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Abstract. The purpose of this paper is to establish some new sufficient conditions for

oscillation of the second-order neutral functional dynamic equation

[
r(t) [y(t) + p(t)y(τ(t))]∆

]∆
+ q(t)f(y(δ(t))) = 0,

on a time scale T . The main investigation of the results depends on the generalized Riccati

substitution and the analysis of the associated Riccati dynamic inequality. The results

improve some oscillation results for neutral dynamic equations in the sense that our results

do not require that r∆(t) ≥ 0 and
∫∞
t0

δ(s)q(s)[1− p(δ(s))]∆s = ∞.

1. Introduction

In this paper, we are concerned with oscillation of the nonlinear neutral
functional dynamic equation

(
r(t) [y(t) + p(t)y(τ(t))]∆

)∆
+ q(t)f(y(δ(t))) = 0, (1.1)

on a time scale T. Throughout this paper, we will assume the following hy-
potheses:
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(h1) r(t), p(t) and q(t) are real valued rd−continuous positive functions
defined on T, τ(t) : T→ T, δ(t) : T→ T, τ(t) ≤ t, for all t ∈ T and
limt→∞ δ(t) = limt→∞ τ(t) = ∞;

(h2)
∫∞
t0

(
1

r(t)

)
∆t = ∞, 0 ≤ p(t) < 1;

(h3) f : R → R is continuous function such that uf(u) > 0 for all u 6= 0
and |f(u)| ≥ K |u| for K > 0.

Since we are interested in the oscillatory and asymptotic behavior of solutions
near infinity, we assume that supT = ∞, and define the time scale interval
[t0,∞)T by [t0,∞)T := [t0,∞) ∩ T. Throughout this paper these assumptions
will be supposed to hold. Let τ∗(t) = min{τ(t), δ(t)} and let T0 = min{τ∗(t) :
t ≥ 0} and τ∗−1(t) = sup{s ≥ 0 : τ∗(s) ≤ t} for t ≥ T0. Clearly if τ∗(t) ≤ t,
then τ∗−1(t) ≥ t for t ≥ T0, where τ∗−1(t) is nondecreasing and coincides with
the inverse of τ∗(t) when the latter exists. Throughout the paper, we will use
the following notations:

x(t) := y(t) + p(t)y(τ(t)), x[1] := r
(
x∆

)
, and x[2] :=

(
x[1]

)∆
. (1.2)

By a solution of (1.1), we mean a nontrivial real-valued function y(t) which
has the properties x(t) ∈ C1

rd[τ
∗
−1(t0),∞), and x[1] ∈ C1

rd[τ
∗
−1(t0),∞) where Cr

is the space of rd−continuous functions. Our attention is restricted to those
solutions of (1.1) which exist on some half line [ty,∞) and satisfy sup{|y(t)| :
t > t1} > 0 for any t1 ≥ ty. A solution y(t) of (1.1) is said to be oscillatory if
it is neither eventually positive nor eventually negative. Otherwise it is called
nonoscillatory. The equation itself is called oscillatory if all its solutions are
oscillatory.

The study of dynamic equations on time scales, which goes back to its
founder Stefan Hilger [23], is an area of mathematics that has recently received
a lot of attention. It has been created in order to unify the study of differential
and difference equations. This way results not only related to the set of real
numbers or set of integers but those pertaining to more general time scales
are obtained.

The three most popular examples of calculus on time scales are differential
calculus, difference calculus, and quantum calculus (see Kac and Cheung [28]),
i.e, when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. Dynamic
equations on a time scale have an enormous potential for applications such
as in population dynamics. There are applications of dynamic equations on
time scales to quantum mechanics, electrical engineering, neural networks, heat
transfer, and combinatorics. A recent cover story article in New Scientist [42]
discusses several possible applications. The book on the subject of time scale,
i.e., measure chain, by Bohner and Peterson [10] summarizes and organizes
much of time scale calculus. For completeness, we recall the following concepts
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related to the notion of time scales. A time scale T is an arbitrary nonempty
closed subset of the real numbers R. The forward jump operator and the
backward jump operator are defined by σ(t) := inf{s ∈ T : s > t}, ρ(t) :=
sup{s ∈ T : s < t}, where sup ∅ = inf T. A function f : T → R is said to
be right–dense continuous (rd–continuous) provided g is continuous at right–
dense points and at left–dense points in T, left hand limits exist and are
finite. The set of all such rd−continuous functions is denoted by Crd(T ). The
graininess function µ for a time scale T is defined by µ(t) := σ(t)− t, and for
any function f : T→ R the notation fσ(t) denotes f(σ(t)).

One of the important techniques used in studying oscillations of dynamic
equations on time scales is the averaging function method. On the other hand,
the oscillatory properties can be described by the so called Reid Roundabout
Theorem (cf.[10]). This theorem shows the connection among the concepts of
disconjugacy, positive definiteness of the quadratic functional, and the solv-
ability of the corresponding Riccati equation (or inequality) which in turn
implies the existence of nonoscillatory solutions. The Reid Roundabout theo-
rem provides two powerful tools for the investigation of oscillatory properties,
namely the Riccati techniques (Riccati and generalized Riccati techniques)
and the variational principle. The main investigation of the two techniques
depends on the reduction of the equation to a Riccati equation (or inequality).
For oscillation of second-order dynamic equations, we refer the reader to the
papers [1, 2, 7, 8, 9, 12, 13, 15, 17, 18, 19, 20, 30, 31, 32, 34, 35, 38, 39] and
the references cited therein. For oscillation of second-order neutral dynamic
equations we refer the reader to the papers [3], [4], [5], [26], [27], [33], [36],
[37], [41] and [43].

Agarwal et al.[3] considered the second-order nonlinear neutral delay dy-
namic equation

[
r(t)([y(t) + p(t)y(t− τ)]∆)γ

]∆
+ f(t, y(t− δ)) = 0, (1.3)

on a time scale T; here γ > 0 is a quotient of odd positive integers, τ and
δ are positive constants such that the delay functions τ(t) := t − τ < t and
δ(t) := t − δ < t satisfy τ(t) : T→ T and δ(t) : T→ T for all t ∈ T, p(t) and
r(t) are real valued rd−continuous positive functions defined on T, and the
following conditions are satisfied:

(A1)
∫∞
t0

(1/r(t))
1
γ ∆t = ∞, 0 ≤ p(t) < 1,

(A2) f(t, u) : T×R→ R is continuous function such that uf(t, u) > 0 for all
u 6= 0 and there exists a positive rd−continuous function q(t) defined
on T such that |f(t, u)| ≥ q(t) |uγ | .

In [3] the authors considered the case when γ > 0 is an odd positive integer
and proved that the oscillation of (1.3) is equivalent to the oscillation of a
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first order delay dynamic inequality and established some sufficient conditions
for oscillation. Also they considered the case when γ ≥ 1 and established
some sufficient conditions for oscillation by employing the Riccati technique.
The results were applied only in discrete time scales, i.e., when the graininess
function µ(t) 6= 0.

Saker [33] considered (1.3) where γ ≥ 1 is an odd positive integer, (A1) −
(A2) hold and established some new sufficient conditions for oscillation of
(1.3) by employed the Riccati transformation technique. However the results
established in [3, 33] can be applied only on the time scales T = R, T = N,
T = hN and T =qN = {t : t = qk, k ∈ N, q > 1}, and cannot be applied on the
time scales T = N2 = {t2 : t ∈ N}, T2={

√
n : n ∈ N0}, T3={ 3

√
n : n ∈ N0},

and T = Tn = {tn : n ∈ N0} where {tn} is the set of harmonic numbers. This
follows from the fact that when t ∈ T, the functions t − τ and t − δ may be
not belong to the time scales T = N2, T = T2, T = T3 and T = Tn.

Şahiner [27] considered the general equation
[
r(t)

(
[y(t) + p(t)y(τ(t))]∆

)γ]∆
+ f(t, y(δ(t))) = 0, (1.4)

on a time scale T and followed the argument in [33] by reducing the oscillation
of (1.4) to oscillation of a first order delay dynamic inequality and established
some sufficient conditions for oscillation, when the following conditions are
satisfied:

(B1) δ, τ are positive rd−continuous functions, δ, τ : T→ T,
(B2)

∫∞
t0

(1/r(t))
1
γ ∆t = ∞, γ ≥ 1,and 0 ≤ p(t) < 1;

(B3) f(t, u) : T × R → R is a continuous function with uf(t, u) > 0 for all
u 6= 0 and there exists a positive rd−continuous function q(t) defined
on T such that |f(t, u)| ≥ q(t) |uγ | .

However one can easily see that the two examples that are given in [27] to
illustrate the main results are valid only when T = R and cannot be applied
when T = N since the delay functions that are considered in this paper are
given by t/2,

√
t and t/64 which are not in Crd(T, T) for a general time scale

T. Also the results cannot give a sharp sufficient condition for oscillation of
(1.4) when q(t) = γ/t2.

Wu et al. [43] considered also (1.4) on a time scale T. They followed the
argument in [33] by using the Riccati transformation technique and the Chain

rule (ω ◦ ν)∆(t) = (w
−
∆ ◦ ν)ν∆, where

−
∆ is the delta derivative defined on

∼
T

and ν(t) is strictly increasing, and established some sufficient conditions for
oscillation of (1.4), when the following conditions are satisfied:

(C1) δ : R→ R is continuous δ : T→ R is strictly increasing and
∼
T = δ(T) ⊂

T is a time scale;
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(C2) (δ ◦ σ)(t) = (σ ◦ δ)(t);
(C3)

∫∞
t0

(1/r(t))
1
γ ∆t = ∞, γ ≥ 1, and 0 ≤ p(t) < 1;

(C4) f(t, u) : T × R → R is a continuous function with uf(t, u) > 0 for all
u 6= 0 and there exists a positive rd−continuous function q(t) defined
on T such that |f(t, u)| ≥ q(t) |uγ | .

We note that the results in [43], which are based on the Chain rule, can

only be applied if
∼
T is a time scale and if τ(t) ≤ t and δ(t) ≥ τ(δ(t)). The

condition (C2) also can be a restrictive condition, since on the time scale T=qN

by choosing δ(t) = t− qn0 one can easily see that δ(σ(t)) = δ(qt) = qt− qn0 6=
σ(δ(t)) = q(t−qn0) = qt−qn0+1, so the results in [43] cannot be applied on the
time scale T=qN when δ(t) = t−qn0 . Also in the proof of the main results in [43,
Lemma 2.5] the authors used the Chain rule (f(g(t)))∆ = f∆(g(t))g∆(t) which
is not true on general time scales. Of course trivially (x ◦ τ)∆ = (x∆ ◦ τ)τ∆ if
δ is a constant with τ(t) = t− δ ∈ T for t ∈ T.

Agarwal, O’Regan and Saker [4] considered the general nonlinear neutral
delay dynamic equation (1.4) where γ ≥ 1 is an odd positive integer,

(D1) τ(t) : T→ T, δ(t) : T→ T, τ(t) ≤ t, δ(t) ≤ t for all t ∈ T and
limt→∞ δ(t) = limt→∞ τ(t) = ∞;

(D2)
∫∞
t0

(1/r(t))
1
γ ∆t = ∞, r∆(t) ≥ 0, 0 ≤ p(t) < 1;

(D3) f(t, u) : T×R→ R is continuous function such that uf(t, u) > 0 for all
u 6= 0 and there exists a positive rd−continuous function q(t) defined
on T such that |f(t, u)| ≥ q(t) |uγ | ,

and employed the Riccati technique and established some new oscillation cri-
teria which can be applied on any time scale T and improved the results
established in [3], [27], [33] and [43].

Agarwal, O’Regan and Saker [5] considered the nonlinear neutral delay
dynamic equation

[
r(t) [y(t) + p(t)y(τ(t))]∆

]∆
+ q(t)f(y(δ(t))) = 0, (1.5)

on a time scale T and assumed that r(t), p(t) and q(t) are real valued rd−conti-
nuous positive functions defined on T and

(E1) τ(t) : T→ T, δ(t) : T→ T, τ(t) ≤ t, δ(t) ≤ t for all t ∈ T and
limt→∞ δ(t) = limt→∞ τ(t) = ∞;

(E2)
∫∞
t0

(1/r(t)) ∆t = ∞, r∆(t) ≥ 0, 0 ≤ p(t) < 1;
(E3) f(u) : R → R is continuous function such that uf(u) > 0, and

f(u)/u ≥ K > 0 for all u 6= 0
They employed the generalized Riccati technique and established some suf-

ficient conditions for oscillation and studied the asymptotic behavior of the
nonoscillatory solutions. These results in the special case when T = R extend
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and improve the results established by Li and Liu [24] for neutral delay differ-
ential equations. In the case when T = N the results extended and improved
the results established by Li and Yeh [25].

Remark 1.1. We note that all the above results are given in the case when

r∆(t) ≥ 0 and
∫ ∞

t0

δγ(s)q(s)[1− p(δ(s))]γ∆s = ∞, γ ≥ 1, (1.6)

and δ(t) ≤ t and nothing is known regarding the oscillation of neutral dynamic
equations when (1.6) does not hold and and δ(t) > t. So the natural question
now is: If it is possible to find new oscillation criteria for (1.1) when (1.6)
does not hold and δ(t) > t? One of our aims in this paper is to give an
affirmative answer to this question.

As a special case of (1.1), if p(t) = 0 and δ(t) = σ(t), then (1.1) becomes
the second-order dynamic equation

(r(t)x∆(t))∆ + q(t)(f ◦ xσ) = 0. (1.7)

Erbe and Peterson [16] considered the equation (1.7), when f(u) = u and
supposed that there exists t0 ∈ T, such that r(t) is bounded above on [t0,∞),
h0 = inf{µ(t) : t ∈ [t0,∞)} > 0, and showed via Riccati techniques that

∫ ∞

t0

q(t)∆t = ∞.

Bohner and Saker [12], considered (1.7), when f : R → R is continuous and
satisfies xf(x) > 0, |f(x)| ≥ K|x| for x 6= 0 andK > 0,

∫ ∞

t0

∆t

r(t)
= ∞,

and employed the Riccati transformation and established some sufficient con-
ditions for oscillation.

Erbe and Peterson and Saker [15] considered (1.7) and employed the gen-
eralized Riccati transformation techniques and generalized exponential func-
tions, and established some oscillation criteria. The main results depend on
an rd−continuous function r(t) such that (p · r) is a differentiable function,
and

(A) There exists M > 0 such that r(t)er(t, t0)p(t) ≤ M, for all large t.
(1.8)

Also one can easily see that the results that has been established in these
papers cannot be applied on the equation

(
1
t
x∆(t)

)∆

+
1
t3

xσ(t) = 0. (1.9)
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Our results in this paper as a special case can be applied on this type of
equations when p∆(t) ≤ 0.

We note that (1.1) in its general form involve some different types of dif-
ferential and difference equations depending on the choice of the time scale T.
For example, when T = R, we have σ(t) = t, µ(t) = 0, f∆(t) = f

′
(t) and (1.1)

becomes the second-order neutral differential equation
(
r(t) [y(t) + p(t)y(τ(t))]

′)′
+ q(t)f(y(δ(t))) = 0. (1.10)

Numerous oscillation criteria have been established for the second-order neu-
tral delay differential equation (1.10) and some special cases of it, we refer the
reader to the papers [22, 21] and the references cited therein.
Grammatikopoulos et al. [22] considered the second-order linear neutral delay
differential equation

[y(t) + p(t)y(t− τ)]
′′

+ q(t)y(t− δ) = 0, t ≥ t0, (1.11)

and proved that: If q(t) > 0, 0 ≤ p(t) < 1 and
∞∫

t0

q(s)[1− p(s− δ)]ds = ∞, (1.12)

then every solution of (1.11) oscillates.
Graef et al. [21] considered the second-order nonlinear delay neutral equa-

tion
[y(t) + p(t)y(t− τ)]

′′
+ q(t)f(y(t− δ)) = 0, t ≥ t0, (1.13)

and extended the condition (1.12) and proved that: If q(t) > 0, 0 ≤ p(t) < 1
and

∞∫

t0

q(s)f((1− p(s− δ)c)ds = ∞, c > 0, (1.14)

then every solution of (1.13) oscillates. Note that the conditions (1.12) and
(1.14) cannot be applied on the case when q(t) = β/t2 where β is a positive
constant.

When T = N, we have σ(n) = n + 1, µ(n) = 1, y∆(n) = ∆y(n) = y(n +
1)− y(n) and (1.1) becomes the second-order neutral difference equation

∆(r(n)(∆ [y(n) + p(n)y(τ(n)))]) + q(n)f(y(δ(n))) = 0. (1.15)

For oscillation of second-order neutral delay difference equations, as a special
case of (1.15), Zhang and Cheng [44] considered the equation

∆[r(n)∆(y(n) + p(n)y(n− τ))] + q(n)y(n− δ) = 0, n ≥ n0, (1.16)
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and proved that: If r(n) > 0, q(n) > 0, 0 ≤ p(n) < 1,
∞∑

i=n0

r−1(i) = ∞, and
∞∑

i=n0

q(i)[1− p(i− δ)] = ∞, (1.17)

then every solution of (1.16) oscillates. Note that the condition (1.17) can not
be applied to the second-order neutral delay difference equation (1.16) when
q(n) = β/n2 where β is a positive constant.

When T =hN, h > 0, we have σ(t) = t + h, µ(t) = h, y∆(t) = ∆hy(t) =
(y(t + h) − y(t))/h, and (1.1) becomes the second-order neutral difference
equation

∆h(r(t)∆h [y(t) + p(t)y(τ(t))]) + q(t)f(y(δ(t))) = 0. (1.18)

When T=qN = {t : t = qn, n ∈ N, q > 1}, we have σ(t) = qt, µ(t) = (q − 1)t,

y∆(t) = ∆qy(t) = (y(q t)− y(t))/((q − 1)t),

and (1.1) becomes the second-order q−neutral difference equation

∆q(r(t)∆q [y(t) + p(t)y(τ(t))]) + q(t)f(y(δ(t))) = 0. (1.19)

When T = N2 = {t2 : t ∈ N}, we have σ(t) = (
√

t + 1)2 and µ(t) = 1 + 2
√

t,

y∆(t) = ∆N2y(t) = (y((
√

t + 1)2)− y(t))/(1 + 2
√

t),

and (1.1) becomes the second-order neutral difference equation

∆N2(r(t)∆N2 [y(t) + p(t)y(τ(t))]) + q(t)f(y(δ(t))) = 0. (1.20)

When T = Tn = {tn : n ∈ N} where {tn} is the set of harmonic numbers
defined by

t0 = 0, tn =
n∑

k=1

1
k
, n ∈ N0,

we have σ(tn) = tn+1, µ(tn) = 1
n+1 , y∆(t) = ∆tny(tn) = (n + 1)y(tn), and

(1.1) becomes the second-order neutral difference equation

∆tn(r(tn)∆tn [y(tn) + p(tn)y(τ(tn))]) + q(tn)f(y(δ(tn))) = 0. (1.21)

When T = T2={
√

n : n ∈ N0}, we have σ(t) =
√

t2 + 1 and µ(t) =
√

t2 + 1−
t, x∆(t) = ∆2x(t) = (x(

√
t2 + 1) − x(t))/

√
t2 + 1 − t, and (1.1) becomes the

second-order neutral difference equation

∆2(r(t)∆2 [y(t) + p(t)y(τ(t))]) + q(t)f(y(δ(t))) = 0. (1.22)

When T = T3={ 3
√

n : n ∈ N0}, we have σ(t) = 3
√

t3 + 1 and µ(t) = 3
√

t3 + 1−
t, x∆(t) = ∆3x(t) = (x( 3

√
t3 + 1) − x(t))/ 3

√
t3 + 1 − t, and (1.1) becomes the

second-order neutral difference equation

∆3(r(t)(∆3 [y(t) + p(t)y(τ(t))]) + q(t)f(y(δ(t))) = 0. (1.23)
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In this paper, we establish some new sufficient conditions for oscillation of
(1.1). The main investigation of the main oscillation results depends on the
generalized Riccati substitution and the analysis of the associated Riccati dy-
namic inequality. The results in the Subsection 2.1 cover the case when δ(t) > t
and the results in the Subsection 2.2 cover the case when δ(t) ≤ t. The results
in this paper are different from the results that has been established in the
literature for second order neutral dynamic equations, in the sense that the
results do not require the condition (1.6) when γ = 1 and can be applied on
the case when δ(t) > t.

2. Main Results

In this section, we state and prove the main oscillation results. We note
that if y(t) is a solution of (1.1) then z(t) = −y(t) is also solution of (1.1),
since uf(u) > 0 for u 6= 0. Thus, concerning nonoscillatory solutions of (1.1)
we can restrict our attention to the positive ones. We start with the following
Lemma which will play an important role in the proof of the main results.

Lemma 2.1. Assume that (h1) − (h3) hold and y(t) is a positive solution of
(1.1) on [t0, ∞)T. Let x(t) is defined as in (1.2). Then there exists T > t0
such that x[1](t) > 0, for t ≥ T.

Proof. Since y(t) is a positive solution of (1.1) on [t0,∞)T, we can pick t1 ∈ [t0,
∞)T so that t1 > t0 and so that y(t) > 0, y(τ(t)) > 0 and y(δ(t)) on [t1, ∞)T.
(Note that in the case when y(t) is negative the proof is similar, since the
transformation y(t) = −z(t) transforms (1.1) into the same form). Since y(t)
is a positive solution of (1.1), then from (1.2), since q(t) > 0, x(t) is also
positive and satisfies

(x[1](t))∆ ≤ −q(t)f(y(δ(t))) < 0, for t ∈ [t1, ∞)T. (2.1)

Then x[1](t) is strictly decreasing on for t ≥ t1. We claim that x[1](t) > 0 for
t ≥ t1. Assume not. Then there is a t2 > t1 such that x[1](t2) =: c < 0. Then
from (2.1), we have x[1](t) ≤ c, for t ≥ t2, and therefore

x∆(t) ≤ c

r(t)
, for t ≥ t2. (2.2)

Integrating the last inequality form t2 to t, we find by (h2) that

x(t) = x(t2) +
∫ t

t2

x∆(s)∆s ≤ x(t2) + c

∫ t

t2

∆s

r(s)
→ −∞ as t →∞, (2.3)

which implies that x(t) is eventually negative. This contradiction completes
the proof. ¤
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Lemma 2.2. Assume that (h1) − (h3) hold and y(t) is a positive solution of
(1.1) on [t0, ∞)T. Let x(t) is defined as in (1.2). Then there exists T ≥ t0
such that

(r(t)
(
x∆(t)

)
)∆ + Q(t)x(δ(t)) ≤ 0, for t ≥ T, (2.4)

where Q(t) = Kq(t)(1− p(δ(t)))γ .

Proof. Since y(t) is a positive solution of (1.1) on [t0,∞)T, we can pick t1 ∈ [t0,
∞)T so that t1 > t0 and so that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and
y(δ(t)) t ≥ t1. (Note that in the case when y(t) is negative the proof is similar,
since the transformation y(t) = −z(t) transforms (1.1) into the same form).
Since y(t) is a positive solution of (1.1), then from Lemma 1, we see that x(t)
satisfies

x(t) > 0, x[1](t) ≥ 0, (x[1](t))∆ < 0, for t ≥ t1. (2.5)
This implies that x∆(t) > 0, and accordingly

y(t) = x(t)− r(t)y(τ(t)) = x(t)− r(t)[x(τ(t))− r(τ(t))y(τ(τ(t)))]
≥ x(t)− r(t)x(τ(t)) ≥ (1− r(t))x(t). (2.6)

Then for t ≥ t2 where t2 > t is chosen large enough, we have

y(δ(t)) ≥ (1− r(δ(t)))x(δ(t)). (2.7)

From (2.1) and the last inequality, we have the inequality (2.4) and this com-
pletes the proof. ¤

2.1. The case when δ(t) > σ(t) ≥ t. In this subsection, we establish new
oscillation criteria for (1.1) when δ(t) > σ(t) ≥ t.

We define the function space < as follows: H ∈ < provided H is defined
for t0 ≤ s ≤ σ(t), t, s ∈ [t0,∞)T H(t, s) ≥ 0, H(σ(t), t) = 0, H∆s(t, s) ≤ 0 for
t ≥ s ≥ t0, and for each fixed t, H∆s(t, s) is delta integrable with respect to
s. Important examples of H when T = R are H(t, s) = (t − s)m for m ≥ 1.
When T = Z, H(t, s) = (t− s)k, k ∈ N, where tk = t(t− 1)...(t− k + 1).

Suppose that there exist two positive functions φ(t) and ϕ(t) such that

φ∆(t) = −2ϕ(t)η(t)φ(t), where η(t) :=
r(t)R(t, T )

r(t)R(t, T ) + σ(t)− t
> 0,

R(t, T ) : =
∫ t

T

1
r(s)

∆s > 0. (2.8)

We define

H̄(t, s) := H(σ(t), σ(s)), A(t) :=
r(t)φ2(t)
η(t)φσ

,

and assume that

Φ(t) := φσ
[
Q(t)− (ϕ(t)r(t))∆ + η(t)r(t)ϕ2(t)

]
> 0.
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Theorem 2.3. Assume that (h1)− (h3) hold and H ∈ <, such that for suffi-
ciently large T ≥ t0

lim sup
t→∞

1
H(σ(t), t2)

∫ t

t2

[
H̄(t, s)Φ(s)− 1

4
A(s)(H∆s(σ(t), s))2

H̄(t, s)

]
∆s = ∞. (2.9)

Then every solution of (1.1) is oscillatory.

Proof. Without loss of generality, we may assume that y(t) is an eventually
positive solution of (1.1) with y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and
y(δ(t)) > 0 for all t ≥ t1 > t0 sufficiently large. Let x(t) be as defined by (1.2).
Then from Lemma 2, we see that x(t) is positive and there exists t ≥ T such
that (2.5) holds for t ≥ T . Define

w(t) := φ(t)
[
r(t)x∆(t)

x(t)
+ r(t)ϕ(t)

]
, for t ≥ T. (2.10)

By the quotient rule [10, Theorem 1.20], and the definition of w(t), we have

w∆(t) = φ∆(t)
[
r(t)x∆(t)

x(t)
+ r(t)ϕ(t)

]
+ φσ

[
r(t)x∆(t)

x(t)
+ r(t)ϕ(t)

]∆

= −2ϕ(t)η(t)w(t) + φσ (r(t)ϕ(t))∆ + φσ

[
r(t)x∆(t)

x(t)

]∆

= −2ϕ(t)η(t)w(t) + φσ (r(t)ϕ(t))∆

+φσ

[
x(t)(r(t)x∆(t))∆ − r(t)

(
x∆(t)

)2

x(t)xσ

]

= −2ϕ(t)η(t)w(t) + φσ (r(t)ϕ(t))∆

+φσ (r(t)x∆(t))∆

xσ
− φσ r(t)

(
x∆(t)

)2

x(t)xσ
. (2.11)

Then from (2.4), and (2.11), we have

w∆ ≤ −φσQ(t)
xδ

xσ
− 2ϕ(t)η(t)w(t) + φσ (r(t)ϕ(t))∆ − φσr(t)

(x∆(t))2

x(t)xσ

≤ −φσQ(t)
xδ

xσ
− 2ϕ(t)η(t)w(t) + φσ (r(t)ϕ(t))∆

−φσr(t)
x(t)
xσ

(
x∆(t)
x(t)

)2

. (2.12)

From the definition of w(t), we have
(

x∆(t)
x(t)

)2

=
[

w(t)
r(t)φ(t)

− ϕ(t)
]2

=
[

w(t)
r(t)φ(t)

]2

+ ϕ2(t)− 2
w(t)ϕ(t)
r(t)φ(t)

. (2.13)
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Substituting (2.13) into (2.12), and using the fact that φσ ≤ φ, we obtain

w∆(t) ≤ −φσQ(t)
xδ

xσ
− 2ϕ(t)η(t)w(t) + φσ(rϕ)∆(t)

−φσr(t)
x(t)
xσ

[[
w(t)

r(t)φ(t)

]2

+ ϕ2(t)− 2
ϕ(t)w(t)
r(t)φ(t)

]

= −φσQ(t)
xδ

xσ
− 2ϕ(t)η(t)w(t) + φσ(r(t)ϕ(t))∆ − x(t)

xσ

φσw2(t)
r(t)φ2(t)

−φσr(t)ϕ2(t)
x(t)
xσ

+ 2
φσϕ(t)
φ(t)

x(t)
xσ

w(t)

≤ −φσQ(t)
xδ

xσ
− 2ϕ(t)η(t)w(t) + φσ(r(t)ϕ(t))∆ − x(t)

xσ

φσw2(t)
r(t)φ2(t)

−φσr(t)ϕ2(t)
x(t)
xσ

+ 2ϕ(t)
x(t)
xσ

w(t).

This implies that

w∆(t) ≤ −φσQ(t)
xδ

xσ
− 2ϕ(t)η(t)w(t) + φσ(r(t)ϕ(t))∆ (2.14)

−x(t)
xσ

φσw2(t)
r(t)φ2(t)

− φσr(t)ϕ2(t)
x(t)
xσ

+ 2ϕ(t)
x(t)
xσ

w(t).

Since xσ = x(t) + µ(t)x∆, we have

xσ

x(t)
= 1 + µ(t)

x∆

x(t)
= 1 +

µ(t)
r(t)

x[1](t)
x(t)

.

Also since x[1](t) is decreasing, we get

x(t) = x(T ) +
∫ t

T

x[1](u)
r(u)

∆u ≥ x(T ) + x[1](t)
∫ t

T

1
r(u)

∆u

> x[1](t)
∫ t

T

(
1

r(u)

)
∆u.

It follows that
x(t)

x[1](t)
≥

∫ t

T

(
1

r(u)

)
∆u = R(t, T ). (2.15)

Hence
xσ

x(t)
= 1 + µ(t)

x∆

x(t)
= 1 +

µ(t)
r(t)

x[1](t)
x(t)

≤ r(t)R(t, T ) + µ(t)
r(t)R(t, T )

.

Hence, we have
x(t)
xσ

≥ r(t)R(t, T )
r(t)R(t, T ) + µ(t)

=
r(t)R(t, T )

r(t)R(t, T ) + σ(t)− t
= η(t). (2.16)
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Now, since δ(t) > σ(t) ≥ t and x(t) is increasing, we have

xδ(t) > xσ(t). (2.17)

Substituting from (2.16) and (2.17) into (??), we have

w∆(t) ≤ −φσQ(t)− 2ϕ(t)η(t)w(t) + φσ(r(t)ϕ(t))∆ − η(t)φσw2(t)
r(t)φ2(t)

−φσr(t)ϕ2(t)η(t) + 2ϕ(t)η(t)w(t).

This and (2.8) imply after simplification that

w∆(t) ≤ −φσ
[
Q(t) + (r(t)ϕ(t))∆ − η(t)r(t)ϕ2(t)

]− 1
A(t)

w2(t).

Using the definition of Φ(t) we obtain

w∆(t) ≤ −Φ(t)− 1
A(t)

w2(t). (2.18)

Evaluating both sides of (2.18) at s, multiplying by H(σ(t), σ(s)) and inte-
grating we get

∫ t

T
H(σ(t), σ(s))Φ(s)∆s

≤ −
∫ t

T
H(σ(t), σ(s))w∆(s)∆s−

∫ t

T

H(σ(t), σ(s))
A(s)

w2(s)∆s. (2.19)

Integrating by parts and using the fact that H(σ(t), t) = 0, we get
∫ t

T
H(σ(t), σ(s))w∆(s)∆s = −H(σ(t), T )w(T )−

∫ t

T
H∆s(σ(t), s)w(s)∆s.

Substituting this into (2.19), we have
∫ t

T
H(σ(t), σ(s))Φ(s)∆s

≤ H(σ(t), T )w(T ) +
∫ t

T
H∆s(σ(t), s)w(s)∆s

−
∫ t

T

H(σ(t), σ(s))
A(s)

w2(s)∆s. (2.20)

This implies, after using the inequality bu− au2 ≤ 1
4

b2

a with b = H∆s(σ(t), s)
and a = H(σ(t),σ(s))

A(s) , that
∫ t

T
H̄(t, s)Φ(s)∆s ≤ H(σ(t), T )w(T ) +

∫ t

T

A(s)(H∆s(σ(t), s))2

4H̄(t, s)
∆s.
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Thus
1

H(σ(t), T )

∫ t

T

[
H̄(t, s)Φ(s)− 1

4
A(s)(H∆s(σ(t), s))2

H̄(t, s)

]
∆s ≤ w(T ),

which contradicts (2.9). The proof is complete. ¤

From Theorem 3 by choosing the function H(t, s), appropriately, we can
obtain different sufficient conditions for oscillation of (1.1). For instance, if we
define a function h(t, s) by

H∆s(σ(t), s) = −h(t, s)
√

H(σ(t), σ(s)), (2.21)

we have the following oscillation result. Note that when T = R, we have
H(t, σ(s)) = H(t, s) and when T = N, we have H(t, σ(s)) = H(t, s + 1).

Corollary 2.4. Assume that (h1) − (h3) hold and H ∈ <, such that for
sufficiently large T ≥ t0

lim sup
t→∞

1
H(σ(t), T )

∫ t

T

[
H̄(t, s)Φ(s)− h2(t, s)

4

]
∆s = ∞, (2.22)

where Φ(t) is defined as in Theorem 3, then every solution of (1.1) is oscillatory.

If we define H(t, s) for t0 ≤ s ≤ σ(t) by H(σ(t), t) = 0 and H(t, s) = 1
otherwise, φ(t) and ϕ(t) are defined as in (2.8), we have h(t, s) = 0 and from
Corollary 4 we have the following oscillation result for(1.1).

Corollary 2.5. Assume that (h1)− (h3) hold . Furthermore assume that for
sufficiently large t1

lim
t→∞ sup

∫ t

t1

φσ(s)Φ(s)∆s = ∞.

Then every solution of (1.1) is oscillatory on [t0,∞)T.

In the following, we assume that
∫ ∞

t0

Φ(s)∆s < ∞,

and establish new oscillation criteria for (1.1). We introduce the following
notations:

q∗ := lim inf
t→∞

1
t

∫ t

T

s2

A(s)
Φ(s)∆s, p∗ := lim inf

t→∞
t

A(t)

∫ ∞

σ(t)
Φ(s)∆s,

and assume that l := lim inft→∞ t
σ(t) . From the definition of σ(t) it is clear

that 0 ≤ l ≤ 1.
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Theorem 2.6. Assume that (h1)−(h3) hold, A∆(s) ≥ 0 and
∫∞
t0

(1/A(s))∆s =
∞. Let y(t) be a positive solution of (1.1), and x(t) is defined as in (1.2). Let
w(t) is defined as in (2.10), and define

r∗ := lim inf
t→∞

twσ(t)
A (t)

, R := lim sup
t→∞

twσ(t)
A(t)

.

Then
p∗ ≤ r∗ − r2

∗l. (2.23)

and
p∗ + q∗ ≤ 1/l2. (2.24)

Proof. Assume that y(t) is a positive solution of (1.1) on [t0,∞)T. Pick t1 ∈ [t0,
∞)T so that t1 > t0 and so that y(t) > 0, y(τ(t)) > 0 y(τ(τ(t))) > 0 and
y(δ(t)) on [t1, ∞)T. (Note that in the case when y(t) is negative the proof is
similar, since the transformation y(t) = −z(t) transforms (1.1) into the same
form). Since y(t) is a positive solution of (1.1), then from Lemma 2, we see
that x(t) > 0 and satisfies (2.5). Define the function w(t) by the Riccati
substitution as in Theorem 3. Then, we get from (2.18) that

−w∆(t) > Φ(t) +
1

A(t)
w(t)wσ(t), for t ≥ T. (2.25)

Since Φ(t) > 0, we have

w∆(t)
w(t)wσ

< −1/A(t), for t ≥ T,

which implies that (−1/w(t))∆ ≤ −1/A(t). Integrating the last inequality from
t2 to t, we have

− 1
w(t)

< − 1
w(t)

+
1

w(T )
< −

∫ t

T

1
A(s)

∆s, for t ≥ T,

which implies, using
∫∞
t0

(1/A(s))∆s = ∞, that limt→∞w(t) = 0. First,
we prove that (2.23) holds. Integrating (2.25) from σ(t) to ∞ and using
limt→∞w(t) = 0, we have

wσ(t) ≥
∫ ∞

σ(t)
Φ(s)∆s +

∫ ∞

σ(t)

1
A(s)

(wσ(s))2∆s. (2.26)

It follows from (2.26) that

twσ(t)
A(t)

≥ t

A(t)

∫ ∞

σ(t)
Φ(s)∆s +

t

A(t)

∫ ∞

σ(t)

1
A(s)

(wσ(s))2∆s. (2.27)
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Let ε > 0, then by the definition of p∗ and r∗ we can pick t1 ∈ [T,∞)T,
sufficiently large, so that

t

A(t)

∫ ∞

σ(t)
Φ(s)∆s ≥ p∗ − ε, and

twσ(t)
A(t)

≥ r∗ − ε, for t ∈ [t1,∞)T. (2.28)

From (2.27) and (2.28) and using the fact A∆(t) ≥ 0, we get that

twσ(t)
A(t)

≥ (p∗ − ε) +
t

A(t)

∫ ∞

σ(t)

1
A(s)

swσ(s)swσ(s)
s2

∆s

≥ (p∗ − ε) + (r∗ − ε)2
t

A(t)

∫ ∞

σ(t)

A(s)
s2

∆s

≥ (p∗ − ε) + (r∗ − ε)2 t

∫ ∞

σ(t)

1
s2

∆s

≥ (p∗ − ε) + (r∗ − ε)2 t

∫ ∞

σ(t)

1
sσ(s)

∆s

= (p∗ − ε) + (r∗ − ε)2 t

∫ ∞

σ(t)

(−1
s

)∆

∆s. (2.29)

Then, we have
twσ(t)
A(t)

≥ (p∗ − ε) + (r∗ − ε)2
(

t

σ(t)

)
.

Taking the lim inf of both sides as t →∞ we get that r∗ ≥ p∗− ε+(r∗ − ε)2 l.
Since ε > 0 is arbitrary, we get the desired inequality (2.23). Next, we prove
that (2.24) holds. Multiplying both sides (2.25) by t

A(t) , and integrating from
T to t (t ≥ T ), we get

∫ t

T

s2

A(s)
w∆(s)∆s ≤ −

∫ t

T

s2

A(s)
Φ(s)∆s−

∫ t

T

(
swσ(s)
A(s)

)2

∆s.

Using integration by parts, we obtain

t2w(t)
A(t)

≤ T 2w(T )
A(T )

+
∫ t

T

(
s2

A(s)

)∆

wσ(s)∆s

−
∫ t

T

s2

A(s)
Φ(s)∆s−

∫ t

T

(
swσ(s)
A(s)

)2

∆s.

By the quotient rule and applying the Pötzsche chain rule,
(

s2

A(s)

)∆

=
(s2)∆

Aσ
− s2A∆(s)

A(s)Aσ
≤ 2σ(s)

Aσ(s)
≤ 2σ(s)

A(s)
. (2.30)
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Hence
t2w(t)
A(t)

≤ T 2w(T )
A(T )

−
∫ t

T

s2

A(s)
Φ(s)∆s +

∫ t

T
2

(
σ(s)wσ(s)

A(s)

)
∆s

− γ

∫ t

T

(
swσ(s)
A(s)

)2

∆s.

Let ε > 0 be given, then using the definition of l, we can assume, without loss
of generality, that T is sufficiently large so that s

σ(s) > l − ε, s ≥ T. It follows
that

σ(s) ≤ Ls, s ≥ T where L :=
1

l − ε
.

We then get that

t2w(t)
A(t)

≤ T 2w(T )
A(T )

−
∫ t

T

s2

A(s)
Φ(s)∆s +

∫ t

T

[
2L

swσ(s)
A(s)

−
(

swσ(s)
A(s)

)2
]

∆s.

Let u(s) := swσ(s)
A(s) , then u2(s) =

(
swσ(s)
A(s)

)2
. It follows that

t2w(t)
A(t)

≤ T 2w(T )
A(T )

−
∫ t

T

s2

A(s)
Φ(s)∆s +

∫ t

T
{2Lu(s)− u2(s)}∆s.

Using the inequality Bu−Au2 ≤ 1
4

B2

A , where A, B are constants, we get

t2w(t)
A(t)

≤ T 2w(T )
A(T )

−
∫ t

T

s2

A(s)
Φ(s)∆s +

∫ t

T

1
4
[2L]2∆s

≤ T 2w(T )
A(T )

−
∫ t

T

s2

A(s)
Φ(s)∆s + L2(t− T ).

It follows from this that
tw(t)
A(t)

≤ T 2w(T )
tA(T )

− 1
t

∫ t

T

s2

A(s)
Φ(s)∆s + L2(1− T

t
).

Since wσ(t) ≤ w(t), we get

twσ(t)
A(t)

≤ T 2w(T )
tA(T )

− 1
t

∫ t

T

s2

A(s)
Φ(s)∆s + L2(1− T

t
).

Taking the lim sup of both sides as t → ∞ we obtain R ≤ −q∗ + L2 =
−q∗ + 1

(l−ε)2
. Since ε > 0 is arbitrary, we get that R ≤ −q∗ + 1

l2
. Using this

and the inequality (2.23), we get

p∗ ≤ r∗ − lγr2
∗ ≤ r∗ ≤ R ≤ −q∗ +

1
l2

.

Therefore
p∗ + q∗ ≤ 1

l2
,
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which is the desired inequality (2.24). The proof is complete. ¤
Theorem 2.7. Assume that (h1)−(h3) hold, A∆(s) ≥ 0 and

∫∞
t0

(1/A(s))∆s =
∞. Furthermore, assume that

p∗ >
1
4l

,

Then every solution of (1.1) is oscillatory.

Proof. Suppose to the contrary and assume that y(t) is a nonoscillatory solu-
tion of equation (1.1). Without loss of generality we may assume that y(t) > 0,
y(τ(t)) > 0, y(τ(t)) > 0 and y(δ(t)) > 0 for t ≥ T where T is chosen large
enough. We consider only this case, because the proof when y(t) < 0 is simi-
lar. Let w and r∗ be as defined in Theorem 6. Then from Theorem 6, we see
that r∗ satisfies the inequality

p∗ ≤ r∗ − lγr2
∗.

Using Using the inequality Bu − Au2 ≤ 1
4

B2

A with B = 1 and A = l, we get
that

p∗ ≤ 1
4l

,

which contradicts (2.23). The proof is complete. ¤
Theorem 2.8. Assume that (h1)−(h3) hold, A∆(s) ≥ 0 and

∫∞
t0

(1/A(s))∆s =
∞. Furthermore, assume that

p∗ + q∗ >
1
l2

.

Then every solution of (1.1) is oscillatory.

Proof. Suppose to the contrary and assume that y is a nonoscillatory solution
of equation (1.1). Without loss of generality we may assume that y(t) > 0,
y(τ(t)) > 0, y(τ(t)) > 0 and y(δ(t)) > 0 for t ≥ T where T is chosen large
enough. We consider only this case, because the proof when y(t) < 0 is similar.
Let w and r∗ be as defined in Theorem 6. Then from Theorem 6, we see that
r∗ satisfies the inequality

p∗ + q∗ <
1
l2

,

which contradicts (2.23). The proof is complete. ¤
From Theorem 7, we have the following results immediately.

Corollary 2.9. Assume that (h1)−(h3) hold, A∆(s) ≥ 0 and
∫∞
t0

(1/A(s))∆s =
∞. Furthermore, assume that

lim inf
t→∞

1
t

∫ t

T

s2

A(s)
Φ(s)∆s >

1
l2

. (2.31)

Then every solution of (1.1) is oscillatory.
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Corollary 2.10. Assume that (h1)−(h3) hold, A∆(s) ≥ 0 and
∫∞
t0

(1/A(s))∆s =
∞. Furthermore, assume that

lim inf
t→∞

t

A(t)

∫ ∞

σ(t)
Φ(s)∆s >

1
l2

. (2.32)

Then every solution of (1.1) is oscillatory.

2.2. The case when δ(t) ≤ t. In this subsection, we establish some sufficient
conditions for oscillation of (1.1) when δ(t) ≤ t. Suppose that there exist two
positive functions ψ(t) and π(t) such that

ψ∆(t) := −2π(t)α(t)ψ(t), (2.33)

and define

Ψ(t) := ψσ
[
Q(t)θ(t)− (π(t)r(t))∆ + α(t)r(t)π2(t)

]
> 0, B(t) :=

r(t)ψ2(t)
α(t)ψσ

,

where

θ(t) :=

{ ∫ σ(t)
T

1
r(s)∆s

(∫ δ(t)
T

1
r(s)∆s

)−1
, δ(t) < σ(t),

1, δ(t) = σ(t).
and

α(t) :=

{ ∫ t
T

1
r(s)∆s

(∫ σ(t)
T

1
r(s)∆s

)−1
, σ(t) > t

1, σ(t) = t.

Theorem 2.11. Assume that (h1)− (h3) hold and B∆(t) ≥ 0. Let y(t) be a
solution of (1.1), x(t) is defined as in (1.2) and make the generalized Riccati
substitution

u(t) := ψ(t)
[
r(t)x∆(t)

x(t)
+ r(t)π(t)

]
, for t ≥ T. (2.34)

Then u(t) > 0 for t ≥ T and satisfies

u∆(t) + Ψ(t) +
1

B(t)
u2(t) ≤ 0, for t ≥ T. (2.35)

Proof. Assume that y(t) is a positive solution of (1.1) on [t0,∞)T. Pick t1 ∈ [t0,
∞)T so that t1 > t0 and so that y(t) > 0, y(τ(t)) > 0, y(τ(τ(t))) > 0 and
y(δ(t)) on [t1, ∞)T. (Note that in the case when y(t) is negative the proof is
similar, since the transformation y(t) = −z(t) transforms (1.1) into the same
form). Since y(t) is a positive solution of (1.1), then from Lemma 2, we see
that x(t) satisfies (2.5). Hence x[1](t) is decreasing for t ≥ T . Then for t ≥ T,
we have

xσ(t)− x(δ(t)) =
∫ σ(t)

δ(t)

(rx∆)(s)
r(s)

∆s ≤ (rx∆)(δ(t))
∫ σ(t)

δ(t)

1
r(s)

∆s,
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and this implies that

xσ(t)
x(δ(t))

≤ 1 +
(rx∆)(δ(t))

x(δ(t))

∫ σ(t)

δ(t)

1
r(s)

∆s. (2.36)

On the other hand for t ≥ T, we have that

x(δ(t)) > x(δ(t))− x(T ) =
∫ δ(t)

T

(rx∆)(s)
r(s)

∆s ≥ (rx∆)(δ(t))
∫ δ(t)

T

1
r(s)

∆s,

which leads to

(rx∆)(δ(t))
x(δ(t))

<

(∫ δ(t)

T

1
r(s)

∆s

)−1

, for t ≥ T.

Using this last inequality and (2.36), we get that

xσ(t)
x(δ(t))

< 1 +

∫ σ(t)
δ(t)

1
r(s)∆s

∫ δ(t)
T

1
r(s)∆s

=

∫ σ(t)
T

1
r(s)∆s

∫ δ(t)
T

1
r(s)∆s

=
1

θ(t)
, for t ≥ T.

Hence, we get the desired inequality

x(δ(t)) ≥ θ(t)xσ(t), for t ≥ T. (2.37)

Also, we can prove that
x(t) ≥ α(t)xσ(t) (2.38)

From the definition of u(t), by quotient rule [10, Theorem 1.20] and continue
as in the proof of Theorem 2.1, we get

u∆(t) ≤ −ψσQ(t)
(

xδ

xσ

)
− 2π(t)ξ(t)u(t) + ψσ(r(t)π(t))∆ − x(t)

xσ

ψσu2(t)
r(t)ψ2(t)

−ψσr(t)π2(t)
x(t)
xσ

+ 2π(t)
x(t)
xσ

u(t). (2.39)

From (2.37), (2.38) and (2.39), we have

u∆(t) ≤ −ψσQ(t)θ(t)− 2π(t)α(t)u(t) + ψσ(r(t)π(t))∆ − α(t)
ψσu2(t)
r(t)ψ2(t)

−ψσr(t)π2(t)α(t) + 2π(t)α(t)u(t).

Simplifying this inequality, we have the inequality (2.35) and this completes
the proof. ¤

The proofs of the following theorems are similar to the proofs of the above
theorems by using the inequality (2.35) and due the limited space the details
are omitted.
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Theorem 2.12. Assume that (h1)−(h3) hold, H ∈ < such that for sufficiently
large T ≥ t0

lim sup
t→∞

1
H(σ(t), T )

∫ t

T

[
H̄(t, s)Ψ(s)− 1

4
A(s)(H∆s(σ(t), s))2

H̄(t, s)

]
∆s = ∞.

(2.40)
Then every solution of (1.1) is oscillatory.

In the following, we assume that
∫ ∞

t0

Ψ(s)∆s < ∞,

and establish new oscillation criteria for (1.1). We introduce the following
notations:

A∗ := lim inf
t→∞

t

B(t)

∫ ∞

σ(t)
Ψ(s)∆s, and B∗ := lim inf

t→∞
1
t

∫ t

T

s2

B(s)
Ψ(s)∆s,

Theorem 2.13. Assume that (h1)− (h3) hold, B∆(t) ≥ 0
and

∫∞
t0

(1/B(s))∆s = ∞. Furthermore, assume that

A∗ >
1
4l

, (2.41)

or

A∗ + B∗ >
1
l2

. (2.42)

Then every solution of (1.1) is oscillatory.

Corollary 2.14. Assume that (h1)− (h3) hold and B∆(t) ≥ 0
and

∫∞
t0

(1/B(s))∆s = ∞. Furthermore, assume that

lim inf
t→∞

t

B(t)

∫ ∞

σ(t)
A(s)∆s >

1
l2

. (2.43)

Then every solution of (1.1) is oscillatory.

Corollary 2.15. Assume that (h1)− (h3)hold and B∆(t) ≥ 0
and

∫∞
t0

(1/B(s))∆s = ∞. Furthermore, assume that

lim inf
t→∞

1
t

∫ t

T

s2

B(s)
Ψ(s)∆s >

1
l2

. (2.44)

Then every solution of (1.1) is oscillatory.
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Birkhäuser, Boston, 2003.

[12] M. Bohner and S. H. Saker, Oscillation of second order nonlinear dynamic equa-
tions on time scales, Rocky Mountain J. Math., 34(4) (2004), 1239-1254.

[13] M. Bohner and S. H. Saker, Oscillation criteria for perturbed nonlinear dynamic
equations, Mathl. Comp. Modeling, 40 (2004), 249–260.

[14] L. Erbe, Oscillation criteria for second order linear equations on a time scale,
Canad. Appl. Math. Quart., 9 (2001), 1–31.

[15] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order nonlin-
ear dynamic equations on time scales. J. London Math. Soc., 76 (2003), 701–714.

[16] L. Erbe and A. Peterson, Riccati equations on a measure chain, In G. S. Ladde,
N. G. Medhin, and M. Sambandham, editors, Proceedings of Dynamic Systems
and Applications, volume 3, pages 193–199, Atlanta, 2001. Dynamic publishers.

[17] L. Erbe, A. Peterson and S. H. Saker, Kamenev-type oscillation criteria for
second-order linear delay dynamic equations, Dynamic Syst. & Appl., 15 (2006),
65-78.

[18] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for a forced second
order nonlinear dynamic equation, J. Diff. Eqns. Appl., 14 (2008), 997-1009.

[19] L. Erbe, A. Peterson and S. H. Saker, Hille-Kneser type criteria for second-order
dynamic equations on time scales, Advances in Difference Eqns., 2006 (2006),
1-18.



Oscillation criteria of second-order nonlinear functional dynamic equations 457

[20] L. Erbe, A. Peterson and S. H. Saker, Oscillation criteria for second-order non-
linear delay dynamic equations, J. Math. Anal. Appl., 333 (2007), 505-522.

[21] J. R. Graef, M. K. Grammatikopoulos and P. W. Spikes, Asymptotic properties
of solutions of nonlinear neutral delay differential equations of the second order,
Radovi Mat., 4 (1988), 133-149.

[22] M. K. Grammatikopoulos, G. Ladas and A. Meimaridou, Oscillation of second
order neutral delay differential equations, Radovi Mat., 1 (1985), 267-274.

[23] S. Hilger, Analysis on measure chains–a unified approach to continuous and dis-
crete calculus, Results Math., 18 (1990), 18–56.

[24] H. J. Li and W. L. Liu, Oscillation criteria for second order neutral differential
equations, Canad. J. Math., 48 (1996), 871-886.

[25] H. J. Li and C. C. Yeh, Oscillation criteria for second-order neutral delay differ-
ence equations, Comp. Math. Appl., 36 (1998), 123-132.

[26] R. M. Mathsen, QI-RU Wang and Hong-Wu Wu, Oscillation for neutral dynamic
functional equations on time scales, J. Diff. Eqns. Appl., 10 (2004), 651-659.
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