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Abstract. In this paper, we prove some fixed point results through Ω-distance mappings

in sense of Saadati et al. [21] by utilizing the concept of simulation functions in sense of

Khojasteh et al. [17] as well as we support our result by introducing an example.

1. Introduction

It is known that the outstanding result in fixed point theory was the Ba-
nach contraction principle which introduced by Banach [10]. Then after many
researchers study the fixed point theory in various directions, for instance we
refer the reader to [3, 5, 13, 20, 25, 26, 27, 28, 29, 30, 31, 32, 33] and references
therein.
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In 2006, Mustafa and Sims [19] introduced a new generalization for the
notion of metric spaces namely generalized metric spaces or G-metric spaces
as well as they prove some fixed point results. After that many authors proved
several fixed point results in the setting on G-metric spaces. For more work on
metric and G-metric spaces, we refer the reader to [4, 6, 7, 8, 9, 11, 12, 16, 34].

The definition of G-metric spaces is given as follows:

Definition 1.1. ([19]) Let X be a nonempty set and let G : X ×X ×X →
[0,∞) be a function satisfying:

(G1) G(x, y, z) = 0 if x = y = z,
(G2) G(x, x, y) > 0 for allx, y ∈ X with x 6= y,
(G3) G(x, y, y) ≤ G(x, y, z) for allx, y, z ∈ X with y 6= z,
(G4) G(x, y, z) = G(p{x, y, z}), where p{x, y, z} is the all possible permuta-

tions of (x, y, z) (symmetry),
(G5) G(x, y, z) ≤ G(x, a, a)+G(a, y, z),∀x, y, z, a ∈ X (rectangle inequality).

Then the function G is called a generalized metric or more specifically a G-
metric on X and the pair (X,G) is called a G-metric space.

Recently, Saadati et al. [21] introduced the concept of Ω-distance mapping
related to a G-metric space and used it to prove some fixed point theorems.
For more results on Ω-distance mappings we refer the reader to [1, 2, 14, 15,
22, 23, 24].

The definition of Ω-distance is given as follows:

Definition 1.2. ([21]) Let (X,G) be a G-metric space. Then a function
Ω : X×X×X → [0,∞) is called an Ω-distance on X if the following conditions
satisfied:

(a) Ω(x, y, z) ≤ Ω(x, a, a) + Ω(a, y, z), ∀x, y, z, a ∈ X,
(b) for any x, y ∈ X,Ω(x, y, .),Ω(x, ., y) : X → X are lower semicontinu-

ous,
(c) for each ε > 0, there exists a δ > 0 such that Ω(x, a, a) ≤ δ and

Ω(a, y, z) ≤ δ imply G(x, y, z) ≤ ε.

Definition 1.3. ([21]) Let (X,G) be a G-metric space and Ω be an Ω-distance
on X. Then we say that X is Ω-bounded if there exists % ≥ 0 such that
Ω(x, y, z) ≤ % for all x, y, x ∈ X.

The following lemma is an important tool in the development of our results.

Lemma 1.4. ([21]) Let X be a metric space with metric G and Ω be an Ω-
distance on X. Let {xn},{yn} be sequences in X, {αn},{βn} be sequences in
[0,∞) converging to zero and let x, y, z, a ∈ X. Then we have the followings:
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(1) If Ω(y, xn, xn) ≤ αn and Ω(xn, y, z) ≤ βn for n ∈ IN, then G(y, y, z) <
ε and hence y = z;

(2) If Ω(yn, xn, xn) ≤ αn and Ω(xn, ym, z) ≤ βn for any m > n ∈ IN, then
G(yn, ym, z)→ 0 and hence yn → z;

(3) If Ω(xn, xm, xl) ≤ αn for any m,n, l ∈ IN with n ≤ m ≤ l, then {xn}
is a G-Cauchy sequence;

(4) If Ω(xn, a, a) ≤ αn for any n ∈ IN, then {xn} is a G-Cauchy sequence.

In 2015, Khojasteh et al. [17] introduced the concept of simulation functions
in which they used it to unify several fixed point results in the literature [18].

Definition 1.5. ([17]) Let ζ : [0,∞) × [0,∞) → R be a mapping. Then ζ is
called a simulation function if it satisfies the following conditions:

(ζ1) ζ(0, 0) = 0,
(ζ2) ζ(t, s) < s− t for all s, t > 0,
(ζ3) If {tn} and {sn} are sequences in [0,∞) with limn→∞ tn = limn→∞ sn >

0, then lim supn→∞ ζ(tn, sn) < 0.

Henceforth, we denote by Z the set of all simulation functions.

Next, we list some examples of simulation functions wherein ζ is defined
from [0,∞)× [0,∞) to R.

Example 1.6. ([17]) Let h1, h2 : [0,∞)→ [0,∞) be two continuous functions
such that h1(t) = h2(t) = 0 if and only if t = 0 and h2(t) < t ≤ h1(t) for all
t ∈ [0,∞) and define ζ(t, s) = h2(s) − h1(t) for all t, s ∈ [0,∞). Then ζ is a
simulation function.

Example 1.7. ([17]) Let g : [0,∞) → [0,∞) be a continuous function such
that g(t) = 0 if and only if t=0 and define ζ(t, s) = s − g(s) − t for all
t, s ∈ [0,∞). Then ζ is a simulation function.

Definition 1.8. ([35]) Let Θ denotes the set of all functions θ : (0,∞) →
(1,∞) that satisfying the following conditions:

(Θ1) θ is nondecreasing,
(Θ2) For each sequence {tn} in (0,∞), lim

n→∞
θ(tn) = 1 if and only if

lim
n→∞

tn = 0,

(Θ3) θ is continuous on (0,∞).

Definition 1.9. ([35]) Let Φ denotes the set of all functions φ : [1,∞) →
[1,∞) that satisfying the following conditions:

(Φ1) φ is nondecreasing,
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(Φ2) For each t > 1, lim
n→∞

φn(t) = 1,

(Φ3) θ is continuous on [1,∞).

Remark 1.10. ([35]) If φ ∈ Φ, then φ(1) = 1 and φ(t) < t for each t > 1.

In fact, Zheng et al. [35] used the above classes of functions to generalize
some previous fixed point theorems.

Now, we introduce the definition of symmetric Ω-distance mappings at 0.

Definition 1.11. Let (X,G) be a G-metric space and Ω be an Ω-distance on
X. We say that Ω is symmetric at 0 if Ω(a, b, c) = 0 implies that Ω(p{a, b, c}) =
0 for any permutation p of (a, b, c).

Next, we provide some examples of symmetric Ω-distance mappings at 0.

Example 1.12. Let (X, d) be a metric space and let G : X×X×X → [0,∞)
be defined by

G(x, y, z) = max{d(x, y), d(y, z), d(x, z)}
for all x, y, z ∈ X. Then G is symmetric at 0.

Example 1.13. Let X = [0, 1]. Define G,Ω : X × X × X → [0,∞) by
G(x, y, z) = |x− y|+ |y − z|+ |x− z| and Ω(x, y, z) = |x− y|+ |x− z|. Then
Ω is symmetric at 0.

2. Main Results

To facilitate our work, we introduce the following definition:

Definition 2.1. Let (X,G) be a G-metric space, ζ ∈ Z and Ω be an Ω-
distance on X such that Ω is symmetric at 0. A self mapping f : X → X
is said to be (Ω, θ, φ)-contraction with respect to ζ if there exist θ ∈ Θ and
φ ∈ Φ such that Ω(fx, fy, fz) 6= 0, then

ζ(θΩ(fx, fy, fz), φθΩ(x, y, z)) ≥ 0 for all x, y, z ∈ X. (2.1)

Lemma 2.2. Let (X,G) be a G-metric space and Ω be an Ω-distance on X.
Let f : X → X be an (Ω, θ, φ)-contraction with respect to ζ ∈ Z. If f has a
fixed point (say) u ∈ X, then it is unique.

Proof. Assume that there is v ∈ X such that fv = v. We show that Ω(u, u, v) =
0. If Ω(u, u, v) 6= 0, by substituting x = y = u and z = v in (2.1) and taking
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into account (ζ2), we have

0 ≤ ζ(θΩ(fu, fu, fv), φθΩ(u, u, v))

= ζ(θΩ(u, u, v), φθΩ(u, u, v))

< φθΩ(u, u, v)− θΩ(u, u, v)

< θΩ(u, u, v)− θΩ(u, u, v) = 0,

a contradiction and so Ω(u, u, v) = 0. By the same argument we can show
that Ω(u, u, u) = 0. Thus, G(u, u, v) = 0 which implies that u = v. �

Let (X,G) be a G-metric space, x0 ∈ X and f : X → X be a self mapping.
Then the sequence {xn}, where xn = fxn−1, n ∈ N is called the Picard
sequence generated by f with initial point x0.

Lemma 2.3. Let (X,G) be a G-metric space, ζ ∈ Z and Ω be an Ω-distance
on X. If f : X → X is an (Ω, θ, φ)-contraction with respect to ζ, then

Ω(xn, xn+1, xn+1) > 0 for each n ∈ N implies lim
n→∞

Ω(xn, xn+1, xn+1) = 0,

Ω(xn+1, xn, xn) > 0 for each n ∈ N implies lim
n→∞

Ω(xn+1, xn, xn) = 0

(2.2)
for any initial point x0 ∈ X, where {xn} is the Picard sequence generated by
f at x0.

Proof. Let x0 ∈ X be any point and {xn} be the Picard sequence generated
by f at x0. From (2.1) and (ζ2), we have

0 ≤ ζ(θΩ(fxn−1, fxn, fxn), φθΩ(xn−1, xn, xn))

= ζ(θΩ(xn, xn+1, xn+1), φθΩ(xn−1, xn, xn))

< φθΩ(xn−1, xn, xn)− θΩ(xn, xn+1, xn+1)

< θΩ(xn−1, xn, xn)− θΩ(xn, xn+1, xn+1).

Thus, {Ω(xn, xn+1, xn+1)} is a nonincreasing sequence in [0,∞) and so there
is γ ≥ 0 such that lim

n→∞
Ω(xn, xn+1, xn+1) = γ. Suppose to the contrary that

is, γ > 0. Then by (2.1) and (ζ3), we have

0 ≤ lim sup
n→∞

ζ(θΩ(xn, xn+1, xn+1), φθΩ(xn−1, xn, xn)) < 0,

which is a contradiction and so lim
n→∞

Ω(xn, xn+1, xn+1) = 0. By the same way

we can show that limn→∞Ω(xn+1, xn, xn) = 0. �

Lemma 2.4. Let (X,G) be a G-metric space, ζ ∈ Z and Ω be an Ω-distance on
X such that Ω is symmetric at 0. Let f : X → X be an (Ω, θ, φ)-contraction
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with respect to ζ. If Ω(xn0 , xn0+1, xn0+1) = 0 or Ω(xn0+1, xn0 , xn0) = 0 for
some n0 ∈ N, then xn0 is a fixed point for f.

Proof. The proof follows from part (c) of the definition of Ω and the assump-
tion that Ω is symmetric at 0. �

Theorem 2.5. Let (X,G) be a complete G-metric space, ζ ∈ Z and Ω be an
Ω-distance on X such that Ω is symmetric at 0. Suppose that f : X → X is
(Ω, θ, φ)-contraction with respect to ζ that satisfies the following condition: for
all u ∈ X if fu 6= u, then

inf{Ω(x, fx, u) : x ∈ X} > 0. (2.3)

Then f has a unique fixed point x ∈ X.

Proof. Let x0 ∈ X and consider the Picard sequence {xn} in X generated
by f at x0. According to Lemma 2.4, if there exists n0 ∈ N such that
Ω(xn0 , xn0+1, xn0+1) = 0 or Ω(xn0+1, xn0 , xn0) = 0, then xn0 is a fixed point
for f . So, we may assume that for each n ∈ N, Ω(xn, xn+1, xn+1) 6= 0 and
Ω(xn+1, xn, xn) 6= 0. Thus, by Lemma 2.2 we have lim

n→∞
Ω(xn, xn+1, xn+1) = 0

and lim
n→∞

Ω(xn+1, xn, xn) = 0.

Now, we claim that lim
n,m→∞

Ω(xn, xm, xm) = 0 for m,n ∈ N with m > n.

Assume to the contrary that is, lim
n,m→∞

Ω(xn, xm, xm) 6= 0. Thus, there is ε > 0

and two subsequences {xnk
} and {xmk

} of {xn} such that {xmk
} is chosen as

the smallest index for which

Ω(xnk
, xmk

, xmk
) ≥ ε, mk > nk > k. (2.4)

This implies that

Ω(xnk
, xmk−1, xmk−1) < ε. (2.5)

By using (2.4), (2.5) and part (a) of the definition of Ω, we get

ε ≤ Ω(xnk
, xmk

, xmk
)

≤ Ω(xnk
, xmk−1, xmk−1) + Ω(xmk−1, xmk

, xmk
)

< ε+ Ω(xmk−1, xmk
, xmk

).

By taking the limit as k →∞ and taking into account (2.2), we get

lim
k→∞

Ω(xnk
, xmk

, xmk
) = ε.

Also,
ε ≤ Ω(xnk

, xmk
, xmk

)
≤ Ω(xnk

, xnk+1, xnk+1) + Ω(xnk+1, xmk+1, xmk+1) + Ω(xmk+1, xmk
, xmk

)

and
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Ω(xnk+1, xmk+1, xmk+1) ≤ Ω(xnk+1, xnk
, xnk

) + Ω(xn, xmk
, xmk

)
+Ω(xmk

, xmk+1, xmk+1).

If we pass the limit as k → ∞ in the above two inequalities and taking into
account (2.2), we get

lim
n→∞

Ω(xnk+1, xmk+1, xmk+1) = ε.

Now, by letting snk
= Ω(xnk

, xmk
, xmk

) and tnk
= Ω(xnk+1, xmk+1, xmk+1)

then (ζ3) and (2.1) yield that

0 ≤ lim sup
k→∞

ζ(Ω(xnk+1, xmk+1, xmk+1),Ω(xnk
, xmk

, xmk
)) < 0

which is a contradiction. Therefore,

lim
n,m→∞

Ω(xn, xm, xm) = 0, m > n.

By the same argument we can show that

lim
n,m→∞

Ω(xn, xn, xm) = 0, m > n.

For l > m > n, we have

Ω(xn, xm, xl) ≤ Ω(xn, xm, xm) + Ω(xm, xm, xl).

By taking the limit as n,m, l→∞, we get

lim
n,m,l→∞

Ω(xn, xm, xl) = 0.

Thus by Lemma 1.4, {xn} is a G-Cauchy sequence. So there exists u ∈ X
such that lim

n→∞
xn = u. Since lim

n,m,l→∞
Ω(xn, xm, xl) = 0, for any ε > 0 there is

k0 ∈ N such that

Ω(xn, xm, xl) ≤ ε, ∀ l > m > n ≥ k0.

The lower semi-continuity of Ω implies that

Ω(xn, xm, u) ≤ lim inf
p→∞

Ω(xn, xm, xp) ≤ ε, ∀ m > n ≥ k0.

Suppose that fu 6= u. Then we have

0 < inf{Ω(x, fx, u) : x ∈ X}
≤ inf{Ω(xn, xn+1, u) : n ∈ N}
≤ ε

for every ε > 0 which is a contradiction. Therefore fu = u. The uniqueness of
u follows from Lemma 2.2. This completes the proof. �

We introduce the following example to support our main result.
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Example 2.6. Let X = {0, 1} ∪ [4,∞) and let G : X × X × X → [0,∞),
Ω : X ×X ×X → [0,∞), f : X → X, φ : [1,∞)→ [1,∞), θ : (0,∞)→ (1,∞)
and ζ : [0,∞)× [0,∞)→ R be defined as follow:

Ω(x, y, z) = G(x, y, z) =

{
0 , x = y = z,

max{x, y, z}, otherwise,
fx =

{
0, x = 0, 1,

1, x ∈ [4,∞),

φ(t) = t
1
2 , θ(t) = et and ζ(t, s) = ks− t, where e−1 ≤ k < 1. Then,

(1) (X,G) is a complete G-metric space and Ω is an Ω-distance on X and
symmetric at 0,

(2) ζ ∈ Z, φ ∈ Φ and θ ∈ Θ,
(3) f is a (Ω, θ, φ)-contraction with respect to ζ,
(4) for every u ∈ X if fu 6= u, then inf{Ω(x, fx, u) : x ∈ X} > 0.

We show (3) and (4). In order to see (3), that is, f is (Ω, θ, φ)-contraction with
respect to ζ, let x, y, z ∈ X be such that Ω(fx, fy, fz) 6= 0. Then, fx 6= fy or
fx 6= fz or fy 6= fz. We just discuss the case that fx 6= fy and the other are
the same.

We consider the following cases:
Case(1): If x = 0, 1, y ≥ 4 and z ∈ X, then

ζ(θΩ(fx, fy, fz), φθΩ(x, y, z)) = k φθΩ(x, y, z)− θΩ(fx, fy, fz)

= k e
1
2

max{x,y,z} − emax{0,1,fz}

≥ k e2 − e1

≥ 0.

Case(2): If x ≥ 4, y = 0, 1 and z ∈ X, then

ζ(θΩ(fx, fy, fz), φθΩ(x, y, z)) = k φθΩ(x, y, z)− θΩ(fx, fy, fz)

= k e
1
2

max{x,y,z} − emax{1,0,fz}

≥ k e2 − e1

≥ 0.

Therefore, for all x, y, z ∈ X, we have

ζ(θΩ(fx, fy, fz), φθΩ(x, y, z)) ≥ 0.

This means that f is (Ω, θ, φ)-contraction with respect to ζ.
Next, to see (4), if fu 6= u, then u 6= 0. To find inf{Ω(x, fx, u) : x ∈ X},

we have two cases:
Case(1): If x = 0, 1, then
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inf{Ω(x, fx, u) : x ∈ U} = inf{Ω(x, 0, u) : x = 0, 1}
= inf{max{x, 0, u} : x = 0, 1}
≥ 1.

Case(2): If x ≥ 4, then
inf{Ω(x, fx, u) : x ∈ U} = inf{Ω(x, 1, u) : x ≥ 4}

= inf{max{x, 0, u} : x ≥ 4}
≥ 4.

Therefore by Theorem 2.5 f has a unique fixed point in X.

Corollary 2.7. Let (X,G) be a complete G-metric space, θ ∈ Θ and Ω be
an Ω-distance on X such that Ω is symmetric at 0. Suppose that f : X → X
is a self-mapping and there are k, λ ∈ [0, 1) such that for all x, y, z ∈ X if
Ω(fx, fy, fz) 6= 0, then

θΩ(fx, fy, fz) ≤ k [θΩ(x, y, z))]λ. (2.6)

Also, for all u ∈ X if fu 6= u, then

inf{Ω(x, fx, u) : x ∈ X} > 0. (2.7)

Then f has a unique fixed point x ∈ X.
Proof. Define ζ : [0,∞)×[0,∞)→ R and φ : [1,∞)→ [1,∞) by ζ(t, s) = ks−t
and φ(t) = tλ. Then ζ ∈ Z and φ ∈ Φ. Clearly f is (Ω, θ, φ)-contraction and
so the result follows from Theorem 2.5. �

Corollary 2.8. Let (X,G) be a complete G-metric space, θ ∈ Θ and Ω be an
Ω-distance on X such that Ω is symmetric at 0. Suppose that f : X → X is a
self mapping and there are λ ∈ [0, 1) and τ > 0 such that for all x, y, z ∈ X if
Ω(fx, fy, fz) 6= 0, then

Ω(fx, fy, fz) ≤ λΩ(x, y, z)− τ. (2.8)

Also, for all u ∈ X if fu 6= u, then

inf{Ω(x, fx, u) : x ∈ X} > 0. (2.9)

Then f has a unique fixed point x ∈ X.
Proof. Since the function δt = et is strictly increasing on the set of real num-
bers, we have

Ω(fx, fy, fz) ≤ λΩ(x, y, z)− τ ⇔ eΩ(fx,fy,fz) ≤ e−τeλΩ(x,y,z).

Now, if k = e−τ and θ : (0,∞)→ (1,∞) is defined by θ(t) = et, then k < 1
and θ ∈ Θ. Therefore,

Ω(fx, fy, fz) ≤ λΩ(x, y, z)− τ ⇔ θΩ(fx, fy, fz) ≤ k[θΩ(x, y, z)]λ.

Thus the result follows from Corollary 2.7. �
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fixed point theorems on G-metric spaces, Appl. Math. Inform. Sci., 8 (2014), 1541-1551.

[12] N. Bilgili and E. Karapinar, Cyclic contractions via auxiliary functions on G-metric
spaces, Fixed Point Theory and Appi., 2013(1):49, (2013).

[13] S. Chauhan, W. Shatanawi, S. Kumar and S. Radenovic, Existence and uniqueness of
fixed points in modified intuitionistic fuzzy metric spaces, J. Nonlinear Sci. Appl., 7
(2014), 28-41.

[14] L. Gholizadeh and E. Karapinar, Remarks on contractive mappings via Ω-distance, J.
Inequ. Appl., 2013 (2013):457.

[15] L. Gholizadeh, R. Saadati, W. Shatanawi and SM. Vaezpour, Contractive mapping in
generalized ordered metric spaces with application in integral equations, Math. Probl.
Eng., 2011, Article ID 380784 (2011)

[16] E. Karapinar and R.P. Agarual, Further fixed point results on G-metric spaces, Fixed
Point Theory Appl., 2013(2013): 154.

[17] F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point
theory for simulation functions, Filomat, 29 (2015), 1189–1194.

[18] A. Karami, S. Sedghi, N. Shobe ang H.G. Hyun, Fixed point results on S-metric spaces
via simulation functions, Nonlinear Funct. Anal. Appl., 24(4) (2019), 665-674.

[19] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear
Convex Anal., 7 (2006), 289-297.



Fixed point results with simulation functions 23

[20] T. Qawasmeh, W. Shatanawi, A. Bataihah and A. Tallafha, Common Fixed Point Re-
sults for Rational (α, β)ϕ −mω Contractions in Complete Quasi Metric Spaces. Math-
ematics, 7 (2019), 392.

[21] R. Saadati, S.M. Vaezpour, P. Vetro and B.E. Rhoades, Fixed point theorems in general-
ized partially ordered G-metric spaces, Math. and Comput. model., 52 (2010), 797-801.

[22] W. Shatanawi and A. Pitea, Fixed and coupled fixed point theorems of omega-distance
for nonlinear contraction, Fixed Point Theory Appl., 2013(2013) doi:10.1186/1687-
1812-2013-275.

[23] W. Shatanawi, G. Maniu, A. Bataihah and F. Bani Ahmad, Common fixed points for
mappings of cyclic form satisfying linear contractive conditions with Omega-distance,
U.P.B.Sci., series A, 79 (2017), 11-20.

[24] W. Shatanawi, A. Bataihah and A. Pitea, Fixed and common fixed point results for
cyclic mappings of Ω-distance, J. Nonlinear Sci. Appl., 9 (2016), 727-735.

[25] W. Shatanawi, Some fixed point results for a generalized Ψ-weak contraction mappings
in orbitally metric spaces, Chaos, Solitons & Fractals, 45 (2012), 520-526.

[26] W. Shatanawi, E. Karapinar and H. Aydi, Coupled coincidence points in partially or-
dered cone metric spaces with a c-distance, J. Appl. Math., 2012 (2012).

[27] W. Shatanawi, On w-compatible mappings and common coupled coincidence point in
cone metric spaces, Appl. Math. Letters, 25 (2012), 925-931.

[28] W. Shatanawi and H. K. Nashine, A generalization of Banach‘s contraction principle
for nonlinear contraction in a partial metric space, J. Nonlinear Sci. Appl., 5 (2012),
37-43.

[29] W. Shatanawi and Z. Mustafa, On coupled random fixed point results in partially ordered
metric spaces, Matematicki vesnik, 64 (2012), 139-146.

[30] W. Shatanawi, Z. Mustafa and N. Tahat, Some coincidence point theorems for nonlinear
contraction in ordered metric spaces. Fixed point Theory and Appl., 2011, Art 68, 2011.

[31] W. Shatanawi, Some coincidence point results in cone metric spaces, Math. Comput.
Model., 55 (2012), 2023-2028.

[32] W. Shatanawi, V.C. Rajic, S. Radenovic and A. Al-Rawashdeh, Mizoguchi-Takahashi-
type theorems in tvs-cone metric spaces, Fixed Point Theory and Appl., 2012(1) (2012),
106.

[33] W. Shatanawi and A. Pitea, Ω-distance and coupled fixed point in G-metric spaces,
Fixed Point Theory and Appl., 2013(1) (2013), 208.

[34] D. Singh, V. Joshi and J.K. Kim, Existence of solution to Bessel-type boundary
value problem VIA G-l cycle F-contractive mapping withgraphical verifcation, Nonlinear
Funct. Anal. Appl., 23(2) (2018), 205-224.

[35] D. Zheng, Z. Cai and P. Wang, New fixed point theorems for θ−φ contraction in complete
metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 2662–2670.


