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Abstract. In this paper, the existence of proximity point for cyclic 2-convex contraction

mappings, weakly cyclic 2-convex contraction mappings and M -weakly cyclic 2-convex con-

traction mappings are proved in the metric space setting. Our result is an natural general-

ization to result discussed in Istraescu [6].

1. Introduction

Let X be any set and T : X → X be a contraction. In 1922, Banach proved
the following fixed point theorem of contraction mappings. It is assumed
that X should be a complete metric space with metric d and T : X → X
is required to be a contraction, that is, there must exist L ∈ [0, 1) such that
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d(f(x), f(y)) ≤ Ld(x, y) for all x, y ∈ X. Then T has a unique fixed point
in X. Thereafter many authors generalized this theorem. After several gen-
eralizations to contraction mapping, in 1982. Istraescu [6] introduced convex
contraction mapping of order 2 as in the following definition and proved fixed
point theorems for such mappings and a related class of mappings satisfying
a convexity condition with respect to diameters of bounded sets.

2. Preliminaries

Definition 2.1. A continuous mapping f : X → X is said to be convex
contraction mapping of order 2 if there exists the constants a, b ∈ [0, 1) such
that the following conditions hold:

(1) a + b < 1,
(2) d(f2(x), f2(y)) ≤ a d(f(x), f(y)) + b d(x, y) for all x, y ∈ X.

In 2003, Kirk et al. [5] introduced the concept of cyclic map on ∪mi=iAi as
follows:

Definition 2.2. ([5]) Let Ai, i = 1, 2, ...m be nonempty closed subsets of a
metric space X. A map T : ∪mi=iAi → ∪mi=1Ai is a cyclic map if T satisfies:

T (Ai) ⊂ Ai+1 for 1 ≤ i ≤ m− 1 and T (Am) ⊂ A1.

Let A,B are nonempty subsets of a set X and T be a cyclic map on A∪B.
For each x ∈ X, define

d(x,A) = inf
y∈A

d(x, y)

and

d(A,B) = inf
x∈A

d(x,B).

A point x ∈ A is said to be proximity point of T if it satisfies d(x, T (x)) =
d(A,B). Such results are discussed by Kirk et al. [5]. Recently, to prove
the existence of proximity point for cyclic decreasing contraction, Chen [2]
introduced the following:

Definition 2.3. ([2]) If lim
k→∞

Tnk(x) exists for some x ∈ A ∪ B and some

subsequence {ni}∞i=1 of N, and

d(T ( lim
i→∞

Tni(x)), lim
i→∞

Tni(x)) ≤ lim
n→∞

d(Tn+1(x), Tn(x)) (2.1)

then T is said to satisfy the cyclic limiting contraction.
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Definition 2.4. A subset A of a metric space X is said to be boundedly
compact if each bounded sequence in A has a convergent subsequence.

Using these concepts, we now prove the existence of proximity point for
cyclic 2-convex contraction. We introduce new concepts called weakly cyclic
2-convex contraction mapping and M -weakly cyclic 2-convex contraction map-
ping and obtain the existence of proximity point for these concepts. These are
generalization of Istraescu [6].

3. Main Results

3.1. Proximity Point for Cyclic 2-Convex Contraction Mappings. In
this section, we introduce the following definition which generalizes cyclic con-
traction mappings of Kirk et al. [5] and Istraescu [6]. We obtain proximity
point for cyclic 2-convex contraction mappings.

Definition 3.1. Let A and B be nonempty subsets of a metric space (X, d)
and T : A ∪ B → A ∪ B a continuous mapping. If T is cyclic and for any
x ∈ A ∪B, there exists a nonnegative constants a, b with a + b < 1 such that

d(T 2(x), T 2(y)) ≤ a d(T (x), T (y)) + b d(x, y) + (1− a− b)d(A,B), (3.1)

then T is said to be cyclic 2-convex contraction.

Theorem 3.2. Let A, B be two nonempty closed subsets of a complete metric
space (X, d) and T be a cyclic 2-convex contraction on A ∪ B. Then for any
x0 ∈ A ∪B the sequence d(Tn(x0), T

n+1(x0)) converges to d(A,B).

Proof. Let x0 ∈ A ∪ B be arbitrary. Define xn = Tn(x0) and let k =
max{d(x2, x1), d(x1, x0)}. Since T is cyclic 2-convex contraction on A ∪B,

d(x3, x2) ≤ a d(x2, x1) + b d(x1, x0) + (1− a− b)d(A,B)

≤ (a + b)k + d(A,B),

d(x4, x3) ≤ a d(x3, x2) + b d(x2, x1) + (1− a− b)d(A,B)

≤ a(a + b)k + bk + d(A,B)

≤ (a + b)k + d(A,B),

d(x5, x4) ≤ a d(x4, x3) + b d(x3, x2) + (1− a− b)d(A,B)

≤ a
[
(a + b)k + d(A,B)

]
+ b

[
(a + b)k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)k + b(a + b)k + d(A,B)

≤ (a + b)2k + d(A,B)
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and

d(x6, x5) ≤ a d(x5, x4) + b d(x4, x3) + (1− a− b)d(A,B)

≤ a
[
(a + b)2k + d(A,B)

]
+ b

[
(a + b)k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)2k + b(a + b)k + d(A,B)

≤ (a + b)2k + d(A,B).

By the induction principle, let us assume that the following hold.

d(x2m−1, x2m−2) ≤ (a + b)m−1k + d(A,B)

and

d(x2m, x2m−1) ≤ (a + b)m−1k + d(A,B).

Therefore,

d(x2m+1, x2m) ≤ a d(x2m, x2m−1) + b d(x2m−1, x2m−2) + (1− a− b)d(A,B)

≤ a
[
(a + b)m−1k + d(A,B)

]
+ b

[
(a + b)m−1k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)m−1k + b(a + b)m−1k + d(A,B)

= (a + b)mk + d(A,B)

and

d(x2m+2, x2m+1) ≤ a d(x2m+1, x2m) + b d(x2m, x2m−1) + (1− a− b)d(A,B)

≤ a
[
(a + b)mk + d(A,B)

]
+ b

[
(a + b)m−1k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)m−1k + b(a + b)m−1k + d(A,B)

= (a + b)mk + d(A,B)

→ d(A,B) (as m→∞).

Hence

lim
m→∞

d(x2m+1, x2m) ≤ d(A,B).

But

lim
m→∞

d(x2m+1, x2m) ≥ d(A,B).

Let n = 2m. Then d(xn+1, xn)→ d(A,B). This completes the proof. �
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Theorem 3.3. Let (X, d) be a complete metric space, A and B be nonempty
closed subsets of X. Let T : A ∪B → A ∪B be a cyclic 2-convex contraction.
If for some x0 ∈ A ∪B and subsequence {ni}∞i=1 on N,

p = lim
i→∞

Tni(x0),

then p is a proximity point of T.

Proof. Suppose p = lim
i→∞

Tni(x0). Since T is continuous and since d is jointly

continuous, we have

d(p, T (p)) = lim
n→∞

d(Tn(x0), T
n+1(x0)).

Since T is a cyclic 2-convex contraction, by Theorem 3.2

lim
n→∞

d(Tn(x0), T
n+1(x0)) = d(A,B)

and hence it follows that

d(p, T (p)) = d(A,B). (3.2)

Hence p is a proximity point of T . �

Lemma 3.4. Let A and B be two nonempty closed subsets of a complete
metric space X and let T : A ∪ B → A ∪ B be a cyclic 2-convex contraction.
Then for x0 ∈ A ∪B, and xn = Tnx0 the sequence {x2n} is bounded.

Proof. Without loss of generality, let x0 ∈ A. Suppose that {x2n} is not
bounded. Then there exists positive integer N0 such that

d(T 3x0, T
2N0+2) > M and d(T 3x0, T

2N0) ≤M.

where

M > max

{
(a + b)2d(Tx0, T

3x0)

1− (a + b)2
+

abd(x0, T
2x0)

1− (a + b)2
+ d(A,B), d(T 2x0, T

3x0)

}
.

Now

M < d(T 3x0, T
2N0+2x0)

≤ a d(T 2x0, T
2N0+1x0) + bd(Tx0, T

2N0x0) + (1− (a + b))d(A,B)

≤ a{ad(Tx0, T
2N0x0) + bd(x0, T

2N0−1x0) + (1− (a + b))d(A,B)}
+ bd(Tx0, T

2N0x0) + (1− (a + b))d(A,B)

= (a2 + b)d(Tx0, T
2N0x0) + abd(x0, T

2N0−1x0) + (1 + a)(1− (a + b))d(A,B)

≤ (a + b)2d(Tx0, T
2N0x0) + abd(x0, T

2N0−1x0) + (1− (a + b)2)d(A,B).
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Hence

M − abd(x0, T
2N0−1x0)− d(A,B)

(a + b)2
+ d(A,B) < d(Tx0, T

2N0x0)

≤ d(Tx0, T
3x0)

+ d(T 3x0, T
2N0x0)

≤ d(Tx0, T
3x0) + M.

Therefore

M−abd(x0, T
2N0−1x0)−d(A,B)+(a+b)2d(A,B) ≤ (a+b)2(d(Tx0, T

3x0)+M)

and

M <
(a + b)2d(Tx0, T

3x0)

1− (a + b)2
+

abd(x0, T
2x0)

1− (a + b)2
+ d(A,B).

This is a contradiction. Hence {x2n} is bounded. �

Theorem 3.5. Let (X, d) be a complete metric space and A,B be nonempty
closed subsets of (X, d). Suppose T : A ∪ B → A ∪ B is a cyclic 2-convex
contraction map. If A or B is boundedly compact then there exists p0 ∈ A∪B
which is a proximity point of T .

Proof. Without loss of generality, let x0 ∈ A and A is boundedly compact.
By Lemma 3.4 {x2n} is bounded in A and hence {x2n} has a convergent
subsequence say {x2nk

}. Thus there exists p0 ∈ A such that x2nk
→ p0 as

k →∞. Therefore, by Theorem 3.3, p0 is a best proximity point of T . �

Corollary 3.6. Let (X, d) be a complete metric space and A,B be nonempty
subsets of (X, d) such that A∩B 6= ∅. Suppose T : A∪B → A∪B is a cyclic
2-convex contraction map. Then p = lim

n→∞
Tnx, is a fixed point of T .

NOTE: The Theorem still holds when A = B.

3.2. Proximity Point for Weakly Cyclic 2-Convex Contraction Map-
pings. In this section, we introduce the following definition which generalizes
cyclic contraction mappings of Kirk et al. [5] and Vasile I. Istraescu [6]. We
obtain proximity point for weakly cyclic 2-convex contraction mappings.

Definition 3.7. Let A and B be nonempty subsets of a metric space (X, d)
and T : A∪B → A∪B a mapping. If T is cyclic and for any x ∈ A∪B, there
exists a nonnegative constants a, b with a + b < 1 such that

d(T 2(x), T 2(y)) ≤ a d(T (x), T (y)) + b d(x, y) + (1− a− b)d(A,B), (3.3)

then T is said to be weakly cyclic 2-convex contraction.

Note that a continuous weakly cyclic 2-convex contraction is a cyclic 2-
convex contraction.
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Theorem 3.8. Let A and B be two nonempty closed subsets of a complete
metric space (X, d) and T be a weakly cyclic 2-convex contraction on A ∪
B. Then for any x0 ∈ A ∪ B the sequence d(Tn(x0), T

n+1(x0)) converges to
d(A,B).

Proof. Let x0 ∈ A ∪ B be arbitrary. Define xn = Tn(x0) and let k =
max{d(x2, x1), d(x1, x0)}. Since T is weakly cyclic 2-convex contraction on
A ∪B,

d(x3, x2) ≤ a d(x2, x1) + b d(x1, x0) + (1− a− b)d(A,B)

≤ (a + b)k + d(A,B),

d(x4, x3) ≤ a d(x3, x2) + b d(x2, x1) + (1− a− b)d(A,B)

≤ a(a + b)k + bk + d(A,B)

≤ (a + b)k + d(A,B),

d(x5, x4) ≤ a d(x4, x3) + b d(x3, x2) + (1− a− b)d(A,B)

≤ a
[
(a + b)k + d(A,B)

]
+ b

[
(a + b)k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)k + b(a + b)k + d(A,B)

≤ (a + b)2k + d(A,B)

and

d(x6, x5) ≤ a d(x5, x4) + b d(x4, x3) + (1− a− b)d(A,B)

≤ a
[
(a + b)2k + d(A,B)

]
+ b

[
(a + b)k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)2k + b(a + b)k + d(A,B)

≤ (a + b)2k + d(A,B).

By the induction principle, lets us assume that the following holds.

d(x2m−1, x2m−2) ≤ (a + b)m−1k + d(A,B)

and

d(x2m, x2m−1) ≤ (a + b)m−1k + d(A,B).
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Therefore,

d(x2m+1, x2m) ≤ a d(x2m, x2m−1) + b d(x2m−1, x2m−2) + (1− a− b)d(A,B)

≤ a
[
(a + b)m−1k + d(A,B)

]
+ b

[
(a + b)m−1k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)m−1k + b(a + b)m−1k + d(A,B)

= (a + b)mk + d(A,B)

and

d(x2m+2, x2m+1) ≤ a d(x2m+1, x2m) + b d(x2m, x2m−1) + (1− a− b)d(A,B)

≤ a
[
(a + b)mk + d(A,B)

]
+ b

[
(a + b)m−1k + d(A,B)

]
+ (1− a− b)d(A,B)

≤ a(a + b)m−1k + b(a + b)m−1k + d(A,B)

= (a + b)mk + d(A,B).

Since a + b < 1, as m→∞

d(x2m+1, x2m)→ d(A,B).

This completes the proof. �

Theorem 3.9. Let (X, d) be a metric space, A and B be nonempty closed
subsets of X. Let T : A ∪B → A ∪B satisfies

(1) cyclic 2-convex contraction and
(2) cyclic limiting contraction.

If for some x0 ∈ A ∪B and subsequence {ni}∞i=1 on N, p = lim
i→∞

Tni(x0), then

p is a proximity point of T.

Proof. Since T satisfies cyclic limiting contraction, we have

d(p, T (p)) ≤ lim
n→∞

d(Tn(x0), T
n+1(x0)).

Since T satisfies a cyclic 2-convex contraction, lim
n→∞

d(Tn(x0), T
n+1(x0)) =

d(A,B) by Theorem 3.8 and hence it follows that

d(p, T (p)) ≤ d(A,B). (3.4)

Moreover, since p ∈ A ∪B

d(p, T (p)) ≥ d(A,B). (3.5)

By equations (3.4) and (3.5), we have p is a proximity point of T . �
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Theorem 3.10. Let (X, d) be a complete metric space and A,B be nonempty
closed subsets of (X, d). Suppose T : A ∪ B → A ∪ B is a weakly cyclic 2-
convex contraction map and cyclic limiting contraction. If A or B is boundedly
compact then there exists p0 ∈ A ∪B which is a proximity point of T .

Proof. Without loss of generality, let x0 ∈ A and A is boundedly compact.
By Lemma 3.4 {x2n} is bounded in A and hence {x2n} has a convergent
subsequence say {x2nk

}. Thus there exists p0 ∈ A such that x2nk
→ p0 as

k →∞. Therefore, by Theorem 3.9, p0 is a best proximity point of T . �

Corollary 3.11. Let (X, d) be a complete metric space and A,B be nonempty
closed subsets of (X, d) such that A ∩ B 6= ∅. Suppose T : A ∪ B → A ∪ B is
a cyclic 2-convex contraction map. Then p = lim

n→∞
Tnx, is a fixed point of T .

NOTE: The Theorem still holds when A = B.

3.3. Proximity Point for M-Weakly Cyclic 2-Convex Contraction
Mappings. In this section, we introduce the following definition which gen-
eralizes cyclic contraction mappings of Kirk et al. [5] and Istraescu [6]. We
obtain proximity point for M -Weakly cyclic 2-convex contraction mappings.

Definition 3.12. Let A and B be nonempty subsets of a metric space (X, d)
and T : A ∪ B → A ∪ B be a continuous mapping. T is said to be M -weakly
cyclic 2-convex contraction if T is cyclic and for any x, y ∈ A∪B, there exists
a nonnegative constants a, b, c with 2a + b + 2c < 1 such that

d(T 2(x), T 2(y)) ≤ a [d(x, T (x)) + d(y, T (y))] + b d(x, y)

+c[d(x, T (y)) + d(y, T (x))]

+(1− (2a + b + 2c))d(A,B). (3.6)

Theorem 3.13. Let A, B be two nonempty closed subsets of a complete metric
space (X, d) and T be a M -weakly cyclic 2-convex contraction on A∪B. Then
for any x0 ∈ A ∪B the sequence d(Tn(x0), T

n+1(x0)) converges to d(A,B).

Proof. Let x0 ∈ A ∪ B be arbitrary. Define xn = Tn(x0) and let k =
max{d(x2, x1), d(x1, x0)}. Since T is M -weakly cyclic 2-convex contraction
on A ∪B,

d(x3, x2) ≤ a[d(x0, x1) + d(x1, x2)] + b d(x1, x0) + c[d(x0, x2) + d(x1, x1)]

+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)d(x1, x2) + (a + b + c)d(x0, x1) + (1− (2a + b + 2c))d(A,B)

≤ (2a + b + 2c)k + d(A,B),
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d(x4, x3) ≤ (a + c) d(x3, x2) + (a + b + c)d(x2, x1)

+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)[(2a + b + 2c)k + d(A,B)] + (a + b + c)k

+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)k + (a + c)d(A,B) + (a + b + c)k

+ (1− (2a + b + 2c))d(A,B)

≤ (2a + b + 2c)k + d(A,B),

d(x5, x4) ≤ (a + c)d(x4, x3) + (a + b + c) d(x3, x2)

+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)
[
(2a + b + 2c)k + d(A,B)

]
+ (a + b + c)

[
(2a + b + 2c)k + d(A,B)

]
+ (1− (2a + b + 2c))d(A,B)

= (2a + b + 2c)2k + d(A,B)

and

d(x6, x5) ≤ (a + c)d(x5, x4) + (a + b + c)d(x4, x3)

+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)
[
(2a + b + 2c)2k + d(A,B)

]
+ (a + b + c)

[
(2a + b + 2c)k + d(A,B)

]
+ (2a + b + 2c)k + d(A,B)

≤ (a + c)
[
(2a + b + 2c)k + d(A,B)

]
+ (a + b + c)

[
(2a + b + 2c)k + d(A,B)

]
+ (2a + b + 2c)k + d(A,B)

= (2a + b + 2c)2k + d(A,B).

By the induction principle, lets us assume that the following hold.

d(x2m−1, x2m−2) ≤ (2a + b + 2c)m−1k + d(A,B)

and

d(x2m, x2m−1) ≤ (2a + b + 2c)m−1k + d(A,B).
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Therefore,

d(x2m+1, x2m) ≤ (a + c)d(x2m, x2m−1) + (a + b + c)d(x2m−1, x2m−2)

+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)
[
(2a + b + 2c)m−1k + d(A,B)

]
+ (a + b + c)

[
(2a + b + 2c)m−1k + d(A,B)

]
+ (1− (2a + b + 2c))d(A,B)

= (a + c)(2a + b + 2c)m−1k + (a + b + c)(2a + b + 2c)m−1k

+ d(A,B)

= (2a + b + 2c)mk + d(A,B)

and

d(x2m+2, x2m+1) ≤ (a + c)d(x2m+1, x2m) + (a + b + c)d(x2m, x2m−1)

+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)
[
(2a + b + 2c)mk + d(A,B)

]
+ (a + b + c)

[
(2a + b + 2c)m−1k + d(A,B)

]
+ (1− (2a + b + 2c))d(A,B)

≤ (a + c)(2a + b + 2c)m−1k + (a + b + c)(2a + b + 2c)m−1k

+ d(A,B)

= (2a + b + 2c)mk + d(A,B).

Since 2a + b + 2c < 1,

lim
m→∞

d(x2m+1, x2m) ≤ d(A,B).

But
lim
n→∞

d(x2m+1, x2m) ≥ d(A,B).

Let n = 2m. Then lim
n→∞

d(xn+1, xn) = d(A,B). �

Theorem 3.14. Let (X, d) be a metric space, A, B be nonempty closed subsets
of X. Let T : A ∪ B → A ∪ B be a M -weakly cyclic 2-convex contraction. If
for some x0 ∈ A∪B and subsequence {ni}∞i=1 on N, p = lim

i→∞
Tni(x0) , then p

is a proximity point of T.

Proof. Since T is continuous and d is jointly continuous, we have

d(p, T (p)) = lim
n→∞

d(Tn(x0), T
n+1(x0)).

Since T is M -weakly cyclic 2-convex contraction,

lim
n→∞

d(Tn(x0), T
n+1(x0)) = d(A,B)
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by Theorem 3.13 and hence it follows that

d(p, T (p)) = d(A,B). (3.7)

Thus p is a proximity point of T . �

Theorem 3.15. Let (X, d) be a complete metric space and A,B be nonempty
closed subsets of (X, d). Suppose T : A ∪ B → A ∪ B is a M -weakly cyclic
2-convex contraction map. If A or B is boundedly compact then there exists
p0 ∈ A ∪B which is a proximity point of T .

Proof. Without loss of generality, let x0 ∈ A and A is boundedly compact.
By Lemma 3.4 {x2n} is bounded in A and hence {x2n} has a convergent
subsequence say {x2nk

}. Thus there exists p0 ∈ A x2nk
→ p0 as k → ∞.

Therefore, by Theorem 3.14, p0 is a best proximity point of T . �

Corollary 3.16. Let (X, d) be a complete metric space and A,B be nonempty
subsets of (X, d) such that A∩B 6= ∅. Suppose T : A∪B → A∪B is a cyclic
2-convex contraction map. Then p = lim

n→∞
Tnx, is a fixed point of T .

NOTE: The Theorem still holds when A = B.
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