — |ao|

>

= ok " Efan] + fal

2k 2" Yap_1| (k" —1 k" 2-1
P —
X{1+kn|1?|a)f’ @+ =5 n n—2 )

which on simplification gives for n > 2,

laf — k& k"|an| — laol
Do P(2)] > k™ an| + |aol
mix\ oP(2)] n k™| + |ao|

|an—_1] (k™ —1 K21
P _
E:pl(| () + k n n—2

1- 1/k2)|nao + aay|.

X
—— +
=B

+
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This proves Theorem 2.1 for n > 2. Similarly we can prove Theorem 2.1 for
the case n = 2 by using (1.8) of Lemma 1.3 instead of (1.7) and (1.14) of
Lemma 1.5 instead of (1.13). This proves Theorem 2.1 completely. O

Remark 2.2. Since all the zeros of P(z) lie in |z| < k, k > 1, it follows that
lag| < k™|ay|. In view of this inequality (2.1) refines inequality (1.6).

If we divide the two sides of (2.1) by |a| and let |a] — oo, we get The
following result.
Corollary 2.3. If all the zeros of polynomial P € P, of degree n > 2 lie in
|z| <k, k>1, then

max | P'(z)| >

Kan] rao|)
n+7 ma.XPZ
( Flan| + Jao] ) [ 1P(2)]

z|= 14+ km
v il (-l 20
An—1 an| — |GQ
+ —_— k) + k),
k(14 k™) <n k"‘an‘+]a0|>¢( ) + lai]y (k)

where ¢(k) and ¥ (k) are same as defined in Theorem 2.1.

The result is best possible and equality in (2.11) holds for P(z) = 2" + k™.

Remark 2.4. As in Remark 2.2, it can be easily seen that inequality 2.11
constitutes a refinement of inequality (1.3). Further, inequality (2.11) reduces
to inequality (1.5) for k = 1.

Theorem 2.5. If all the zeros of polynomial P € P, of degree n > 2 lie in
|z| < k where k > 1 and m = minj,_; [P(2)|, then for every a € C with
la] >k and 0 <1< 1,

o { el = R [P + (ol + 1/}

(|l = k) (E"|an| —Im — |ao|
k™ max |P(2)] —
TR £ 1)\ fan| — Im + [ao| max | P(z)] - im
(laf = k)|an—1] < K" |an| — Im — |ao|

k(1 + k) k™ an| — Im + |ag|
+ |nag + aar |y (k).

max | Dy P(2)| >
|z]=1

_|_

)t

(2.12)
where ¢(k) and ¥ (k) are same as defined in Theorem 2.1.

Proof. By hypothesis P € P, has all zeros in |z| < k,k > 1. If P(z) has a zero
on |z| = k, then m = min,|_; [P(2)| = 0 and result follows from Theorem 2.1.
Henceforth, we suppose that P(z) has all its zeros in |z| < k,k > 1, so that
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m > 0. Now if f(z) = P(kz), then f € P, and f(z) has all zeros in |z| < 1
and m = min, |, |P(2)| = min|,—; |f(2)|. This implies,

m < |f(2)] for |z|=1.

By the Rouche’s Theorem, we conclude that for every A € C with || < 1, the
polynomial ¢g(z) = f(z) — Amz" has all zeros in |z| < 1. Applying inequality
(2.3) to the polynomial g(z), it follows for |z| =1 and |a| > k,

Dapatll = (P25 )i o (2.13)

Since all the zeros of g(z) lie in |z| < 1, therefore in view of inequality (2.8),
we have

\g’(z)\>;<n+ )|g(z)\, for |o|=1.  (214)

Combining (2.13) and (2.14), we obtain for |z| =1 and |a| > &,

1/ |a] -k |E™an, — Am| — |ag]
D > — .
Dapat] = (1) (s o= o)

|E™a, — Am| — |ag]
|k™ayn, — Am| + |ag]

Using the fact that the function S(x) = i;IZgI ,x > 0is non-decreasing function
of x and |k"a, — Am| > k"|a,| — |A\|m > 0, we get for every A € C with [\ <1

and |z| =1,

1 |Oé| —k k'n|11n| — |)\|m — |(10’)
D, > — + . 2.15

Replacing ¢g(z) by f(z) — Amz" in (2.15), we get for |z| =1 and |a| > k,

nmox . _
Zn 1

Da/kf(z) - k

1/ |a|—k E™an| — |Alm — |ao|
> = -\ . 2.16
—2<k )@*wmwum+me@ ma"). (216

Since all the zeros of f(z) —Amz" = g(2) lie in |2| < 1 and |a/k| > 1, it follows
by Lemma 1.5 that all the zeros of

n nma ,,_
Da/k(f(z)_m)‘z ) :Da/kf(z)_ L 2P
lie in |z] < 1. This implies that
Do f(2)] > L I SN (2.17)

k
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In view of this inequality, choosing argument of A\ in the left hand side of
inequality (2.16) such that

nma -1
k
ol

. g

Da/kf(z) -

= |Dosif(2)] =L

Hence we get for |z| =1 and || > k,

nim|af|A|

|Doyif(2)] — ?
> 5 () (v e e ) () = ),
which on simplification yields,
() (0 b 1)1
—k\ (K" an| — |Am —
() o= ) 2
()

This implies for |z| =1 and |a| > &,

1 \a|—k)< k”|an|—|)\|m—\a0])
max |D,P(z)| > = n+ max |P(z
\z|:k| () 2( k E™an| — |Alm + |ao] |z|:k‘ ()

(o (Pl il
2 k k™|an| — [A/m + |ao|

n(lal+k

Moreover since D, P(z) is a polynomial of degree at most n — 1, applying
(1.7) of Lemma 1.3 with R = k > 1 and (1.13) of Lemma 1.5 with |a| > k,0 <
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[ <1, we obtain for n > 2 and |z| =1

knt J‘rn|ax |DoP(2)| — (K" — k"3 |nag + aa|
z|=1

>1 la] — K n+k"]an]—lm—]ag\
— 2 k E™ay| — Im + |ao|

L2 P )’Jrk:”—ll +21cn—1|an_1| -1 k21
ma. z m —
1+ E" ol e k41 n n—2

1/ el =K\ [K"an| —lm — |ag|

- = Im
2 k k™ apn| — Im + |ag|
AN

Equivalently, we have for n > 2, |o| > k, 0 <[ <1 and |z| =1,

max |DoP(z)| >
=1

|2l

ot { ol = 1) max PG+ al + 1/}
(Jo] k) (K"[a] ~ Im — Jao
k" P —1
e + 1) \ Bt an| — im + |ao| max| P(z)] - im

(laf = F)lan-| <n+ k"an| — lm — \a0!>
k(1+ k™) k™|an| — Im + |ao|

(k:”l k:”—21>
>< J—
n n—2

+ (1 = 1/E%)|nag + aay.

_|_

This proves Theorem 2.5 for the case n > 2.

Similarly we can prove Theorem 2.5 for the case n = 2 by applying inequality
(1.8) of Lemma 1.3 instead of inequality (1.7) and inequality (1.14) of Lemma
1.5 instead of inequality (1.13). This completes the proof of Theorem 2.5. O

Remark 2.6. As before, it is easy to see that Theorem 2.5 is refinement of
Theorem 2.1. Also for [ = 0, Theorem 2.5 reduces to Theorem 2.1. Further
for k = 1, inequality (2.12) gives a refinement of inequality (1.6).

If we divide both sides of inequality (2.12) by || and let || — oo, we get
the following result:
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Corollary 2.7. If all the zeros of polynomial P € P, of degree n > 2 lie in
2| <k where k > 1 and m = min|;— |P(z)], then for 0 <1 <1,

Plz)| > "
gl‘;f! (Z)|—1+k:n

1 k™ an| — Im — |ao]
k" P —1
| et o) O e P = m)

k™ ap| —Im —
+k"‘1\an_1\¢(k)<n+ n] L ’C‘O')},

k™|ay| — lm + |ag

(max |P(2)| + m) + ¥R

(2.18)

where ¢(k) and (k) are same as defined in Theorem 2.1.

The result is sharp and equality in (2.18) holds for P(z) = 2" + k™.

Remark 2.8. Clearly Corollary 2.7 refines Corollary 2.3.
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