Nonlinear Functional Analysis and Applications Vol. 25, No. 1 (2020), pp. 13-23 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2020.25.01.02 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2020 Kyungnam University Press

FIXED POINT RESULTS WITH SIMULATION FUNCTIONS

Anwar Bataihah¹, Wasfi Shatanawi² and Abdalla Tallafha³

¹Department of Mathematics, School of Science The University of Jordan, Amman 11942, Jordan e-mail: anwerbataihah@gmail.com

²Department of Mathematics and General Courses Prince Sultan University, Riyadh 11586, Saudi Arabia Department of Medical Research, China Medical University Hospital China Medical University, Taichung 40402, Taiwan e-mail: wshatanawi@psu.edu.sa

> ³Department of Mathematics, School of Science The University of Jordan, Amman 11942, Jordan e-mail: a.tallafha@ju.edu.jo

Abstract. In this paper, we prove some fixed point results through Ω -distance mappings in sense of Saadati et al. [21] by utilizing the concept of simulation functions in sense of Khojasteh et al. [17] as well as we support our result by introducing an example.

1. INTRODUCTION

It is known that the outstanding result in fixed point theory was the Banach contraction principle which introduced by Banach [10]. Then after many researchers study the fixed point theory in various directions, for instance we refer the reader to [3, 5, 13, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33] and references therein.

⁰Received September 22, 2018. Revised December 29, 2019.

⁰2010 Mathematics Subject Classification: 47H10, 55M20.

 $^{^0\}mathrm{Keywords}:$ Fixed point, nonlinear contraction, simulation function, omega distance, G-metric.

⁰Corresponding author: A. Bataihah(anwerbataihah@gmail.com).

In 2006, Mustafa and Sims [19] introduced a new generalization for the notion of metric spaces namely generalized metric spaces or G-metric spaces as well as they prove some fixed point results. After that many authors proved several fixed point results in the setting on G-metric spaces. For more work on metric and G-metric spaces, we refer the reader to [4, 6, 7, 8, 9, 11, 12, 16, 34].

The definition of *G*-metric spaces is given as follows:

Definition 1.1. ([19]) Let X be a nonempty set and let $G : X \times X \times X \rightarrow [0, \infty)$ be a function satisfying:

- (G1) G(x, y, z) = 0 if x = y = z,
- (G2) G(x, x, y) > 0 for all $x, y \in X$ with $x \neq y$,
- (G3) $G(x, y, y) \leq G(x, y, z)$ for all $x, y, z \in X$ with $y \neq z$,

metric on X and the pair (X, G) is called a G-metric space.

(G4) $G(x, y, z) = G(p\{x, y, z\})$, where $p\{x, y, z\}$ is the all possible permutations of (x, y, z) (symmetry),

(G5) $G(x, y, z) \leq G(x, a, a) + G(a, y, z), \forall x, y, z, a \in X$ (rectangle inequality). Then the function G is called a generalized metric or more specifically a G-

Recently, Saadati et al. [21] introduced the concept of Ω -distance mapping related to a *G*-metric space and used it to prove some fixed point theorems. For more results on Ω -distance mappings we refer the reader to [1, 2, 14, 15, 22, 23, 24].

The definition of Ω -distance is given as follows:

Definition 1.2. ([21]) Let (X, G) be a G-metric space. Then a function $\Omega: X \times X \times X \to [0, \infty)$ is called an Ω -distance on X if the following conditions satisfied:

- (a) $\Omega(x, y, z) \leq \Omega(x, a, a) + \Omega(a, y, z), \ \forall x, y, z, a \in X,$
- (b) for any $x, y \in X, \Omega(x, y, .), \Omega(x, ., y) : X \to X$ are lower semicontinuous,
- (c) for each $\epsilon > 0$, there exists a $\delta > 0$ such that $\Omega(x, a, a) \leq \delta$ and $\Omega(a, y, z) \leq \delta$ imply $G(x, y, z) \leq \epsilon$.

Definition 1.3. ([21]) Let (X, G) be a *G*-metric space and Ω be an Ω -distance on *X*. Then we say that *X* is Ω -bounded if there exists $\rho \geq 0$ such that $\Omega(x, y, z) \leq \rho$ for all $x, y, x \in X$.

The following lemma is an important tool in the development of our results.

Lemma 1.4. ([21]) Let X be a metric space with metric G and Ω be an Ω distance on X. Let $\{x_n\}, \{y_n\}$ be sequences in X, $\{\alpha_n\}, \{\beta_n\}$ be sequences in $[0, \infty)$ converging to zero and let $x, y, z, a \in X$. Then we have the followings:

14

Fixed point results with simulation functions

- (1) If $\Omega(y, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y, z) \leq \beta_n$ for $n \in \mathbb{N}$, then $G(y, y, z) < \epsilon$ and hence y = z;
- (2) If $\Omega(y_n, x_n, x_n) \leq \alpha_n$ and $\Omega(x_n, y_m, z) \leq \beta_n$ for any $m > n \in \mathbb{N}$, then $G(y_n, y_m, z) \to 0$ and hence $y_n \to z$;
- (3) If $\Omega(x_n, x_m, x_l) \leq \alpha_n$ for any $m, n, l \in \mathbb{N}$ with $n \leq m \leq l$, then $\{x_n\}$ is a G-Cauchy sequence;
- (4) If $\Omega(x_n, a, a) \leq \alpha_n$ for any $n \in \mathbb{N}$, then $\{x_n\}$ is a G-Cauchy sequence.

In 2015, Khojasteh et al. [17] introduced the concept of simulation functions in which they used it to unify several fixed point results in the literature [18].

Definition 1.5. ([17]) Let $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be a mapping. Then ζ is called a simulation function if it satisfies the following conditions:

- $(\zeta 1) \zeta(0,0) = 0,$
- $(\zeta 2) \zeta(t,s) < s-t \text{ for all } s,t > 0,$
- (ζ 3) If { t_n } and { s_n } are sequences in [0, ∞) with $\lim_{n\to\infty} t_n = \lim_{n\to\infty} s_n > 0$, then $\limsup_{n\to\infty} \zeta(t_n, s_n) < 0$.

Henceforth, we denote by \mathcal{Z} the set of all simulation functions.

Next, we list some examples of simulation functions wherein ζ is defined from $[0, \infty) \times [0, \infty)$ to \mathbb{R} .

Example 1.6. ([17]) Let $h_1, h_2 : [0, \infty) \to [0, \infty)$ be two continuous functions such that $h_1(t) = h_2(t) = 0$ if and only if t = 0 and $h_2(t) < t \le h_1(t)$ for all $t \in [0, \infty)$ and define $\zeta(t, s) = h_2(s) - h_1(t)$ for all $t, s \in [0, \infty)$. Then ζ is a simulation function.

Example 1.7. ([17]) Let $g: [0, \infty) \to [0, \infty)$ be a continuous function such that g(t) = 0 if and only if t=0 and define $\zeta(t,s) = s - g(s) - t$ for all $t, s \in [0, \infty)$. Then ζ is a simulation function.

Definition 1.8. ([35]) Let Θ denotes the set of all functions $\theta : (0, \infty) \to (1, \infty)$ that satisfying the following conditions:

- $(\Theta_1) \ \theta$ is nondecreasing,
- (Θ_2) For each sequence $\{t_n\}$ in $(0,\infty)$, $\lim_{n\to\infty} \theta(t_n) = 1$ if and only if

$$\lim_{n \to \infty} t_n = 0,$$

 $(\Theta_3) \ \theta$ is continuous on $(0, \infty)$.

Definition 1.9. ([35]) Let Φ denotes the set of all functions $\phi : [1, \infty) \to [1, \infty)$ that satisfying the following conditions:

 $(\Phi_1) \phi$ is nondecreasing,

(Φ_2) For each t > 1, $\lim_{n \to \infty} \phi^n(t) = 1$,

 $(\Phi_3) \ \theta$ is continuous on $[1, \infty)$.

Remark 1.10. ([35]) If $\phi \in \Phi$, then $\phi(1) = 1$ and $\phi(t) < t$ for each t > 1.

In fact, Zheng et al. [35] used the above classes of functions to generalize some previous fixed point theorems.

Now, we introduce the definition of symmetric Ω -distance mappings at 0.

Definition 1.11. Let (X, G) be a *G*-metric space and Ω be an Ω -distance on *X*. We say that Ω is symmetric at 0 if $\Omega(a, b, c) = 0$ implies that $\Omega(p\{a, b, c\}) = 0$ for any permutation *p* of (a, b, c).

Next, we provide some examples of symmetric Ω -distance mappings at 0.

Example 1.12. Let (X, d) be a metric space and let $G : X \times X \times X \to [0, \infty)$ be defined by

$$G(x, y, z) = \max\{d(x, y), d(y, z), d(x, z)\}$$

for all $x, y, z \in X$. Then G is symmetric at 0.

Example 1.13. Let X = [0,1]. Define $G, \Omega : X \times X \times X \to [0,\infty)$ by G(x, y, z) = |x - y| + |y - z| + |x - z| and $\Omega(x, y, z) = |x - y| + |x - z|$. Then Ω is symmetric at 0.

2. Main Results

To facilitate our work, we introduce the following definition:

Definition 2.1. Let (X, G) be a *G*-metric space, $\zeta \in \mathbb{Z}$ and Ω be an Ω distance on *X* such that Ω is symmetric at 0. A self mapping $f : X \to X$ is said to be (Ω, θ, ϕ) -contraction with respect to ζ if there exist $\theta \in \Theta$ and $\phi \in \Phi$ such that $\Omega(fx, fy, fz) \neq 0$, then

$$\zeta(\theta\Omega(fx, fy, fz), \phi\theta\Omega(x, y, z)) \ge 0 \quad for \ all \quad x, y, z \in X.$$

Lemma 2.2. Let (X,G) be a *G*-metric space and Ω be an Ω -distance on *X*. Let $f: X \to X$ be an (Ω, θ, ϕ) -contraction with respect to $\zeta \in \mathcal{Z}$. If *f* has a fixed point (say) $u \in X$, then it is unique.

Proof. Assume that there is $v \in X$ such that fv = v. We show that $\Omega(u, u, v) = 0$. If $\Omega(u, u, v) \neq 0$, by substituting x = y = u and z = v in (2.1) and taking

16

into account $(\zeta 2)$, we have

$$\begin{split} 0 &\leq \zeta(\theta\Omega(fu,fu,fv),\phi\theta\Omega(u,u,v)) \\ &= \zeta(\theta\Omega(u,u,v),\phi\theta\Omega(u,u,v)) \\ &< \phi\theta\Omega(u,u,v) - \theta\Omega(u,u,v) \\ &< \theta\Omega(u,u,v) - \theta\Omega(u,u,v) = 0, \end{split}$$

a contradiction and so $\Omega(u, u, v) = 0$. By the same argument we can show that $\Omega(u, u, u) = 0$. Thus, G(u, u, v) = 0 which implies that u = v. \Box

Let (X, G) be a *G*-metric space, $x_0 \in X$ and $f : X \to X$ be a self mapping. Then the sequence $\{x_n\}$, where $x_n = fx_{n-1}$, $n \in \mathbb{N}$ is called the Picard sequence generated by f with initial point x_0 .

Lemma 2.3. Let (X, G) be a *G*-metric space, $\zeta \in \mathbb{Z}$ and Ω be an Ω -distance on *X*. If $f : X \to X$ is an (Ω, θ, ϕ) -contraction with respect to ζ , then

$$\Omega(x_n, x_{n+1}, x_{n+1}) > 0 \quad for \ each \ n \in \mathbb{N} \quad implies \lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0,$$

$$\Omega(x_{n+1}, x_n, x_n) > 0 \quad for \ each \ n \in \mathbb{N} \quad implies \lim_{n \to \infty} \Omega(x_{n+1}, x_n, x_n) = 0$$

(2.2)

for any initial point $x_0 \in X$, where $\{x_n\}$ is the Picard sequence generated by f at x_0 .

Proof. Let $x_0 \in X$ be any point and $\{x_n\}$ be the Picard sequence generated by f at x_0 . From (2.1) and ($\zeta 2$), we have

$$0 \leq \zeta(\theta\Omega(fx_{n-1}, fx_n, fx_n), \phi\theta\Omega(x_{n-1}, x_n, x_n)) \\ = \zeta(\theta\Omega(x_n, x_{n+1}, x_{n+1}), \phi\theta\Omega(x_{n-1}, x_n, x_n)) \\ < \phi\theta\Omega(x_{n-1}, x_n, x_n) - \theta\Omega(x_n, x_{n+1}, x_{n+1}) \\ < \theta\Omega(x_{n-1}, x_n, x_n) - \theta\Omega(x_n, x_{n+1}, x_{n+1}).$$

Thus, $\{\Omega(x_n, x_{n+1}, x_{n+1})\}$ is a nonincreasing sequence in $[0, \infty)$ and so there is $\gamma \geq 0$ such that $\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = \gamma$. Suppose to the contrary that is, $\gamma > 0$. Then by (2.1) and ($\zeta 3$), we have

$$0 \le \limsup_{n \to \infty} \zeta(\theta \Omega(x_n, x_{n+1}, x_{n+1}), \phi \theta \Omega(x_{n-1}, x_n, x_n)) < 0,$$

which is a contradiction and so $\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0$. By the same way we can show that $\lim_{n \to \infty} \Omega(x_{n+1}, x_n, x_n) = 0$.

Lemma 2.4. Let (X, G) be a *G*-metric space, $\zeta \in \mathbb{Z}$ and Ω be an Ω -distance on X such that Ω is symmetric at 0. Let $f : X \to X$ be an (Ω, θ, ϕ) -contraction

with respect to ζ . If $\Omega(x_{n_0}, x_{n_0+1}, x_{n_0+1}) = 0$ or $\Omega(x_{n_0+1}, x_{n_0}, x_{n_0}) = 0$ for some $n_0 \in \mathbb{N}$, then x_{n_0} is a fixed point for f.

Proof. The proof follows from part (c) of the definition of Ω and the assumption that Ω is symmetric at 0.

Theorem 2.5. Let (X, G) be a complete G-metric space, $\zeta \in \mathcal{Z}$ and Ω be an Ω -distance on X such that Ω is symmetric at 0. Suppose that $f : X \to X$ is (Ω, θ, ϕ) -contraction with respect to ζ that satisfies the following condition: for all $u \in X$ if $fu \neq u$, then

$$\inf\{\Omega(x, fx, u) : x \in X\} > 0.$$
(2.3)

Then f has a unique fixed point $x \in X$.

Proof. Let $x_0 \in X$ and consider the Picard sequence $\{x_n\}$ in X generated by f at x_0 . According to Lemma 2.4, if there exists $n_0 \in \mathbb{N}$ such that $\Omega(x_{n_0}, x_{n_0+1}, x_{n_0+1}) = 0$ or $\Omega(x_{n_0+1}, x_{n_0}, x_{n_0}) = 0$, then x_{n_0} is a fixed point for f. So, we may assume that for each $n \in \mathbb{N}$, $\Omega(x_n, x_{n+1}, x_{n+1}) \neq 0$ and $\Omega(x_{n+1}, x_n, x_n) \neq 0$. Thus, by Lemma 2.2 we have $\lim_{n \to \infty} \Omega(x_n, x_{n+1}, x_{n+1}) = 0$ and $\lim_{n \to \infty} \Omega(x_{n+1}, x_n, x_n) = 0$.

Now, we claim that $\lim_{n,m\to\infty} \Omega(x_n, x_m, x_m) = 0$ for $m, n \in \mathbb{N}$ with m > n. Assume to the contrary that is, $\lim_{n,m\to\infty} \Omega(x_n, x_m, x_m) \neq 0$. Thus, there is $\epsilon > 0$ and two subsequences $\{x_{n_k}\}$ and $\{x_{m_k}\}$ of $\{x_n\}$ such that $\{x_{m_k}\}$ is chosen as the smallest index for which

$$\Omega(x_{n_k}, x_{m_k}, x_{m_k}) \ge \epsilon, \ m_k > n_k > k.$$

$$(2.4)$$

This implies that

$$\Omega(x_{n_k}, x_{m_k-1}, x_{m_k-1}) < \epsilon.$$
(2.5)

By using (2.4), (2.5) and part (a) of the definition of Ω , we get

$$\epsilon \leq \Omega(x_{n_k}, x_{m_k}, x_{m_k}) \leq \Omega(x_{n_k}, x_{m_k-1}, x_{m_k-1}) + \Omega(x_{m_k-1}, x_{m_k}, x_{m_k}) < \epsilon + \Omega(x_{m_k-1}, x_{m_k}, x_{m_k}).$$

By taking the limit as $k \to \infty$ and taking into account (2.2), we get

$$\lim_{k \to \infty} \Omega(x_{n_k}, x_{m_k}, x_{m_k}) = \epsilon.$$

Also,

$$\epsilon \leq \Omega(x_{n_k}, x_{m_k}, x_{m_k}) \\ \leq \Omega(x_{n_k}, x_{n_k+1}, x_{n_k+1}) + \Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}) + \Omega(x_{m_k+1}, x_{m_k}, x_{m_k})$$

and

Fixed point results with simulation functions

$$\Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}) \leq \Omega(x_{n_k+1}, x_{n_k}, x_{n_k}) + \Omega(x_n, x_{m_k}, x_{m_k}) + \Omega(x_{m_k}, x_{m_k+1}, x_{m_k+1}).$$

If we pass the limit as $k \to \infty$ in the above two inequalities and taking into account (2.2), we get

$$\lim_{n \to \infty} \Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}) = \epsilon.$$

Now, by letting $s_{n_k} = \Omega(x_{n_k}, x_{m_k}, x_{m_k})$ and $t_{n_k} = \Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1})$ then (ζ 3) and (2.1) yield that

$$0 \le \limsup_{k \to \infty} \zeta(\Omega(x_{n_k+1}, x_{m_k+1}, x_{m_k+1}), \Omega(x_{n_k}, x_{m_k}, x_{m_k})) < 0$$

which is a contradiction. Therefore,

$$\lim_{n,m\to\infty}\Omega(x_n,x_m,x_m)=0,\ m>n.$$

By the same argument we can show that

$$\lim_{n,m\to\infty}\Omega(x_n,x_n,x_m)=0,\ m>n.$$

For l > m > n, we have

$$\Omega(x_n, x_m, x_l) \le \Omega(x_n, x_m, x_m) + \Omega(x_m, x_m, x_l)$$

By taking the limit as $n, m, l \to \infty$, we get

$$\lim_{n,m,l\to\infty}\Omega(x_n,x_m,x_l)=0.$$

Thus by Lemma 1.4, $\{x_n\}$ is a *G*-Cauchy sequence. So there exists $u \in X$ such that $\lim_{n \to \infty} x_n = u$. Since $\lim_{n,m,l \to \infty} \Omega(x_n, x_m, x_l) = 0$, for any $\epsilon > 0$ there is $k_0 \in \mathbb{N}$ such that

$$\Omega(x_n, x_m, x_l) \le \epsilon, \quad \forall \ l > m > n \ge k_0.$$

The lower semi-continuity of Ω implies that

$$\Omega(x_n, x_m, u) \le \liminf_{p \to \infty} \Omega(x_n, x_m, x_p) \le \epsilon, \ \forall \ m > n \ge k_0.$$

Suppose that $fu \neq u$. Then we have

$$0 < \inf \{ \Omega(x, fx, u) : x \in X \}$$

$$\leq \inf \{ \Omega(x_n, x_{n+1}, u) : n \in \mathbb{N} \}$$

$$< \epsilon$$

for every $\epsilon > 0$ which is a contradiction. Therefore fu = u. The uniqueness of u follows from Lemma 2.2. This completes the proof.

We introduce the following example to support our main result.

Example 2.6. Let $X = \{0, 1\} \cup [4, \infty)$ and let $G : X \times X \times X \to [0, \infty)$, $\Omega : X \times X \times X \to [0, \infty), f : X \to X, \phi : [1, \infty) \to [1, \infty), \theta : (0, \infty) \to (1, \infty)$ and $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ be defined as follow:

$$\begin{split} \Omega(x,y,z) &= G(x,y,z) = \begin{cases} 0 &, x = y = z, \\ \max\{x,y,z\}, \ otherwise, \end{cases} fx = \begin{cases} 0, \ x = 0,1, \\ 1, \ x \in [4,\infty), \end{cases} \\ \phi(t) &= t^{\frac{1}{2}}, \ \theta(t) = e^t \ \text{and} \ \zeta(t,s) = ks - t, \ \text{where} \ e^{-1} \le k < 1. \ \text{Then}, \end{split}$$

- (1) (X,G) is a complete G-metric space and Ω is an Ω -distance on X and symmetric at 0,
- (2) $\zeta \in \mathcal{Z}, \ \phi \in \Phi \text{ and } \theta \in \Theta$,
- (3) f is a (Ω, θ, ϕ) -contraction with respect to ζ ,
- (4) for every $u \in X$ if $fu \neq u$, then $\inf\{\Omega(x, fx, u) : x \in X\} > 0$.

We show (3) and (4). In order to see (3), that is, f is (Ω, θ, ϕ) -contraction with respect to ζ , let $x, y, z \in X$ be such that $\Omega(fx, fy, fz) \neq 0$. Then, $fx \neq fy$ or $fx \neq fz$ or $fy \neq fz$. We just discuss the case that $fx \neq fy$ and the other are the same.

We consider the following cases: Case(1): If $x = 0, 1, y \ge 4$ and $z \in X$, then

$$\begin{split} \zeta(\theta\Omega(fx,fy,fz),\phi\theta\Omega(x,y,z)) &= k \ \phi\theta\Omega(x,y,z) - \theta\Omega(fx,fy,fz) \\ &= k \ e^{\frac{1}{2}\max\{x,y,z\}} - e^{\max\{0,1,fz\}} \\ &\geq k \ e^2 - e^1 \\ &\geq 0. \end{split}$$

Case(2): If $x \ge 4$, y = 0, 1 and $z \in X$, then

$$\begin{split} \zeta(\theta\Omega(fx,fy,fz),\phi\theta\Omega(x,y,z)) &= k \ \phi\theta\Omega(x,y,z) - \theta\Omega(fx,fy,fz) \\ &= k \ e^{\frac{1}{2}\max\{x,y,z\}} - e^{\max\{1,0,fz\}} \\ &\geq k \ e^2 - e^1 \\ &\geq 0. \end{split}$$

Therefore, for all $x, y, z \in X$, we have

$$\zeta(\theta\Omega(fx, fy, fz), \phi\theta\Omega(x, y, z)) \ge 0.$$

This means that f is (Ω, θ, ϕ) -contraction with respect to ζ .

Next, to see (4), if $fu \neq u$, then $u \neq 0$. To find $\inf\{\Omega(x, fx, u) : x \in X\}$, we have two cases: Case(1): If x = 0, 1, then

$$\inf\{\Omega(x, fx, u) : x \in \mathcal{U}\} = \inf\{\Omega(x, 0, u) : x = 0, 1\} \\= \inf\{\max\{x, 0, u\} : x = 0, 1\} \\\geq 1.$$

Case(2): If
$$x \ge 4$$
, then
 $\inf \{\Omega(x, fx, u) : x \in \mathcal{U}\} = \inf \{\Omega(x, 1, u) : x \ge 4\}$
 $= \inf \{\max\{x, 0, u\} : x \ge 4\}$
 $\ge 4.$

Therefore by Theorem 2.5 f has a unique fixed point in X.

Corollary 2.7. Let (X,G) be a complete G-metric space, $\theta \in \Theta$ and Ω be an Ω -distance on X such that Ω is symmetric at θ . Suppose that $f: X \to X$ is a self-mapping and there are $k, \lambda \in [0,1)$ such that for all $x, y, z \in X$ if $\Omega(fx, fy, fz) \neq 0$, then

$$\theta\Omega(fx, fy, fz) \le k \ [\theta\Omega(x, y, z))]^{\lambda}.$$
(2.6)

Also, for all $u \in X$ if $fu \neq u$, then

$$\inf\{\Omega(x, fx, u) : x \in X\} > 0.$$
(2.7)

Then f has a unique fixed point $x \in X$.

Proof. Define $\zeta : [0, \infty) \times [0, \infty) \to \mathbb{R}$ and $\phi : [1, \infty) \to [1, \infty)$ by $\zeta(t, s) = ks - t$ and $\phi(t) = t^{\lambda}$. Then $\zeta \in \mathcal{Z}$ and $\phi \in \Phi$. Clearly f is (Ω, θ, ϕ) -contraction and so the result follows from Theorem 2.5.

Corollary 2.8. Let (X, G) be a complete G-metric space, $\theta \in \Theta$ and Ω be an Ω -distance on X such that Ω is symmetric at 0. Suppose that $f: X \to X$ is a self mapping and there are $\lambda \in [0, 1)$ and $\tau > 0$ such that for all $x, y, z \in X$ if $\Omega(fx, fy, fz) \neq 0$, then

$$\Omega(fx, fy, fz) \le \lambda \Omega(x, y, z) - \tau.$$
(2.8)

Also, for all $u \in X$ if $fu \neq u$, then

$$\inf\{\Omega(x, fx, u) : x \in X\} > 0.$$
(2.9)

Then f has a unique fixed point $x \in X$.

Proof. Since the function $\delta t = e^t$ is strictly increasing on the set of real numbers, we have

$$\Omega(fx, fy, fz) \le \lambda \Omega(x, y, z) - \tau \Leftrightarrow e^{\Omega(fx, fy, fz)} \le e^{-\tau} e^{\lambda \Omega(x, y, z)}.$$

Now, if $k = e^{-\tau}$ and $\theta : (0, \infty) \to (1, \infty)$ is defined by $\theta(t) = e^t$, then k < 1 and $\theta \in \Theta$. Therefore,

$$\Omega(fx, fy, fz) \le \lambda \Omega(x, y, z) - \tau \Leftrightarrow \theta \Omega(fx, fy, fz) \le k [\theta \Omega(x, y, z)]^{\lambda}.$$

Thus the result follows from Corollary 2.7.

References

- K. Abodayeh, W. Shatanawi, A. Bataihah and A.H. Ansari, Some fixed point and common fixed point results through Ω-distance under nonlinear conractions, Gazi University J. Sci., **30**(1) (2017), 293-302.
- [2] K. Abodayeh, W. Shatanawi and A. Bataihah, Fixed point theorem through Ω-distance of Suzuki type conraction condition, Gazi University J. Sci., 29(1) (2016), 129-133.
- [3] K. Abodayeh, A. Batiahah and W. Shatanawi, Generalized Ω-distance mappings and some fixed point theorems, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 79 (2017), 223-232.
- [4] M. Asadi and P. Salim, Some fixed point and common fixed point theorems on G-metric spaces, Nonlinear Funct. Anal. Appl., 21(3) (2016), 523-530.
- [5] A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sahmim and W. Shatanawi, On common fixed points for a-F-contractions and applications, J. Nonlinear Sci. Appl., 9(5) (2016), 3445-3458.
- [6] H. Aydi, Coincidence and common fixed point results for contraction type maps in partially ordered metric spaces, Int. J. Math. Anal., 5 (2011), arXiv:1102.5493. 2011 Feb 27.
- [7] H. Aydi, M. Jellali and E. Karapinar, On fixed point results for α-implicit contractions in quasi-metric spaces and consequences, Nonlinear Anal. Model. Control., 21(1) (2016), 40-56.
- [8] H. Aydi, M. Postolache and W. Shatanawi, Coupled fixed point results for (ψ, ϕ) -weakly contractive mappings in ordered G-metric spaces, Comput. Math. Appl., **63**(1) (2012), 298-309.
- [9] H. Aydi, W. Shatanawi and G. Vetro, On generalized weakly G-contraction mapping in G-metric spaces, Comput. Math. Appl., 62 (2011), 4222-4229.
- [10] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations intégrales. Fund. Math., 3 (1922), 133-181.
- [11] N. Bilgili, I.M. Erhan, E. Karapinar and D. Türkoğlu, Cyclic contractions and related fixed point theorems on G-metric spaces, Appl. Math. Inform. Sci., 8 (2014), 1541-1551.
- [12] N. Bilgili and E. Karapinar, Cyclic contractions via auxiliary functions on G-metric spaces, Fixed Point Theory and Appi., 2013(1):49, (2013).
- [13] S. Chauhan, W. Shatanawi, S. Kumar and S. Radenovic, Existence and uniqueness of fixed points in modified intuitionistic fuzzy metric spaces, J. Nonlinear Sci. Appl., 7 (2014), 28-41.
- [14] L. Gholizadeh and E. Karapinar, Remarks on contractive mappings via Ω-distance, J. Inequ. Appl., 2013 (2013):457.
- [15] L. Gholizadeh, R. Saadati, W. Shatanawi and SM. Vaezpour, Contractive mapping in generalized ordered metric spaces with application in integral equations, Math. Probl. Eng., 2011, Article ID 380784 (2011)
- [16] E. Karapinar and R.P. Agarual, Further fixed point results on G-metric spaces, Fixed Point Theory Appl., 2013(2013): 154.
- [17] F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194.
- [18] A. Karami, S. Sedghi, N. Shobe ang H.G. Hyun, Fixed point results on S-metric spaces via simulation functions, Nonlinear Funct. Anal. Appl., 24(4) (2019), 665-674.
- [19] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289-297.

- [20] T. Qawasmeh, W. Shatanawi, A. Bataihah and A. Tallafha, Common Fixed Point Results for Rational $(\alpha, \beta)_{\varphi} - m\omega$ Contractions in Complete Quasi Metric Spaces. Mathematics, **7** (2019), 392.
- [21] R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in generalized partially ordered G-metric spaces, Math. and Comput. model., 52 (2010), 797-801.
- [22] W. Shatanawi and A. Pitea, Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction, Fixed Point Theory Appl., 2013(2013) doi:10.1186/1687-1812-2013-275.
- [23] W. Shatanawi, G. Maniu, A. Bataihah and F. Bani Ahmad, Common fixed points for mappings of cyclic form satisfying linear contractive conditions with Omega-distance, U.P.B.Sci., series A, 79 (2017), 11-20.
- [24] W. Shatanawi, A. Bataihah and A. Pitea, Fixed and common fixed point results for cyclic mappings of Ω-distance, J. Nonlinear Sci. Appl., 9 (2016), 727-735.
- [25] W. Shatanawi, Some fixed point results for a generalized Ψ -weak contraction mappings in orbitally metric spaces, Chaos, Solitons & Fractals, **45** (2012), 520-526.
- [26] W. Shatanawi, E. Karapinar and H. Aydi, Coupled coincidence points in partially ordered cone metric spaces with a c-distance, J. Appl. Math., 2012 (2012).
- [27] W. Shatanawi, On w-compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Letters, 25 (2012), 925-931.
- [28] W. Shatanawi and H. K. Nashine, A generalization of Banach's contraction principle for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., 5 (2012), 37-43.
- [29] W. Shatanawi and Z. Mustafa, On coupled random fixed point results in partially ordered metric spaces, Matematicki vesnik, 64 (2012), 139-146.
- [30] W. Shatanawi, Z. Mustafa and N. Tahat, Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed point Theory and Appl., 2011, Art 68, 2011.
- [31] W. Shatanawi, Some coincidence point results in cone metric spaces, Math. Comput. Model., 55 (2012), 2023-2028.
- [32] W. Shatanawi, V.C. Rajic, S. Radenovic and A. Al-Rawashdeh, *Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces*, Fixed Point Theory and Appl., **2012**(1) (2012), 106.
- [33] W. Shatanawi and A. Pitea, Ω -distance and coupled fixed point in G-metric spaces, Fixed Point Theory and Appl., **2013**(1) (2013), 208.
- [34] D. Singh, V. Joshi and J.K. Kim, Existence of solution to Bessel-type boundary value problem VIA G-l cycle F-contractive mapping withgraphical verifcation, Nonlinear Funct. Anal. Appl., 23(2) (2018), 205-224.
- [35] D. Zheng, Z. Cai and P. Wang, New fixed point theorems for θ-φ contraction in complete metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2662–2670.