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Abstract. In this paper we consider a class of nonlinear evolution equations on infinite

dimensional Banach spaces driven by finitely additive measures generalizing the classical

models of impulsive systems. We use measures as controls and prove existence of optimal

controls and present necessary (and sufficient) conditions of optimality. Further, we prove

a convergence theorem based on the necessary conditions of optimality. Using the general

results we construct the necessary conditions of optimality for purely impulsive systems.

In the final section we extend our results from signed measures to finitely additive vector

measures taking values in infinite dimensional Banach spaces.

1. Introduction

In a recent paper [5] Ahmed and Wang considered a class of finite dimen-
sional nonlinear systems driven by measures and then applied to purely impul-
sive systems and presented necessary conditions of optimality. These results
were then applied to several control problems arising from ecology and space
crafts. In this paper we consider infinite dimensional systems driven by finitely
additive measures covering purely impulsive systems as a special case.

In the literature, an impulsive system is popularly described by a set of
evolution equations on mutually disjoint intervals of time describing, on each
interval, continuous evolution of the state followed by a jump. A much larger
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class of systems governed by differential equations or inclusions on Banach
spaces and driven by vector measures taking values in infinite dimensional
Banach spaces were introduced by the author in several papers [2, 3, 4, 6, 7].
Optimal control of such systems were considered using either relaxed controls
or controls determined by vector measures. This class of systems cover the
purely impulsive systems as special cases.

In this paper we consider another large class of infinite dimensional nonlin-
ear dynamic systems on Banach spaces driven by space-time vector measures
generalizing the class of impulsive systems in the literature. Here first we
use signed measures as controls and then extend it to vector measures taking
values in Banach spaces. We prove existence of optimal controls and then
present necessary conditions of optimality whereby one can construct the op-
timal controls. Also a convergence theorem based on the necessary conditions
of optimality is proved ensuring convergence of the algorithm.

For finite dimensional purely impulsive systems several computational tech-
niques have been developed by Lin, Loxton, Teo and Wu [11, 13], Ahmed and
Wang [5] and successfully applied in the area of finance [10], forest ecosystem
management [12], and space craft attitude control [5]. For infinite dimensional
systems driven by space-time vector measures one can use our algorithm to
develop similar numerical techniques to construct optimal policies.

The rest of the paper is organized as follows. In Section 2, we present the
general system dynamics. First, we consider the class of purely impulsive sys-
tems obtained from the general model by choosing purely discrete measures
and prove existence of solutions including regularity properties thereof. Then
we introduce the basic assumptions and consider the more general class of sys-
tems driven by finitely additive measures. We prove existence and uniqueness
of solutions including their regularity properties. In Section 3, we consider
optimal control problems, in particular, the Bolza problem. First, we intro-
duce the class of admissible controls and state a theorem giving the necessary
and sufficient conditions characterizing weakly compact sets in the space of
finitely additive (control) measures. Then we prove continuous dependence of
solutions with respect to control measures (weak to strong). Using this result
we prove existence of optimal controls. In Section 4, we develop the necessary
conditions of optimality whereby one can determine the optimal controls. In
Section 5, we present a convergence theorem based on the necessary conditions
of optimality developed in the previous section. This theorem guarantees the
convergence of the sequence of controls constructed on the basis of the nec-
essary conditions of optimality. Finally, in Section 6 we discuss some natural
generalization of the results presented in this paper.
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2. System dynamics

In general an impulsive system can be modelled by a differential equation
on a Banach space X driven by finitely or countably additive vector measures.
Let U be a Polish space (for example, a complete separable metric space) and
I ≡ [0, T ] a closed bounded interval. Let ΣI×U denote an algebra (or a field) of
subsets of the set I×U. And let B∞(I×U) denote the space of bounded mea-
surable real valued functions. Furnished with the supnorm topology B∞(I×U)
is a Banach space. It is known that the continuous (topological) dual of this
space is given by the space of bounded finitely additive measures defined on
ΣI×U which may be denoted by Mbfa(Σ(I×U)).

For convenience of the reader we recall the definition of the variation norm.
Let D be a ΣI×U measurable subset of the set I × U and let Π denote any
finite disjoint ΣI×U measurable partition of the set D. The total variation of
µ on D, denoted by |µ|(D), is given by

|µ|(D) ≡ sup
Π

∑
σ∈Π

|µ|(σ)

where the sum is taken over the elements of the finite partition Π and the
supremum is taken with respect to the class of all such finite partitions. The
norm of the measure µ is then given by ‖ µ ‖≡ |µ|(I × U). Endowed with
the total variation norm,Mbfa(ΣI×U ) is a Banach space. A continuous linear
functional ` on B∞(I × U) has the representation through an element µ ∈
Mbfa(ΣI×U ) giving

`(f) =

∫
I×U

f(t, ξ)µ(dt× dξ).

We can use these measures to develop mathematical models for dynamic
systems which exhibit impulsive behavior. In general a system governed by any
differential equation on a Banach space subject to or controlled by impulsive
forces can be described as follows:

dx(t) = Ax(t)dt+ F (t, x(t))dt+

∫
U
G(t, x(t), ξ)µ(dt× dξ), t ∈ I,

x(0) = x0, (2.1)

where A is the infinitesimal generator of a C0 semigroup {S(t), t ≥ 0} ⊂ L(X),
and the functions F : I × X −→ X and G : I × X × U −→ X are Borel
measurable maps and µ ∈Mbfa(ΣI×U ). Using the semigroup and variation of
constants formula (Duhamels formula) this differential equation can be written
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as an integral equation on the Banach space X as follows:

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds

+

∫ t

0

∫
U
S(t− s)G(s, x(s), ξ)µ(ds× dξ), t ∈ I. (2.2)

2.1. Systems Driven by Discrete Measures. In case the measure µ has
the form µ(dt× dξ) = ρ(dt)mt(dξ), the integral equation (2.2) takes the form

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds

+

∫ t

0
ρ(ds)

∫
U
S(t− s)G(s, x(s), ξ)ms(dξ), t ∈ I. (2.3)

Further, if µ is a discrete measure given by a weighted sum of a finite number
of Dirac measures as seen below,

µ(dt× dξ)) =
∑

aiδti(dt)δvi(dξ), 0 < t1 < t2 < · · · < tκ < T,

for ai ∈ R, vi ∈ U, κ ∈ N, the integral equation (2.2) reduces to

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds

+
∑
ti≤t

S(t− ti)aiG(ti, x(ti−), vi), t ∈ I. (2.4)

It is clear that the jump size at time ti is determined by the following vector

Ĝi(ti, x(ti−)) ≡ aiG(ti, x(ti−), vi), i = 1, 2, · · · , κ. (2.5)

Using this notation, we observe that equation (2.4) can be written as

x(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds

+
∑
ti≤t

S(t− ti)Ĝi(ti, x(ti−)), t ∈ I. (2.6)

Letting I0 ≡ {ti, i = 1, 2, · · · , κ} denote the time instants at which jump
occurs and recalling that S(0) = Id, it is easy to verify that system (2.6) is
the integral representation of the following system of equations:

ẋ(t) = Ax(t) + F (t, x(t)), x(0) = x0, t ∈ I \ I0; (2.7)

x(ti+) = x(ti−) + Ĝi(ti, x(ti−)), ti ∈ I0. (2.8)
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The jump size at time ti, given by Ĝi, depends on the choice of vi ∈ U and
the state of the system x(ti−) just before the jump occurs. This seems to be
natural.

Clearly, the solutions of equations (2.7)-(2.8), if they exist, are piecewise
continuous and bounded. So this is the dynamics where the jump times are
discrete and the control {vi}, determining the jump sizes Ĝi at jump times
{ti}, can be chosen as desired from the set U. In classical impulsive systems,
this is considered as control variables and can be chosen so as to optimize
certain performance measures.

We consider the question of existence and regularity properties of solutions
of the general impulsive system given by equation (2.1). First we consider the
purely impulsive system consisting of equations (2.7)-(2.8).

Theorem 2.1. Suppose A is the infinitesimal generator of a C0-semigroup
S(t), t ≥ 0, of operators in L(X), and F : I×X −→ X is Borel measurable and
uniformly Lipschitz in x ∈ X having at most linear growth and the function
G : I ×X ×U −→ X is continuous. Then the system (2.7)-(2.8) has a unique
mild solution which is piecewise continuous.

Proof. The proof is classical. Considering the interval I1 ≡ (0, t1], it fol-
lows from Lipschitz continuity and the linear growth property of F and the
semigroup S(t), t ≥ 0, that equation (2.7) has a unique mild solution ϕ1 ∈
C([0, t1], X) satisfying the integral equation

ϕ1(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, ϕ1(s))ds, t ∈ I1 ≡ [0, t1)

having the left hand limit, limt↑t1 ϕ(t) = ϕ(t1) ≡ x(t1−). According to equa-
tion (2.8) the system makes a jump at t1 resulting in the state

x(t1+) = x(t1−) + Ĝ1(t1, x(t1−)) = ϕ1(t1) + Ĝ1(t1, ϕ1(t1)).

Following this jump, again the system evolves continuously according to

ẋ(t) = Ax(t) + F (t, x(t)), x(t1) = x(t1+), t ∈ (t1, t2],

where the initial state is given by the expression as described above. Again,
by virtue of the Lipschitz and (at most) linear growth property of F , and the
fact that A is the generator of the semigroup S(t), t ≥ 0, this equation has
a unique mild solution ϕ2 ∈ C((t1, t2], X) with ϕ2(t1) = x(t1+). Taking the
limit of ϕ2 from the left up to the next jump time t2, we have ϕ2(t2) ≡ x(t2−).
As a result of the jump governed by equation (2.8), the state takes value

x(t2+) = ϕ2(t2) + Ĝ2(t2, ϕ2(t2)).
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Continuing this process one reaches the time instant tκ where, after the jump,
the state takes the value

x(tκ+) = ϕκ(tκ) + Ĝκ(tκ, ϕκ(tκ)).

Thereafter, the system evolves according to differential equation

ẋ(t) = Ax(t) + F (t, x(t)), x(tκ) = x(tκ+), t ∈ (tκ, T ]

from the initial state as shown. It has the unique mild solution given by ϕκ+1 ∈
C((tκ, T ], X) with the terminal state given by x(T ) = ϕκ+1(T ). Concatenating
the pieces maintaining time order one obtains the solution trajectory ϕ =
ϕκ+1oϕκo · · ·ϕ1. It is clear from the construction that the solution of the
system (2.7)-(2.8) is piecewise continuous and bounded. More precisely it is
bounded in supnorm and continuous from the right having left hand limits.
This completes the proof. �

Thus we have proved the existence of solution of equation (2.1) under the
assumption that the measure is discrete having the special structure given by
a sum of weighted Dirac measures

µ(dt× dξ) ≡
∑

aiδvi(dξ)δti(dt)

with total variation norm ‖ µ ‖=
∑
|ai| < ∞. Next we consider the general

model given by equation (2.1).

2.2. Systems Driven by General Measures. Here we consider the general
model driven by finitely additive bounded measures. Let U be a Polish space
(complete separable metric space)not necessarily compact and Mad(ΣI×U ) ⊂
Mbfa(ΣI×U ) be a nonempty bounded set denoting the set of admissible con-
trol measures. Later, we state more precise characterization of this set. Let
B∞(I,X) denote the space of bounded Borel measurable functions defined on
I and taking values from the Banach space X. Endowed with the sup norm
topology ‖ z ‖B∞(I,X)= sup{‖ z(t) ‖X , t ∈ I}, this is a Banach space.

We need the following basic assumptions.

(A1) The operator A is the infinitesimal generator of a C0-semigroup {S(t),
t ≥ 0} of bounded linear operators in X.

(A2) F : I × X −→ X is Borel measurable and there exists a constant
K1 > 0 such that

(1) : ‖ F (t, x) ‖X≤ K1(1+ ‖ x ‖X), x ∈ X, t ∈ I,
(2) : ‖ F (t, x)− F (t, y) ‖X≤ K1 ‖ x− y ‖, x, y ∈ X, t ∈ I.
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(A3) G : I ×X × U −→ X is Borel measurable and there exists a bounded
measurable function K2 : U −→ R0 ≡ [0,∞) and a nonnegative
bounded finitely additive nonatomic measure ν ∈M+

bfa(ΣI) such that

(1) : ‖ G(t, x, ξ)) ‖X≤ K2(ξ)(1+ ‖ x ‖X), x ∈ X, t ∈ I, ξ ∈ U,
(2) : ‖ G(t, x, ξ)−G(t, y, ξ) ‖X≤ K2(ξ) ‖ x−y ‖X , x, y ∈ X, t ∈ I, ξ ∈ U,

(3) :

∫
∆×U

K2(ξ)|µ|(dt× dξ) ≤ ν(∆), for each ∆ ∈ ΣI and for all

µ ∈Mad(ΣI×U ).

Theorem 2.2. Consider the evolution equation (2.1) with the control measure
µ ∈ Mad(ΣI×U ) and suppose the assumptions (A1), (A2), (A3) hold. Then,
for every x0 ∈ X, the system (2.1) has a unique mild solution x ∈ B∞(I,X).

Proof. For proof we use Banach fixed point theorem. For any given x0 ∈ X
and µ ∈Mad(ΣI×U ), we use the semigroup S(t), t ≥ 0, and define the operator
Γ on B∞(I,X) as follows,

Γ(x)(t) ≡ S(t)x0 +

∫ t

0
S(t− s)F (s, x(s))ds

+

∫ t

0

∫
U
S(t− s)G(s, x(s), ξ)µ(ds× dξ), t ∈ I. (2.9)

Under the given assumptions, we show that Γ maps B∞(I,X) to itself. Since
S(t), t ≥ 0, is a C0-semigroup on X and I is a finite interval there exists a
finite positive number M such that sup{‖ S(t) ‖L(X), t ∈ I} ≤M. Computing
the norm of Γ(x)(t) and using the assumptions (A2) and (A3) it follows from
triangle inequality that for each t ∈ I,

‖ Γ(x)(t) ‖X≤M ‖ x0 ‖X +MK1t(1 + sup
0≤s≤t

‖ x(s) ‖X)

+M(1 + sup
0≤s≤t

‖ x(s) ‖X)

∫ t

0

∫
U
K2(ξ)|µ|(ds× dξ). (2.10)

Using the assumption (A3), related to K2, it follows from the above inequality
that for all t ∈ I, we have

‖ Γ(x)(t) ‖X≤M ‖ x0 ‖X +M

(
K1t+

∫ t

0
ν(ds)

)
(1+ sup

0≤s≤t
‖ x(s) ‖X).

(2.11)

Since I ≡ [0, T ] is a finite interval it follows from the above inequality that

‖ Γ(x) ‖B∞(I,X)≤ M ‖ x0 ‖X +M
(
K1T + ν(I)

)(
1+ ‖ x ‖B∞(I,X)

)
.(2.12)
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This shows that the operator Γ maps B∞(I,X) to B∞(I,X). Next we verify
that Γ is a contraction. Let x, y ∈ B∞(I,X) satisfying x(0) = y(0) = x0.
Using the expression (2.9) it is easy to verify that

‖ Γ(x)(t)− Γ(y)(t) ‖X

≤MK1

∫ t

0
‖ x(s)− y(s) ‖X ds

+M

∫ t

0

∫
U
K2(ξ) ‖ x(s)− y(s) ‖X |µ|(ds× dξ), t ∈ I. (2.13)

Using the assumption (A2) related to K2, this can be rewritten as

‖ Γ(x)(t)− Γ(y)(t) ‖X ≤ MK1

∫ t

0
‖ x(s)− y(s) ‖X ds

+M

∫ t

0
‖ x(s)− y(s) ‖X ν(ds). (2.14)

Define the function β(t) ≡ M
∫ t

0 K1ds + M
∫ t

0 ν(ds), t ∈ I. Since K1 > 0

and ν ∈ M+
bfa(ΣI), it is clear that β is a nonnegative increasing function of

bounded total variation on I. Using this function, the expression (2.14) can
be rewritten as

‖ Γ(x)(t)− Γ(y)(t) ‖X ≤
∫ t

0
‖ x(s)− y(s) ‖X dβ(s). (2.15)

For any pair x, y ∈ B∞(I,X) and t ∈ I, define

ρt(x, y) ≡ sup{‖ x(s)− y(s) ‖X , 0 ≤ s ≤ t}

and note that ρT (x, y) =‖ x− y ‖B∞(I,X) . Using this notation one can easily
verify that the inequality (2.15) is equivalent to the following inequality.

ρt(Γ(x),Γ(y)) ≤
∫ t

0
ρs(x, y) dβ(s), t ∈ I. (2.16)

Considering the second iteration of the operator Γ (i.e Γ2 ≡ ΓoΓ) it follows
from the above expression and the fact that t −→ ρt(x, y) is a nondecreasing
function of t ≥ 0, that, for each t ∈ I, we have

ρt(Γ
2(x),Γ2(y)) ≤

∫ t

0
ρs(Γ(x),Γ(y))dβ(s)

≤
∫ t

0

(∫ s

0
ρθ(x, y)dβ(θ)

)
dβ(s).
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By assumption the measure ν is nonatomic and hence ν({0}) = 0 and conse-
quently β(0) = 0. Thus it follows from the above inequality that

ρt(Γ
2(x),Γ2(y) ≤

∫ t

0
ρs(x, y)β(s)dβ(s), t ∈ I (2.17)

and hence we have

ρt(Γ
2(x),Γ2(y)) ≤ ρt(x, y)

(
β2(t)/2

)
, t ∈ I. (2.18)

Continuing this process of iteration m times we arrive at the following inequal-
ity

ρt(Γ
m(x),Γm(y)) ≤ ρt(x, y)

(
βm(t)/m!

)
, t ∈ I. (2.19)

Thus, for t = T, we have

‖ Γm(x)− Γm(y) ‖B∞(I,Rn) ≤ αm ‖ x− y ‖B∞(I,Rn) (2.20)

where αm = ((β(T ))m/m!). Since β(T ) is finite, for m ∈ N sufficiently large,
αm < 1 and hence the m-th iterate of the operator Γ is a contraction. Thus
it follows from Banach fixed point theorem that Γm has a unique fixed point
x∗ ∈ B∞(I,X). Using this fact one can easily verify that x∗ is also the unique
fixed point of the operator Γ itself. This proves the existence of a unique mild
solution of equation (2.1) in the Banach space B∞(I,X). �

Under the assumptions of Theorem 2.2, along with an additional assump-
tion on the set of admissible control measures Mad(ΣI×U ), we show that
the solution set is a bounded subset of the Banach space B∞(I,X). For
µ ∈ Mbfa(ΣI×U ), let x(µ) denote the mild solution of the evolution equa-
tion (2.1).

Corollary 2.3. Consider the system (2.1) and suppose the assumptions of
Theorem 2.2 hold and that the inequality (A3)-3 holds uniformly with respect
to the admissible set of control measures Mad(ΣI×U ). Then the solution set

S ≡ {x ∈ B∞(I,X) : x = x(µ) for some µ ∈Mad(ΣI×U )} (2.21)

is a bounded subset of B∞(I,X).

Proof. It follows from Theorem 2.2 that, for each µ ∈ Mad(ΣI×U ), the evo-
lution equation (2.1) has a unique mild solution x(µ) ∈ B∞(I,X). Thus x(µ)
satisfies the following integral equation

x(µ)(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, x(µ)(s))ds

+

∫ t

0

∫
U
S(t− s)G(s, x(µ)(s), ξ)µ(ds× dξ), t ∈ I. (2.22)
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By taking the norm on either side and using the assumptions (A2) and (A3)
it follows from triangle inequality that

‖ x(µ)(t) ‖ ≤ M

(
‖ x0 ‖ +K1T +

∫ T

0

∫
U
K2(ξ)|µ|(ds× dξ)

)
+

∫ t

0
‖ x(µ)(s) ‖ dβ(s)

≤ C +

∫ t

0
‖ x(µ)(s) ‖ dβ(s), t ∈ I, (2.23)

for all µ ∈ Mad(ΣI×U ), where C ≡ M
(
‖ x0 ‖ +K1T + ν(I)

)
. By virtue of

assumption (A3)-3 guaranteeing the uniform boundedness of the admissible
set of controls relating the function K2 and the measure ν, we have C < ∞.
Using generalized Gronwall inequality [2, Lemma 5, pp.268] applied to (2.23)
and recalling that β is a nonnegative monotone increasing function of time,
one can easily verify that

‖ x(µ)(t) ‖≤ C + Ceβ(t)

∫ t

0
dβ(t), t ∈ I, ∀ µ ∈Mad(ΣI×U ). (2.24)

Hence, we have

sup{‖ x(µ) ‖B∞(I,X), µ ∈Mad(ΣI×U )}
≤ C

(
1 + β(T ) exp(β(T ))

)
<∞. (2.25)

Thus the solution set S is a bounded subset of B∞(I,X). �

3. Optimal control

To consider optimal control problems we need a more detailed characteri-
zation of admissible set of control measures. In order to consider more general
cases later, we introduce a broader class of controls. Let Y denote a real Ba-
nach space, U a Polish space, andMbfa(ΣI×U , Y ) the space of finitely additive
measures defined on a field (an algebra) Σ ≡ ΣI×U of subsets of the set I ×U
and taking values in the Banach space Y. For admissible controls we choose a
subset Mad(ΣI×U , Y ) ⊂Mbfa(ΣI×U , Y ) satisfying the following conditions:

(a1): Mad is a bounded set: sup{‖ µ ‖, µ ∈Mad(ΣI×U , Y )} <∞.
(a2): There exists a finitely additive nonnegative measure m ∈M+

bfa(ΣI×U )

such that for every B ⊂ U×I and B ∈ Σ ≡ ΣI×U , limm(B)→0 |µ|(B) =
0 uniformly with respect to µ ∈Mad(ΣI×U , Y ).

(a3): For every B ∈ Σ, the set {µ(B), µ ∈ Mad(ΣI×U , Y )} is a relatively
weakly compact subset of Y.
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Theorem 3.1. (Brooks and Dinculeanu) Suppose the Banach space Y and its
dual Y ∗ have RNP (Radon Nikodym property) and suppose the assumptions
(a1)-(a3) hold. Then, the set Mad(ΣI×U , Y ) is a (relatively) weakly compact
subset of Mbfa(ΣI×U , Y ).

Proof. See Diestel and Uhl Jr. [8, Corollary IV.2.6, p106]. �

In the finite dimensional case, for example Y = Rd, 1 ≤ d < ∞, the
condition (a3) is superfluous since it is implied by condition (a1).

Theorem 3.1 is a very general result on the characterization of weakly compact
sets in the space of finitely additive vector measures [8, Theorem IV. 2.5,
Corollary IV. 2.6, pp.106] taking values in a Banach space. The Corollary
IV.2.6 is due to Brooks and Dinculeanu which generalizes a celebrated result
due to Bartle-Dunford-Schwartz for countably additive vector measures [8,
Theorem IV.2.5].

First, we consider the spacial case, Y = R, and later in section 6, we state
some results where Y is an infinite dimensional Banach space.

Now we introduce the objective (cost) functional.

J(µ) ≡
∫
I×U

`(t, x(µ)(t), ξ)m(dt× dξ) + Φ(x(µ)(T )), (3.1)

where m ∈ M+
ad(ΣI×U ) ⊂ Mad(ΣI×U ) and x(µ) ∈ B∞(I,X) is the mild

solution of the system equation (2.1) or equivalently the associated integral
equation (2.2). The objective is to find a control measure µ ∈Mad(ΣI×U ) that
minimizes the cost functional (3.1) subject to the dynamic constraint (2.1).
For this we need optimality conditions and this depends on the question of
existence of optimal controls.

Before we can prove the existence of optimal control we need the following
important result on continuity of the control to solution map µ −→ x(µ). This
is presented in the following theorem.

Theorem 3.2. Consider the system (2.1) with the operator A being the gen-
erator of a compact C0−semigroup S(t), t > 0, on X, and the assumptions
of Theorem 2.2 and Corollary 2.3 hold with ν ∈ M+

bfa(ΣI) being nonatomic.

Then the map µ −→ x(µ) from Mad(ΣI×U ) to B∞(I,X) is continuous with
respect to the relative weak topology on Mad(ΣI×U ) and the norm topology on
B∞(I,X).

Proof. Let {µn, µo} ∈ Mad(ΣI×U ) and suppose µn
w−→ µo. Let xn ≡ x(µn) and

xo ≡ x(µo) denote the unique mild solutions of equation (2.1) corresponding
to the same initial state, x(µn)(0) = x(µo)(0) = x0 and driving measures µn
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and µo respectively. Clearly, this means that {xn, xo} satisfy the following
integral equations:

xn(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, xn(s))ds

+

∫ t

0

∫
U
S(t− s)G(s, xn(s), ξ)µn(ds× dξ), t ∈ I, (3.2)

xo(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, xo(s))ds

+

∫ t

0

∫
U
S(t− s)G(s, xo(s), ξ)µo(ds× dξ), t ∈ I, (3.3)

where {xn(t) ≡ x(µn)(t), xo(t) ≡ x(µo)(t), t ∈ I}. Subtracting the expression
(3.3) from (3.2) term by term and suitably rearranging terms we obtain the
following identity

xn(t)− xo(t) =

∫ t

0
S(t− s)[F (s, xn(s))− F (s, xo(s))]ds (3.4)

+

∫ t

0

∫
U
S(t− s)[G(s, xn(s), ξ)−G(s, xo(s), ξ)]µn(ds× dξ)

+

∫ t

0

∫
U
S(t− s)G(s, xo(s), ξ)

(
µn − µo)(ds× dξ), t ∈ I.

We denote the last term on the right hand side of the above expression by en
giving

en(t) ≡
∫ t

0

∫
U
S(t− s)G(s, xo(s), ξ)

(
µn − µo)(ds× dξ), t ∈ I. (3.5)

Evaluating the X norm on either side of the expression (3.5) and using the ba-
sic assumptions (A2) and (A3) and triangle inequality we obtain the following
inequality

‖ xn(t)− xo(t) ‖X ≤
∫ t

0
MK1 ‖ xn(s)− xo(s) ‖X ds

+

∫ t

0

∫
U
MK2(ξ) ‖ xn(s)− xo(s) ‖X |µn|(ds× dξ)

+ ‖ en(t) ‖X , t ∈ I. (3.6)

Hence, using the assumption (A3) related to the function K2 and the uniform
(with respect to the admissible set Mad) dominating property of the related
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measure ν ∈M+
bfa(ΣI), it follows from the above inequality that

‖ xn(t)− xo(t) ‖X≤
∫ t

0
MK1 ‖ xn(s)− xo(s) ‖X ds

+M

∫ t

0
‖ xn(s)− xo(s) ‖X ν(ds)+ ‖ en(t) ‖X , t ∈ I. (3.7)

Using the function β ( which is a positive monotone increasing function of
bounded variation) as defined immediately following the inequality (2.14), we
can rewrite the inequality (3.7) as follows:

‖ xn(t)− xo(t) ‖X≤
∫ t

0
‖ xn(s)− xo(s) ‖X dβ(s)+ ‖ en(t) ‖X , t ∈ I. (3.8)

Defining ϕn(t) ≡‖ xn(t) − xo(t) ‖, t ∈ I, again it follows from generalized
Gronwall inequality [2, Lemma 5, pp.268] that

ϕn(t) ≤ ‖ en(t) ‖X +

∫ t

0
exp

{∫ t

s
dβ(θ)

}
‖ en(s) ‖X dβ(s),

≤ ‖ en(t) ‖ + eβ(t)

∫ t

0
‖ en(s) ‖X dβ(s), t ∈ I. (3.9)

It suffices to show that en(t), given by the expression (3.5), converges to zero
strongly in X uniformly on I. Here we use the compactness of the semigroup
S(t), t > 0, and the weak convergence of µn to µo. For any ε > 0 we can
rewrite the expression (3.5) as

en(t) = e(1)
n (t) + e(2)

n (t), t ∈ I

where

e(1)
n (t) ≡ S(ε)

(∫ t−ε

0

∫
U
S(t− ε− s)G(s, xo(s), ξ)

(
µn − µo)(ds× dξ)

)
e(2)
n (t) =

∫ t

t−ε

∫
U
S(t− s)G(s, xo(s), ξ)(µn − µo)(ds× dξ), t ∈ I.

Referring to the first term e
(1)
n , it follows from weak convergence of µn to µo

that the integral within the round bracket converges weakly to zero. Since
by assumption the semigroup is compact, the operator S(ε) is compact and
hence the first term converges strongly to zero uniformly with respect to t ∈ I.
In other words, limn→∞ sup{‖ e(1)

n (t) ‖X , t ∈ I} = 0. Considering the second

term e
(2)
n and computing its norm and recalling that the assumption (A3)-3

holds uniformly with respect to the set of admissible controlsMad, we obtain
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the following estimate

‖ e(2)
n (t) ‖X≤ 2M

∫ t

t−ε

(
1+ ‖ xo(s) ‖X

)
ν(ds), t ∈ I.

Since xo ∈ B∞(I,X) and the measure ν is nonatomic, the above integral

converges to zero as ε ↓ 0 uniformly on I. Thus ‖ en ‖B∞(I,X)
s−→ 0, and hence

it follows from Lebesgue bounded convergence theorem that the expression on
the right hand side of the inequality (3.9) converges to zero uniformly with
respect to t ∈ I. Hence ϕn(t) −→ 0 uniformly in t ∈ I. In other words,
xn −→ xo in the norm topology of B∞(I,X). This proves the continuity of
the map µ −→ x(µ) in the sense as stated in the theorem. �

Now we are prepared to consider the question of existence of optimal con-
trols. This is presented in the following theorem.

Theorem 3.3. Consider the system (1) and suppose the assumptions of The-
orem 3.2 hold and that the set of admissible control measures Mad(ΣI×U ) is
a weakly compact subset of Mbfa(ΣI×U ) and the objective functional is given
by

J(µ) ≡
∫
I×U

`(t, x(t), ξ)m(dt× dξ) + Φ(x(T )) (3.10)

where m ∈ M+
ad(ΣI×U ) and x(t) ≡ x(µ)(t), t ∈ I, is the mild solution of

the evolution equation (2.1) corresponding to the control measure µ ∈ Mad.
Suppose the functions ` and Φ satisfy the following assumptions:

(1) ` : I × X × U −→ R is nonnegative, Borel measurable in all the
arguments, and lower semicontinuous in the second argument x ∈ X
uniformly with respect to (t, ξ) ∈ I × U, and m-integrable on I × U
uniformly with respect to x in bounded subsets of X.

(2) Φ : X −→ R is nonnegative and lower semicontinuous.

Then, there exists an optimal control measure at which J attains its minimum.

Proof. Since Mad(ΣI×U ) is weakly compact, it suffices to prove that the

map µ −→ J(µ) is weakly lower semicontinuous on Mad. Let µn
w−→ µo

in Mad(ΣI×U ). It follows from Theorem 3.2 that,(along a subsequence if nec-

essary which may be relabeled as the original sequence), x(µn)
s−→ x(µo) in

the Banach space B∞(I,X). Thus it follows from lower semicontinuity of `
and Φ in x ∈ X that

`(t, xo(t), ξ) ≤ lim `(t, xn(t), ξ), (3.11)

Φ(xo(T )) ≤ lim Φ(xn(T )) (3.12)
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for m-almost all (t, ξ) ∈ I×U. By Corollary 2.3, the solution set S is bounded
and, since ` is m-integrable on I × U uniformly with respect to x in bounded
subsets of X, both sides of the first inequality are m-integrable. Hence it
follows from the inequality (3.11) that∫

I×U
`(t, xo(t), ξ) m(dt× dξ) ≤

∫
I×U

lim `(t, xn(t), ξ) m(dt× dξ). (3.13)

Using Fatou’s Lemma, it follows from the above inequality that∫
I×U

`(t, xo(t), ξ) m(dt× dξ) ≤ lim

∫
I×U

`(t, xn(t), ξ) m(dt× dξ). (3.14)

Summing (3.12) and (3.14) we conclude that J(µo) ≤ lim J(µn). This proves
that J is weakly lower semicontinuous on Mad(ΣI×U ) and since Mad(ΣI×U )
is weakly compact we conclude that there exists a µo ∈ Mad(ΣI×U ) at which
J attains its minimum. This completes the proof. �

Remark 3.4. Since the maps µ −→ x(µ) −→ J(µ) are not convex, we cannot
expect uniqueness of the control measure. However, using the fact that J is
weakly lower semi-continuous onMad, one can prove that the set of optimizers

Op ≡
{
µ ∈Mad : J(µ) = inf{J(%), % ∈Mad}

}
is a weakly closed subset ofMad and hence a weakly compact subset ofMad.

4. Necessary conditions of optimality

In the preceding section we proved existence of optimal control policies.
Here we present the necessary conditions of optimality whereby one can de-
termine the optimal controls. For necessary conditions of optimality we need
stronger regularity properties for the functions {F,G, `,Φ}. For any Banach
space E, let L1(m,E) denote the space of Bochner m-integrable functions on
I × U with values in E. Again, for a technical reason, we have to limit the
Banach space X used for the state space. It will be clear in the proof of the
following result.

Theorem 4.1. Let X be a separable reflexive Banach space. Suppose the
assumptions of Theorem 3.3 remain in force and that the set Mad(ΣI×U ) is
also convex. Further, suppose the pair {F,G} is once Gâteaux differentiable in
the state variable with the Gâteaux derivatives being continuous and bounded,
and the functions {`,Φ} appearing in the objective functional (3.10) are once
continuously Gâteaux differentiable with respect to the state variable satisfying
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`x(·, xo(·), ·) ∈ L1(m,X∗) and Φx(·) ∈ X∗. Then, in order for the control state
pair {µo, xo} ∈ Mad(ΣI×U )×B∞(I,X) to be optimal, it is necessary that there
exists a ψ ∈ B∞(I,X∗) such that the triple {µo, xo, ψ} satisfies the following
system of evolution equations, and the inequality:

dxo(t) = Axodt+ F (t, xo(t))dt+

∫
U
G(t, xo(t), ξ)µo(dt× dξ), x(0)

x0(0) = x0, (4.1)

−dψ(t) = A∗ψdt+DF ∗(t, xo(t))ψ(t)dt

+

∫
U
DG∗(t, xo(t), ξ) ψ(t) µo(dt× dξ)

+

∫
U
`x(t, xo(t), ξ) m(dt× dξ), ψ(T ) = Φx(xo(T )), (4.2)

∫
I×U

< ψ(t), G(t, xo(t), ξ) >X∗,X (µ− µo)(dt× dξ) ≥ 0, ∀ µ ∈Mad. (4.3)

Proof. Suppose µo ∈ Mad(ΣI×U ) is optimal and µ ∈ Mad(ΣI×U ) ≡ Mad

any other element, and ε > 0. By convexity of Mad, it is clear that µε ≡
µo + ε(µ−µo) ∈Mad for all ε ∈ [0, 1]. Then, by optimality of µo, it is evident
that

J(µε) ≥ J(µo) ∀µ ∈Mad, and ε ∈ [0, 1].

Hence

(1/ε)(J(µε)− J(µo)) ≥ 0 ∀µ ∈Mad and ε ∈ (0, 1]. (4.4)

Let {xε, xo} ∈ B∞(I,X) denote the mild solutions of the state equation (2.1)
corresponding to the control measures {µε, µo} respectively. In other words,
{xε, xo} satisfy the following integral equations

xε(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, xε(s))ds

+

∫ t

0

∫
U
S(t− s)G(s, xε(s), ξ)µε(ds× dξ), t ∈ I, (4.5)

xo(t) = S(t)x0 +

∫ t

0
S(t− s)F (s, xo(s))ds

+

∫ t

0

∫
U
S(t− s)G(s, xo(s), ξ)µo(ds× dξ), t ∈ I. (4.6)

It is evident that µε
w−→ µo. In fact it follows from the construction of µε

that this convergence also holds in the strong sense (total variation norm).
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Clearly, it follows Theorem 3.2 that xε
s−→ xo in B∞(I,X). Further, sub-

tracting equation (4.6) from equation (4.5) term by term and computing the
difference quotient (1/ε)(xε(t) − xo(t)) and letting ε ↓ 0, and denoting the
limit by y, if one exists, we have

y(t) ≡ lim
ε↓0

(1/ε)(xε(t)− xo(t)), t ∈ I. (4.7)

One can easily verify that y satisfies the following evolution equation in the
mild sense

dy(t) = Aydt+DF (t, xo(t))y(t)dt+

∫
U
DG(t, xo(t), ξ)y(t)µo(dt× dξ)

+

∫
U
G(t, xo(t), ξ)(µ− µo)(dt× dξ), y(0) = 0, t ∈ I. (4.8)

This is a linear differential equation in y and can be written compactly as

dy = Aydt+B(t)y(t)dt+ Λ(dt)y + ϑµ(dt), y(0) = 0, t ∈ I, (4.9)

where

B(t) ≡ DF (t, xo(t)), t ∈ I,

Λ(∆) ≡
∫

∆×U
DG(t, xo(t), ξ)µo(dt× dξ), for each ∆ ∈ ΣI ,

ϑµ(∆) ≡
∫

∆×U
G(t, xo(t), ξ)(µ− µo)(dt× dξ), for each ∆ ∈ ΣI .

Here ΣI denotes a field of subsets of the set I. Since, under the given as-
sumptions, both F and G are continuously Gâteaux differentiable in the state
variable with the Gâteaux derivatives being bounded on bounded sets and
xo ∈ B∞(I,X), and µo, µ ∈Mad(ΣI×U ), it is clear that B is a bounded oper-
ator valued function with values in L(X), and Λ(∆),∆ ∈ ΣI , is also a bounded
operator valued measure belonging toMbfa(ΣI ,L(X)), and ϑµ ∈Mbfa(ΣI , X)
is a bounded finitely additive X valued vector measure. This is a Banach space
with respect to the total variation norm. Using Banach fixed point theorem, as
in Theorem 2.2, one can verify that the variational equation (4.9), and hence
(4.8), has a unique mild solution y ∈ B∞(I,X) and the limit in (4.7) is well
defined. Thus the map,

ϑµ −→ y (4.10)

fromMbfa(ΣI , X) toB∞(I,X), is a continuous linear map and hence bounded.
On the other hand, computing the difference quotient (4.4), letting ε ↓ 0, we
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obtain the Gâteaux differential of J at µo in the direction µ− µo as follows:

dJ(µo, µ− µo) = lim
ε↓0

(1/ε)(J(µε)− J(µo))

=

∫
I×U

< `x(t, xo(t), ξ), y(t) >X∗,X m(dt× dξ)

+ < Φx(xo(T )), y(T ) >X∗,X . (4.11)

By optimality of µo, it follows from (4.4) that

dJ(µo, µ− µo) ≥ 0, ∀ µ ∈Mad. (4.12)

By assumption, `x(·, xo(·), ·) ∈ L1(m,X) and Φx(xo(T )) ∈ X∗. Combining
this with the fact that equation (4.9) has a unique solution y ∈ B∞(I,X), we
conclude that the functional L, given by

L(y) ≡
∫
I×U

< `x(t, xo(t), ξ), y(t) >X∗,X m(dt× dξ)

+ < Φx(xo(T )), y(T ) >X∗,X , (4.13)

is a well defined bounded linear functional on the Banach space B∞(I,X).
Thus y −→ L(y) is a continuous linear functional on B∞(I,X) and hence it
follows from (4.10) that the composition map

ϑµ −→ y −→ L(y) ≡ L̃(ϑµ) (4.14)

is a continuous linear functional on the Banach space Mbfa(ΣI , X). Hence
there exists a ψ ∈ (Mbfa(ΣI , X))∗ ≡M∗bfa(ΣI , X) such that

L̃(ϑµ) =<< ψ, ϑ >>M∗bfa(ΣI ,X),Mbfa(ΣI ,X)≡
∫
I
< ψ(t), ϑµ(dt) >X∗,X , (4.15)

whereM∗bfa(ΣI , X) denotes the dual of the Banach spaceMbfa(ΣI , X). Since
by our assumption X is reflexive, under the canonical embedding of a Banach
space into its bidual, we have B∞(I,X∗) ↪→M∗bfa(ΣI , X). It is known that a
reflexive Banach space X is separable if and only if X∗ is separable. Thus our
assumption implies that X∗ is also separable. Hence, by Pettis measurability
theorem as seen in Dunford and Schwartz [ 9, Theorem III.6.11, p149] the
elements of B∞(I,X∗) are also strongly measurable functions with values in
X∗. So the duality pairing in (4.15) is also well defined for ψ ∈ B∞(I,X∗).
Later we show that actually ψ does belong to this smaller space. Using the
expression for ϑµ in equation (4.15) we obtain

L̃(ϑµ) =

∫
I×U

< ψ(t), G(t, xo(t), ξ) >X∗,X (µ− µo)(dξ × dt). (4.16)
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It follows from (4.11)-(4.14) and (4.16) that∫
I×U

< ψ(t), G(t, xo(t), ξ) >X∗,X (µ− µo)(dξ × dt) ≥ 0, ∀µ ∈Mad. (4.17)

Thus we have proved the necessary condition (4.3). Next we prove the nec-
essary condition given by (4.2). Using the variational equation (4.8) in the
above expression and integrating by parts (justified later) and using Fubini’s
theorem one can formally derive the following identity,

L̃(ϑµ) = < ψ(T ), y(T ) >X∗,X −
∫ T

0
< y(t), dψ(t) +A∗ψ(t)dt >X,X∗

−
∫ T

0
< y(t), DF ∗(t, xo(t))ψ(t) >X,X∗ dt (4.18)

−
∫ T

0
< y(t),

(∫
U
DG∗(t, xo(t), ξ)ψ(t)µo(dt× dξ)

)
>X,X∗ .

Since the identity (4.14), expressed by L̃(ϑµ) = L(y), must hold it follows from
the above expression that ψ must satisfy the following equations:

ψ(T ) = Φx(xo(T )), (4.19)

dψ +A∗ψdt+DF ∗(t, xo(t))ψ(t)dt+

∫
U
DG∗(t, xo(t), ξ)ψ(t)µo(dt× dξ)

= −
∫
U
`x(t, xo(t), ξ)m(dt× dξ), t ∈ I. (4.20)

This is precisely the necessary condition given by equation (4.2). Equation
(4.1) is the given dynamic system with xo being the solution corresponding
to the optimal control measure µo and hence nothing to prove. To complete
the proof, it remains to show that the adjoint variable ψ, whose existence was
asserted by the duality pairing (see equation (4.15)), is actually given by the
mild solution of the evolution equation (4.20). Equation (4.20), or equivalently
(4.2), is a linear evolution equation on the Banach space X∗ with the terminal
condition (4.19) (instead of initial condition) and called the adjoint evolution
equation. This equation can be written in the compact form as follows,

−dψ = A∗ψ(t)dt+B∗(t)ψ(t)dt+ Λ∗(dt)ψ(t) + γm(dt),

ψ(T ) = Φx(xo(T )) ≡ ψo(T ), t ∈ I, (4.21)

where A∗ is the conjugate (adjoint) of the semigroup generator A, B∗(t) is
the adjoint of the bounded operator valued function B(t) ∈ L(X) and Λ∗ is
the adjoint of the operator valued measure Λ ∈ Mbfa(ΣI ,L(X)), all defined
immediately following equation (4.9). The set function γm(·) is given by

γm(σ) =

∫
σ×U

`x(t, xo(t), ξ)m(dt× dξ), for each σ ∈ ΣI .
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Since by our assumption `x(·, xo(·), ·) ∈ L1(m,X∗), this is a bounded finitely
additive X∗ valued vector measure. The mild solution of the adjoint evolution
equation (4.21) (if one exists) is given by the solution of the following backward
integral equation on the dual space X∗,

ψ(t) = S∗(T − t)Φx(xo(T )) +

∫ T

t
S∗(s− t)B∗(s)ψ(s)ds (4.22)

+

∫ T

t
S∗(s− t)Λ∗(ds)ψ(s) +

∫ T

t
S∗(s− t)γm(ds), t ∈ I.

We prove that this equation has a unique solution ψ in the smaller space
B∞(I,X∗) which is a subset ofM∗bfa(ΣI , X) even though the argument based

on duality pairing says that ψ ∈M∗bfa(ΣI , X). Before we consider the question

of existence, we show that if ψ is any solution of the integral equation (4.22) it
must necessarily belong to B∞(I,X∗). First we note that, since X is a reflexive
Banach space, the adjoint semigroup S∗(t), t ≥ 0, is also a C0-semigroup [1,
Theorem 2.4.4, p51] and belongs to L(X∗) and for any finite interval I ≡
[0, T ] there exists a finite positive number M such that sup{‖ S(t) ‖L(X)=‖
S∗(t) ‖L(X∗), t ∈ I} ≤M. For convenience of notation define

η(t) ≡ S∗(t)Φx(xo(T )) +

∫ T

t
S∗(s− t)γm(ds), t ∈ I.

Taking theX∗ norm of η and recalling that `ox(·, ·) ≡ `x(·, xo(·), ·) ∈ L1(m,X∗),
it is clear that

sup{‖ η(t) ‖X∗ , t ∈ I} ≤M{‖ Φx(xo(T )) ‖X∗ + ‖ `ox ‖L1(m,X∗)} ≡ C <∞.

Thus η ∈ B∞(I,X∗). By assumption both F and G are continuously Gâteaux
differentiable with the G-derivatives being bounded. Thus taking X∗ norm of
ψ, it follows from (4.22) that

‖ ψ(t) ‖X∗ ≤ C +MK1

∫ T

t
‖ ψ(s) ‖X∗ ds (4.23)

+M

∫ T

t
‖ ψ(s) ‖X∗

(∫
U
K2(ξ)|µo|(ds× dξ

)
, t ∈ I.

Recalling the definition of β, a nonnegative monotone increasing function
of bounded total variation as seen in equations (2.14)-(2.15), it follows from
(4.23) that

‖ ψ(t) ‖X∗≤ C +

∫ T

t
‖ ψ(s) ‖X∗ dβ(s), t ∈ I. (4.24)
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Hence it follows from generalized Gronwall inequality that

‖ ψ ‖B∞(I,X∗)≡ sup{‖ ψ(t) ‖X∗ , t ∈ I} ≤ C exp(β(T )).

Thus, if the integral equation (4.22) has a solution, it must belong toB∞(I,X∗).
Now we prove that equation (4.22) has a unique solution in B∞(I,X∗). In

view of equation (4.22), let us introduce the operator Ξ as follows

(Ξψ)(t) ≡ η(t) +

∫ T

t
S∗(s− t)B∗(s)ψ(s)ds

+

∫ T

t
S∗(s− t)Λ∗(ds)ψ(s), t ∈ I. (4.25)

Since η ∈ B∞(I,X∗) one can readily verify that Ξ : B∞(I,X∗) −→ B∞(I,X∗).
We prove that this operator has a unique fixed point in B∞(I,X∗). Let
ψ1, ψ2 ∈ B∞(I,X∗). Clearly

(Ξψ1)(t)− (Ξψ2)(t) =

∫ T

t
S∗(s− t)B∗(s)[ψ1(s)− ψ2(s)]ds (4.26)

+

∫ T

t
S∗(s− t)Λ∗(ds)[ψ1(s)− ψ2(s)], t ∈ I.

Evaluating the X∗ norm of the difference (Ξψ1)(t) − (Ξψ2)(t) and using the
assumptions (A2)-(A3) we obtain the following inequality

‖ (Ξψ1)(t)− (Ξψ2)(t) ‖X∗≤
∫ T

t
‖ ψ1(s)− ψ2(s) ‖X∗ α(ds) (4.27)

where α(ds) ≡ [MK1ds + Mν(ds)]. Since by assumption the measure ν is
nonatomic, it is clear that the measure α is nonatomic. We partition the
interval I ≡ [0, T ] into n disjoint intervals of equal length ∆ = T/n giving

I ≡ [0, T ] =

(⋃n
k=1Dk∆

)⋃
{T} where Dk∆ is given by the (left closed right

open) interval Dk∆ ≡ [T − k∆, T − (k − 1)∆). Since α is nonatomic, we can
choose n large enough so that α(Dk∆) < 1 for each k = 1, 2, · · · , n. Now,
considering the restriction of the operator Ξ on to the interval D∆, it follows
from the expression (4.27) that

‖ (Ξψ1)− (Ξψ2) ‖B∞(D∆,X∗)
≤ α(D∆) ‖ ψ1 − ψ2 ‖B∞(D∆,X∗)

.

Thus the operator Ξ, restricted to each of the sequence of Banach spaces
B∞(Dk∆, X

∗) k = 1, 2 · · ·n, is a contraction and hence it follows from Banach
fixed point theorem that the operator Ξ has a unique fixed point in B∞(I,X∗).

Hence, the integral equation (4.22) has a unique solution ψ ∈ B∞(I,X∗). It
remains to justify the integration by parts used in the expression (4.18). For
this, we use the Yosida approximation [1], Aλ ≡ λAR(λ,A), of the unbounded
operator A with λ ∈ ρ(A), the resolvent set of A. This is a family {Aλ, λ ∈
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ρ(A)} of bounded linear operators belonging to L(X) with the corresponding
semigroups {Sλ(t), t ≥ 0} ⊂ L(X). As λ → ∞, the (generalized) sequence
{Aλ} converges to the unbounded operator A in the strong operator topology
on D(A). Using this operator Aλ ∈ L(X) (in place of the unbounded operator
A) in the derivation, one arrives at the necessary conditions of optimality (4.1)-
(4.3) as stated in the theorem with xo replaced by xoλ, ψ replaced by ψλ and
µo replaced by µoλ for λ ∈ ρ(A). Then using the fact that the corresponding
semigroups {Sλ(t), t ≥ 0}, as well as its adjoint counterparts {S∗λ(t), t ≥ 0},
(since X is reflexive) converge in the strong operator topology to S(t), t ≥
0, and S∗(t), t ≥ 0, respectively uniformly on bounded intervals [Ahmed,1,
Remark 2.2.9, Corollary 2.2.10, Lemma 2.3.1], one arrives at the conclusion

that as ρ(A) 3 λ → ∞, µoλ
w−→ µo in Mad, x

o
λ

s−→ xo in B∞(I,X) and

ψλ
s−→ ψ in B∞(I,X∗). Using these results and letting λ→∞ one arrives at

the necessary conditions of optimality as stated in the theorem. This completes
the proof. �

Remark 4.2 (Sufficient Condition) The necessary conditions of optimality
(4.1)-(4.3) given by Theorem 4.1 are also sufficient. Let µo ∈Mad satisfy the
necessary conditions with {xo, ψo} being the corresponding mild solutions of
the evolution equations (4.1) and (4.2) respectively. Using Lagrange formula
one can verify that for any µ ∈Mad,

J(µ) = J(µo) + dJ(µo, µ− µo) + o(‖ µ− µo ‖),

where dJ(µo, µ−µo) denotes the Gâteaux differential of J at µo in the direction
(µ− µo) and ‖ µ− µo ‖ denotes the total variation norm. In the course of the
proof of the necessary conditions of optimality, we have seen that dJ is given
by

dJ(µo, µ− µo) =

∫
I×U

< ψo(t), G(t, xo(t), ξ) >X∗,X (µ− µo)(dt× dξ).

By virtue of the necessary condition (4.3) we have∫
I×U

< ψo(t), G(t, xo(t), ξ) >X∗,X (µ− µo)(dt× dξ) ≥ 0, ∀µ ∈Mad.

Thus J(µ) ≥ J(µo) for all µ ∈Mad and hence µo is optimal.

For purely impulsive systems given by equations (2.7)-(2.8) with the cost
functional given by (3.1) one can easily derive the necessary conditions of
optimality from Theorem 4.1 as a corollary. Here the set of admissible controls
is given by a family of discrete measures. Let A be a closed bounded subset
of the real line and V a compact subset of the Polish space U. For the set of
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admissible controls, we choose the following family of discrete signed measures:

Mδ ≡
{
µ ∈Mbfa(ΣI×U ) : µ(dt× dξ) =

κ∑
i=1

aiδti(dt)δvi(dξ) : ai ∈ A, vi ∈ V
}
,

where ti ∈ I0 ≡ {ti, i = 1, 2, · · · , κ, 0 < t1 < t2 · · · tκ < T}. It is clear that the
total variation norm of any element in this family is given by ‖ µ ‖=

∑κ
i=1 |ai|.

In the case of general system model considered in section 6, ai ∈ A, where A
is a weakly compact and convex subset of the Banach space Y. The necessary
conditions of optimality corresponding to the admissible set Mδ is given by
the following corollary.

Corollary 4.2. Consider the system (2.7)-(2.8) with the cost functional (3.1).
In order that a control measure µo(≡

∑
aoi δti(dt)δvoi (dξ)) ∈ Mδ and the cor-

responding solution xo ∈ B∞(I,X) (of equations (2.7)-(2.8)) be optimal, it is
necessary that there exists a ψo ∈ B∞(I,X∗) such that the triple {µo, xo, ψo}
satisfies the following equations and inequalities:

dxo = Axodt+ F (t, xo(t))dt, x(0) = x0, t ∈ I \ I0, (4.28)

xo(ti+) = xo(ti−) + aoiG(ti, x
o(ti−), voi ), i = 1, 2, · · · , κ, (4.29)

−dψo = A∗ψodt+DF ∗(t, xo(t))ψo(t)dt (4.30)

+

∫
U
`x(t, xo(t), ξ)m(dt× dξ), ψo(T ) = Φx(xo(T )), t ∈ I \ I0,

ψo(ti−) = ψo(ti+) + aoiDG
∗(ti, x

o(ti−), voi )ψ
o(ti+), i = 1, 2, · · · , κ, (4.31)

∑
i

ai < ψo(ti−), G(ti, x
o(ti−), vi) >X∗,X

≥
∑
i

aoi < ψo(ti−), G(ti, x
o(ti−), voi ) >X∗,X , ∀ (ai, vi) ∈ A× V. (4.32)

Proof. Proof readily follows from Theorem 4.1 by choosing Mδ as the set of
admissible controls. �

Finite dimensional version of the necessary conditions of optimality given by
Corollary 4.3 has been applied to attitude control of geosynchronous Satellites
and Population dynamics (prey-predator model) [5].
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5. A convergence theorem

For convenience of notation, let us set Z ≡ B∞(I × U) and Z∗ ≡ (B∞(I ×
U))∗ =Mbfa(ΣI×U ). Define the duality map D : Z \ {0} −→ Z∗ by

D(η) ≡ {µ ∈ Z∗ :< µ, η >Z∗,Z=‖ η ‖2Z=‖ µ ‖2Z∗}, η ∈ Z.

By virtue of Hahn-Banach theorem, the duality set D(η) 6= ∅. In general, this
is a multi valued map and for each η(6= 0) ∈ Z, D(η) is a weak star closed
convex subset of Z∗ and it is also demicontinuous. It is single valued only if
the unit ball of Z∗ is strictly convex. In our particular case, the unit ball of
Z∗ is not strictly convex.

Now we can introduce an algorithm based on the necessary conditions of
optimality given by Theorem 4.1.

Step 1: Choose an arbitrary µ1 ∈ Mad(ΣI×U ) ⊂ Mbfa(ΣI×U ) and solve
the state equation

dx = Axdt+ F (t, x)dt+

∫
U
G(t, x, ξ)µ1(dt× dξ), x(0) = x0, t ∈ I, (5.1)

(in the mild sense) giving the solution x1 ∈ B∞(I,X).

Step 2: Using the pair {µ1, x1}, solve the following adjoint equation,

−dψ = A∗ψdt+DF ∗(t, x1(t))ψ(t)dt+

∫
U
DG∗(t, x1(t), ξ)ψ(t)µ1(dt× dξ)

+

∫
U
`x(t, x1(t), ξ)µ1(dt× dξ), ψ(T ) = Φx(x1(T )), t ∈ I, (5.2)

(in the mild sense) giving ψ1 ∈ B∞(I,X∗). Now we have the triple {µ1, x1, ψ1}.
Step 3: Use the triple {µ1, x1, ψ1} in the necessary condition of optimality

given by equation (4.3) yielding the following inequality,∫
I×U

[< ψ1(t), G(t, x1(t), ξ) >X∗,X (µ− µ1)(dξ × dt) ≥ 0, ∀µ ∈M+
ad. (5.3)

If the inequality is satisfied, the measure µ1 is the optimal control. If NOT go
to Step 4.

Step 4: Define the function,

η1(t, ξ) ≡< ψ1(t), G(t, x1(t), ξ) >X∗,X , (t, ξ) ∈ I × U,

which clearly belongs to B∞(I × U). Choose any element m1 ∈ D(η1). Then
choose an ε > 0 sufficiently small so that µ2 ≡ µ1− εm1 ∈Mad(ΣI×U ). Then,
using Lagrange formula and computing J(µ2) we obtain
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J(µ2) = J(µ1) + dJ(µ1;µ2 − µ1) + o(ε)

= J(µ1)+ < η1, µ2 − µ1 >Z,Z∗ +o(ε)

= J(µ1)− ε < η1,m1 >Z,Z∗ +o(ε)

= J(µ1)− ε ‖ η1 ‖2Z +o(ε) = J(µ1)− ε ‖ m1 ‖2Z∗ +o(ε). (5.4)

Hence, for ε > 0 sufficiently small, we have J(µ2) < J(µ1). This process is
repeated by returning to Step 1 with µ2 replacing µ1. This is continued until
a prescribed stopping criterion is satisfied. Thus we have proved the following
result.

Theorem 5.1. (Convergence Theorem) Suppose the Necessary conditions of
optimality given by Theorem 4.1 hold. Then there exists a sequence {µn} ∈
Mad(ΣI×U ) ⊂Mbfa(ΣI×U ) along which the cost functional J converges mono-
tonically to its minimum.

Proof. Following the steps as presented above, we can construct a sequence
of control measures {µn} ∈ Mad(ΣI×U ) such that J(µ1) > J(µ2) > J(µ3) >
· · · J(µn) · · · . This is a monotone decreasing sequence. Since, by our assump-
tion, ` and Φ are nonnegative, J(µ) ≥ 0 for all µ ∈ Mad(ΣI×U ). Thus there
exists a nonnegative real number mo such that limn→∞ J(µn) −→ mo. This
completes the proof. �

6. Extensions to more general system models

(E1): The results presented in the preceding sections can be easily extended
to a more general class of systems driven by vector measures as stated below,

dx = Axdt+ F (t, x(t))dt+

∫
U
G(t, x(t), ξ)µ(dt× dξ), x(0) = x0, (6.1)

where A and F are the same as for system (2.1), and G : I × X × U −→
L(Y,X) and µ ∈Mbfa(ΣI×U , Y ) the space of finitely additive Y valued vector
measures. The assumption (A3) is modified as follows:

(A3) : G : I × X × U −→ L(Y,X) is Borel measurable in the uniform
operator topology on L(Y,X), and there exists a bounded measurable func-
tion K2 : U −→ R0 ≡ [0,∞) and a nonnegative bounded finitely additive
nonatomic measure ν ∈M+

bfa(ΣI) such that for all x, y ∈ X, t ∈ I and ξ ∈ U

(1) ‖ G(t, x, ξ)) ‖L(Y,X)≤ K2(ξ)(1+ ‖ x ‖X),

(2) ‖ G(t, x, ξ)−G(t, y, ξ) ‖L(Y,X)≤ K2(ξ) ‖ x− y ‖X ,

(3)

∫
∆×U

K2(ξ)|µ|(dt× dξ) ≤ ν(∆), ∆ ∈ ΣI , µ ∈Mad(ΣI×U , Y ).
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In the preceding sections we used scalar valued finitely additive measures as
controls. In this section we show that all our results remain valid for vec-
tor valued finitely additive measures as controls. Here the set of admissible
controls is given by the set

Mad(ΣI×U , Y ) ⊂Mbfa(ΣI×U , Y )

which is assumed to satisfy the compactness criterion of Brooks and Din-
culeanu as stated in Theorem 3.1.

(G1) Under the assumptions (A1),(A2), (A3), Theorem 2.2 and Corollary
2.3 remain valid. The proof is identical with minor changes in the wordings.

(G2) Under the assumptions (A1),(A2), (A3), with Mad(ΣI×U ) replaced
by Mad(ΣI×U , Y ), Theorem 3.2 and Theorem 3.3 remain valid.

(G3) Under the assumptions (A1),(A2), (A3), and convexity assumption
for the set of admissible controls, Mad(ΣI×U , Y ), the necessary conditions
of optimality (Theorem 4.1) remain valid with slight changes in notation as
follows:

dxo(t) = Axodt+ F (t, xo(t))dt+

∫
U
G(t, xo(t), ξ)µo(dt× dξ),

x(0) = x0, (6.2)

−dψ(t) = A∗ψdt+DF ∗(t, xo(t))ψ(t)dt

+

∫
U
DG∗(t, xo(t), ξ;ψ(t)) µo(dt× dξ)

+

∫
U
`x(t, xo(t), ξ) m(dt× dξ), ψ(T ) = Φx(xo(T )), (6.3)

h(µ) ≡
∫
I×U

< G∗(t, xo(t), ξ)ψ(t), (µ− µo)(dt× dξ) >Y ∗,Y ≥ 0 (6.4)

for all µ ∈ Mad, where X∗ 3 x∗ −→ DG∗(t, xo(t), ξ;x∗) is linear. In other
words, DG∗(t, xo(t), ξ; ·) ∈ L(X∗,L(X∗, Y ∗)).

The duality pairing in the expression (6.4) is better understood as

h(µ) ≡<< G∗ψ, µ− µo >>B∞(I×U,Y ∗),Mbfa(ΣI×U ,Y ∗∗) .

Since µ−µo ∈Mbfa(ΣI×U , Y ) ⊂Mbfa(ΣI×U , Y
∗∗), the pairing is well defined.

If Y is also assumed to be reflexive, it is clear that Y ∗ is also reflexive. It is
known [8] that reflexive Banach spaces have RNP (Radon-Nikodym property).
Thus, Theorem 3.1 holds for the pair {Y, Y ∗} and hence the pairing in the
expression (6.4) holds for the pair B∞(I × U, Y ∗) and Mbfa(ΣI×U , Y ).
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(E2): Another more general system model can be described by the following
evolution equation

dx = Ax(t)dt+ F (t, x(t))γ(dt) +

∫
U
G(t, x(t), ξ)µ(dt× dξ), x(0) = x0, (6.5)

where {A,G, µ} are as in (E1) and γ ∈ Mbfa(ΣI , E) is a fixed finitely ad-
ditive E-valued vector measure having bounded total variation and F : I ×
X −→ L(E,X) where E is another real Banach space. The measure µ ∈
Mad(ΣI×U , Y ) plays the role of controls. Given that γ is nonatomic, all the
results presented in this paper also apply to this case.

Some Open Problems:

(P1): In (A3), we assumed that the dominating measure ν belonging
to B+

bfy(ΣI) is nonatomic, and also in (E2) we assumed the measure γ ∈
Mbfa(ΣI , E) to be nonatomic. For a wider scope of applications, in particular
where it may be necessary to include measures containing both regular and
singular components, it is important to relax this assumption.

(P2): For purely impulsive systems, numerical techniques based on the
necessary conditions of optimality (4.28)-(4.32) are easily developed and it is
classical [5, 11, 13]. For the arbitrary measure driven systems, like (2.1) and
(6.1), it is expected that one can use the necessary conditions of optimality
(4.1)-(4.3) (Theorem 4.1) to develop suitable numerical techniques. However,
to the best of knowledge of the author, no such technique is currently available
in the literature.
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