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Abstract. The main objective of this paper is to investigate and prove the existence

and uniqueness theorems of the solution of nonlinear Volterra-Fredholm integro-differential

equations of fractional order. The theorems of two types for the nonlinear fractional or-

der Volterra-Fredholm integro-differential equations such as one- and two-dimensional are

proved by applying the fixed point theorem of Banach space couple with contraction mapping

principle, in which the sufficient conditions are presented in order to ensure the existence

and uniqueness of a unique fixed point related to the Volterra-Fredholm integro-differential

equation in operator form.

1. Introduction

The topic fractional calculus can be measured as an old as well as a new sub-
ject. Started from some speculations of Leibniz and Euler, followed by other
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important mathematicians like Laplace, Fourier, Abel, Liouville, Riemann and
Holmgren [22]. In the fractional calculus the various integral inequalities plays
an important role in the study of qualitative and quantitative properties of
solution of differential and integral equations.

In recent years, many authors focus on the development of techniques for
discussing the solutions of fractional differential and integro-differential equa-
tions. For instance, we can remember the following works:

Ibrahim and Momani [20] studied the existence and uniqueness of solu-
tions of a class of fractional order differential equations, Karthikeyan and Tru-
jillo [21] proved existence and uniqueness of solutions for fractional integro-
differential equations with boundary value conditions, Bahuguna and Dabas
[2] applied the method of lines to establish the existence and uniqueness of a
strong solution for the partial integrodifferential equations, Ahmad and Siva-
sundaram [1] studied some existence and uniqueness results in a Banach space
for the fractional integro-differential equation, Matar [24] deliberated the ex-
istence of solutions for nonlocal fractional semilinear integro-differential equa-
tions in Banach spaces via Banach fixed point theorem, Momani et al. [25]
proved the Local and global uniqueness result by using Bihari’s inequality for
the fractional integro-differential equation, Wu and Liu [30] discussed the exis-
tence and uniqueness of solutions for fractional integro-differential equations,

Recently, in [3, 6, 7, 11, 12, 14, 15, 16, 17, 18, 19, 25, 31] the author’s
obtained the result on uniqueness of solutions for fractional integro-differential
equations with nonlocal conditions using the fixed point theorem of Banach
space couple with contraction mapping principle.

Motivated by above work, in this paper we discuss new uniqueness results
for Caputo fractional Volterra-Fredholm integro-differential equation of the
form:

c
0D

α
t u(x, t) = g(x, t) +

∫ x

a
Z1(y, t, u(y, t))dy +

∫ b

a
Z2(y, t, u(y, t))dy, (1.1)

c
0D

α
t u(x, t)=g(x, t)+

∫ x

a

∫ t

0
Z1(y, t, u(y, t))dsdy +

∫ b

a

∫ t

0
Z2(y, t, u(y, t))dsdy,

(1.2)
with initial condition:

u(x, 0) = u0(x) (1.3)

where c
0D

α
t is the Caputo’s fractional derivative, 0 < α ≤ 1, x ∈ [a, b], t ∈

[0, T ].
The main objective of this paper is to investigate and prove the unique-

ness theorems of the solution of nonlinear partial Volterra-Fredholm integro-
differential equations of fractional order. The theorems of two types for the
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nonlinear fractional order partial integro-differential equations such as one-
and two-dimensional are proved by applying the fixed point theorem of Ba-
nach space couple with contraction mapping principle and some properties of
fractional calculus.

The rest of the paper is organized as follows: In Section 2, some essential
notations, definitions and Lemmas related to fractional calculus are recalled.
In Section 3, the new existence and uniqueness results of the solution for
Caputo fractional Volterra-Fredholm integro-differential equation have been
proved. Finally, we will give a report on our paper and a brief conclusion is
given in Section 4.

2. Preliminaries

The mathematical definitions of fractional derivative and fractional integra-
tion are the subject of several different approaches. The most frequently used
definitions of the fractional calculus involves the Riemann-Liouville fractional
derivative, Caputo derivative and we give some basic definitions and theorem
which are used later on in this paper [4, 5, 8, 9, 10, 13, 23, 26, 28, 30].

Definition 2.1. ([22], Riemann-Liouville fractional integral) The Rie-
mann-Liouville fractional integral of order α > 0 of a function h is defined
as

aJ
α
t h(x, t) =

1

Γ(α)

∫ t

a
(t− s)α−1h(x, s)ds, α ∈ R+,

aJ
0
t h(x, t) = h(x, t),

where R+ is the set of positive real numbers.

Definition 2.2. ([22], Caputo fractional derivative) The fractional deriv-
ative of h(x) in the Caputo sense is defined by

aD
α
t h(x, t) = Jm−αDmh(x, t)

=


1

Γ(m−α)

∫ t
a(t− s)m−α−1 ∂

mh(x,s)
∂sm ds, m− 1 < α < m,

∂mh(x,t)
∂tm , α = m, m ∈ N,

where the parameter α is the order of the derivative and is allowed to be real
or even complex.

In this paper, only real and positive α will be considered. Hence, we have
the following properties:

(1) aJ
α
x aJ

v
xh(x) = Jα+vh(x), α, v > 0,

(2) aJ
α
x h

β(x) = Γ(β+1)
Γ(β+α+1)h

β+α(x),
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(3) aD
α
xh

β(x) = Γ(β+1)
Γ(β−α+1)h

β−α(x), α > 0, β > −1.

(4) aJ
α
x aD

α
xh(x) = h(x)−

∑m−1
k=0 h

(k)(0+) (x−a)k

k! , x > 0.

Definition 2.3. ([22], Riemann-Liouville fractional derivative) The Rie-
mann Liouville fractional derivative of order α > 0 is normally defined as

Dαh(t, x) = DmJm−αh(t, x), m− 1 < α ≤ m, m ∈ N. (2.1)

Definition 2.4. ([27]) Let T : X −→ X be a mapping on a normed space
(X, ‖.‖). A point x ∈ X for which Tx = x is called a fixed point of T .

Definition 2.5. ([29]) The mapping T on a normed space (X, ‖.‖) is called
contractive if there is a non-negative real number c ∈ (0, 1), such that

‖Tx− Ty‖ ≤ c‖x− y‖
for all x, y ∈ X.

Lemma 2.6. ([32], Banach fixed point theorem) Let (X, ‖.‖) be a complete
normed space, and let T : X −→ X be a contraction mapping. Then T has
exactly one fixed point.

3. Main results

In this section, we shall give an existence and uniqueness results of Eq.(1.1)
and Eq.(1.2), with the initial condition (1.3) and prove it. Before starting and
proving the main results, we introduce the following hypotheses:

(A1) There exist two constants L1, L2 > 0 such that, for any u1, u2 ∈
Ct([a, b]× [0, T ])

‖Z1(y, s, u1(y, s))− Z1(y, s, u2(y, s))‖ ≤ L1 ‖u1 − u2‖ ,
‖Z2(y, s, u1(y, s))− Z2(y, s, u2(y, s))‖ ≤ L2 ‖.u1 − u2‖ .

(A2) The function g : [a, b]→ [0, T ] is continuous.

Lemma 3.1. Let u be defined on Ct([a, b]× [0, T ]) with continuous nth order
partial derivatives with respect to t. Then u(x, t) is a solution of the problem
(1.1)− (1.3) iff u satisfies

u(x, t) = u0(x) + 0I
α
t g(x, t) +

1

Γ(α)

∫ t

0
(t− s)α−1

[ ∫ x

a
Z1(y, s, u(y, s))dy

+

∫ b

a
Z2(y, s, u(y, s))dy

]
ds

for x ∈ [a, b], t ∈ [0, T ].
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Theorem 3.2. If the hypotheses (A1)− (A2) hold, and

Tα(b− a)(L1 + L2)

Γ(α+ 1)
< 1, (3.1)

then the fractional integro-differential equation (1.1)-(1.3) has a unique solu-
tion.

Proof. By Lemma 3.1, we know that a function u is a solution to (1.1)-(1.3)
iff u satisfies

u(x, t) = u0(x) + 0I
α
t g(x, t) +

1

Γ(α)

∫ t

0
(t− s)α−1

[ ∫ x

a
Z1(y, s, u(y, s))dy

+

∫ b

a
Z2(y, s, u(y, s))dy

]
ds.

We transform the Cauchy problem (1.1)-(1.3) to be applicable to fixed point
problem and define the operator T : Ct([a, b]× [0, T ]) −→ Ct([a, b]× [0, T ]) by

(Tu)(x, t) = u0(x) + 0I
α
t g(x, t) +

1

Γ(α)

∫ t

0
(t− s)α−1

[ ∫ x

a
Z1(y, s, u(y, s))dy

+

∫ b

a
Z2(y, s, u(y, s))dy

]
ds,

we can see that, if u is a fixed point of T , then u is a solution of (1.1)-(1.3).
Now we prove that T has a fixed point u in Ct([a, b]× [0, T ]). For that, let

u1, u2 ∈ Ct([a, b]× [0, T ]) and for any x ∈ [a, b] such that

u1(x, t) = u0(x) + 0I
α
t g(x, t) +

1

Γ(α)

∫ t

0
(t− s)α−1

[ ∫ x

a
Z1(y, s, u1(y, s))dy

+

∫ b

a
Z2(y, s, u1(y, s))dy

]
ds,

and

u2(x, t) = u0(x) + 0I
α
t g(x, t) +

1

Γ(α)

∫ t

0
(t− s)α−1

[ ∫ x

a
Z1(y, s, u2(y, s))dy

+

∫ b

a
Z2(y, s, u2(y, s))dy

]
ds.
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Consequently, we getwwwTu1(x, t)− Tu2(x, t)
www

≤
wwwu0(x) + 0I

α
t g(x, t) +

1

Γ(α)

∫ t

0
(t− s)α−1

×
[ ∫ x

a
Z1(y, s, u1(y, s))dy +

∫ b

a
Z2(y, s, u1(y, s))dy

]
ds

−u0(x)− 0I
α
t g(x, t)− 1

Γ(α)

∫ t

0
(t− s)α−1

×
[ ∫ x

a
Z1(y, s, u2(y, s))dy +

∫ b

a
Z2(y, s, u2(y, s))dy

]
ds
∥∥∥

≤
∥∥∥ 1

Γ(α)

∫ t

0
(t− s)α−1

[ ∫ x

a

[
Z1(y, s, u1(y, s))− Z1(y, s, u2(y, s))

]
dy

+

∫ b

a

[
Z2(y, s, u1(y, s))− Z2(y, s, u2(y, s))

]
dy
]
ds
∥∥∥

≤ 1

Γ(α)

∫ t

0
(t− s)α−1

[ ∫ x

a
L1

wwwu1(y, s)− u2(y, s)
wwwdy

+

∫ b

a
L2

wwwu1(y, s)− u2(y, s)
wwwdy]ds

≤ (L1 + L2)

Γ(α)

tα

α
(b− a)

wwwu1 − u2

www
≤ (L1 + L2)(b− a)Tα

Γ(α+ 1)

wwwu1 − u2

www.
Since (L1+L2)(b−a)Tα

Γ(α+1) < 1, which implies T is a contractive mapping and there-

fore T has a unique fixed point, which means that equation (1.1) has a unique
solution. �

Lemma 3.3. Let u be defined on Ct([a, b]× [0, T ]) with continuous nth order
partial derivatives with respect to t. Then u(x, t) is a solution of the problem
(1.2)− (1.3) iff u satisfies

u(x, t) = u0(x) + 0I
α
t g(x, t)

+
1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0
(t− ξ)α−1Z1(y, s, u(y, s))dydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0
(t− ξ)α−1Z2(y, s, u(y, s))dydsdξ
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for x ∈ [a, b].

Theorem 3.4. If the hypotheses (A1)-(A2) hold, and

Tα+1(b− a)(L1 + L2)

Γ(α+ 2)
< 1, (3.2)

then the fractional integro-differential equation (1.2)-(1.3) has a unique solu-
tion.

Proof. By Lemma 3.3. we know that a function u is a solution to (1.2)-(1.3)
iff u satisfies

u(x, t) = u0(x) + 0I
α
t g(x, t)

+
1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0
(t− ξ)α−1Z1(y, s, u(y, s))dydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0
(t− ξ)α−1Z2(y, s, u(y, s))dydsdξ.

We transform the Cauchy problem (1.2)-(1.3) to be applicable to fixed point
problem and define the operator T : Ct([a, b]× [0, T ]) −→ Ct([a, b]× [0, T ]) by

(Tu)(x, t) = u0(x) + 0I
α
t g(x, t)

+
1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0
(t− ξ)α−1Z1(y, s, u(y, s))dydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0
(t− ξ)α−1Z2(y, s, u(y, s))dydsdξ,

we can see that, if u is a fixed point of T , then u is a solution of (1.2)-(1.3).
Now we prove T has a fixed point u in Ct([a, b]× [0, T ]). For that, let u1, u2 ∈
Ct([a, b]× [0, T ]) and for any x ∈ [a, b] such that

u1(x, t) = u0(x) + 0I
α
t g(x, t)

+
1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0
(t− ξ)α−1Z1(y, s, u1(y, s))dydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0
(t− ξ)α−1Z2(y, s, u1(y, s))dydsdξ

and

u2(x, t) = u0(x) + 0I
α
t g(x, t)

+
1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0
(t− ξ)α−1Z1(y, s, u2(y, s))dydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0
(t− ξ)α−1Z2(y, s, u2(y, s))dydsdξ.
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Consequently, we getwwwTu1(x, t)− Tu2(x, t)
www

≤
wwwu0(x) + 0I

α
t g(x, t) +

1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0

(t− ξ)α−1Z1(y, s, u1(y, s))dydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0

(t− ξ)α−1Z2(y, s, u1(y, s))dydsdξ

−u0(x)− 0I
α
t g(x, t)− 1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0

(t− ξ)α−1Z1(y, s, u2(y, s))dydsdξ

− 1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0

(t− ξ)α−1Z2(y, s, u2(y, s))dydsdξ
∥∥∥

≤
∥∥∥ 1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0

(t− ξ)α−1[Z1(y, s, u1(y, s))− Z1(y, s, u2(y, s))]dydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0

(t− ξ)α−1[Z2(y, s, u1(y, s))− Z2(y, s, u2(y, s))]dydsdξ
∥∥∥

≤ 1

Γ(α)

∫ t

0

∫ x

a

∫ ξ

0

(t− ξ)α−1L1

wwwu1(y, s)− u2(y, s)
wwwdydsdξ

+
1

Γ(α)

∫ t

0

∫ b

a

∫ ξ

0

(t− ξ)α−1L2

wwwu1(y, s)− u2(y, s)
wwwdydsdξ

≤ (L1 + L2)

Γ(α)

tα+1

α(α+ 1)
(b− a)

wwwu1 − u2www
≤ (L1 + L2)(b− a)Tα+1

Γ(α+ 2)

wwwu1 − u2www.
Since (L1+L2)(b−a)Tα+1

Γ(α+2) < 1, T is a contractive mapping and therefore T has a

unique fixed point, which means that equation (1.2) has a unique solution. �

4. Conclusion

The main purpose of this paper was to present new existence and unique-
ness results of the solution for Caputo fractional Volterra-Fredholm integro-
differential. The techniques used to prove our results are a variety of tools
such as the fixed point theorem of a Banach space couple with contraction
mapping principle and some properties of fractional calculus. Moreover, the
results of references [21, 25] appear as a special case of our results.
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