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Abstract. This work aims to suggest a generalized relaxed γ-pseudomonotone variational
inequalities in Hilbert spaces and show that the iterative sequence defined by an algorithm
weakly converges to a solution.

1. Introduction

The variational inequality theory plays a very important role in many ar-
eas, such as optimal control, mechanics, economics, transportation equilibrium
and engineering sciences etc. An important part of the research focuses on the
existence of solutions to variational inequality. The most basic methods for
the solution of variational inequalities are projection method, extra-gradient
method, Tikhonov regularization method and proximal point method; see,
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[9, 13, 16, 21]. The well-known gradient projection method can be success-
fully applied for solving strongly monotone variational inequalities and inverse
strongly monotone variational inequalities [4, 7, 9, 12, 20]. Korpelevich intro-
duced the extra-gradient method [18], and this method was applied for solving
monotone variational inequalities in infinite-dimensional spaces. It is a known
fact [9] that the extra-gradient method can be successfully applied for solv-
ing monotone variational inequalities in infinite-dimensional Hilbert spaces
[3, 5, 6, 13, 15, 22, 23, 24]. Providing that the variational inequality has so-
lutions and the assigned mapping is monotone and Lipschitz continuous, it
is proved that the iterative sequence defined by the extra-gradient method
weakly converges to a solution.

The goal of this work is to define the generalized relaxed γ-pseudomonotone
variational inequalities in Hilbert spaces and prove that the iterative sequence
suggested by the algorithm for solving generalized relaxed γ-pseudomonotone
variational inequalities weakly converges to a solution.

2. Preliminaries

As a matter of convenience, we introduce the notation first. Let H be a real
Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, and Ω be a nonempty,
closed and convex subset of H. Let xn → x and xn ⇀ x represent sequence
{xn} converging strongly and weakly to x, respectively, and Wω(xn) denote
the set of weak cluster points of sequence {xn}.

Let Q : H → H be a mapping. The variational inequality V I(Ω, Q) defined
by Ω and Q consists in finding a point x∗ ∈ Ω such that

〈Q(x∗), x− x∗〉 ≥ 0, ∀x ∈ Ω. (2.1)

The solution set of (2.1) is denoted by Sol(Ω, Q).
Let PΩ be a mapping from H onto a nonempty, closed and convex subset

Ω of H. Then PΩ is called the orthogonal projection from H onto Ω, if

PΩ(x) = arg min
y∈Ω
‖x− y‖, ∀x ∈ H,

Lemma 2.1. ([10]) Let Ω be a nonempty, closed and convex subset of a real
Hilbert space H. For any x, y ∈ H and z ∈ Ω, it satisfies:

(i) ‖x− PΩ(x)‖ ≤ ‖x− y‖;
(ii) 〈x− PΩ(x), z − PΩ(x)〉 ≤ 0;

(iii) ‖PΩ(x)− PΩ(y)‖2 ≤ ‖x− y‖;
(iv) ‖PΩ(x)− z‖2 ≤ ‖x− z‖2 − ‖PΩ(x)− x‖2.

Definition 2.2. ([2]) A mapping PΩ : H → Ω goes by the name of
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(a) non-expansive if

‖PΩ(x)− PΩ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H;

(b) firmly nonexpansive if

‖PΩ(x)− PΩ(y)‖2 ≤ 〈x− y, PΩ(x)− PΩ(y)〉, ∀x, y ∈ H.

Lemma 2.3. ([10, 16]) Let x ∈ H and z ∈ Ω. Then z = PΩ(x) if and only if

PΩ(x) ∈ Ω

and
〈x− PΩ(x), y − PΩ(x)〉 ≤ 0, ∀y ∈ Ω. (2.2)

Remark 2.4. x∗ ∈ H is a solution of (2.1) if and only if

x∗ = PΩ(x∗ − λQ(x∗)), λ > 0.

Definition 2.5. Let Ω be a convex set in Rn and Q : Ω → Ω be a mapping.
Then, Q is said to be:

(a) strongly monotone on Ω with constant γ > 0, if

〈Q(x)−Q(y), x− y〉 ≥ γ‖x− y‖2, ∀x, y ∈ Ω;

(b) strictly monotone on Ω, if

〈Q(x)−Q(y), x− y〉 > 0, distinct x, y ∈ Ω;

(c) monotone on Ω, if

〈Q(x)−Q(y), x− y〉 ≥ 0, ∀x, y ∈ Ω;

(d) relaxed monotone on Ω, if

〈Q(x)−Q(y), x− y〉 ≥ −γ‖x− y‖2, ∀x, y ∈ Ω;

(e) relaxed γ-pseudomonotone on Ω, if 〈Q(y), x− y〉 ≥ 0 then

〈Q(x), x− y〉 ≥ −γ‖x− y‖2, ∀x, y ∈ Ω and γ > 0;

(f) pseudo monotone on Ω, if 〈Q(y), x− y〉 ≥ 0 then

〈Q(x), x− y〉 ≥ 0, ∀x, y ∈ Ω.

Remark 2.6. (i) We observe that Q is relaxed γ-pseudomonotone on Ω,
if Q is relaxed γ-pseudomonotone for every x ∈ Ω. Therefore the re-
laxed γ-pseudomonotonicity is a real generalization of pseudomono-
tonicity and relaxed monotonicity.

(ii) We point out that a pseudomonotone operator is relaxed γ-pseudomono-
tone operator; and a relaxed monotone operator is relaxed γ-pseodomo-
notone operator. However, the converse are not true in general.
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(iii) The following implications hold:

(a)⇒ (b)⇒ (c)⇒ (d)⇒ (e)⇒ (f).

(iv) The reverse assertions are not true in general.

Example 2.7. The function Q : [0,+∞)→ R defined by

Q(x) =

{
x2 − 2, if x ≥

√
3− 1,

−2x, if 0 ≤ x <
√

3− 1.

is relaxed γ-pseudomonotone on [0,+∞) with γ = 2, but not pseudomonotone
on [0,+∞), i.e., Q(x) is not pseudomonotone at x = 0.

Example 2.8. The function Q : (−∞, 0)→ (0,+∞) defined by

Q(x) = x2

is relaxed γ-pseudomonotone, but not relaxed monotone on (−∞, 0), since for
all σ > 0, there exists x0 < 0 and y0 < 0 with x0 + y0 < −σ < 0 such that

〈Q(y0)−Q(x0), y0 − x0〉 < −σ‖y0 − x0‖2.

Remark 2.9. From above, we conclude that the relaxed γ-pseudomonotonicity
is a real generalization of pseudomonotonicity and relaxed monotonicity.

Example 2.10. The function Q : R→ R defined by

Q(x) = −x
has a solution x = 0. However, it is easy to observe that Q(x) = −x is neither
monotone on R nor pseudomonotone on R. But it is relaxed monotone on R.

Example 2.11. The function Q : (−∞, 2)→ R defined by

Q(x) =

{
x2, if x ≥ 1,

−x+ 2, if 1 < x < 2,

is relaxed γ-pseudomonotone with γ = 1 on (−∞, 0) ∪ (0, 2), but not relaxed
γ-pseudomonotone on (−∞, 2).

Now we can consider the following problem of finding x ∈ Ω such that

〈Q(x∗), x− x∗〉 ≥ −γ‖x− x∗‖2, ∀x ∈ Ω. (2.3)

We denote by Ω∗ and Ωd the solutions sets of problem (2.1) and problem
(2.3), respectively. Now we give the relationships between problem (2.1) and
problem (2.3).
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Proposition 2.12. ([17])

(i) The set Ωd is closed and convex;
(ii) Ωd ⊆ Ω∗ holds;

(iii) If Q is pseudomonotone, then

Ω∗ ⊆ Ωd.

Proposition 2.13. ([1]) Assume that Ω is a nonempty, closed and convex
subset of a normed space X. If Q : Ω → X∗ (dual space) is hemicontinuous,
then Ωd ⊂ Ω∗. In addition, if Q is relaxed γ-pseudomonotone, then

Ωd = Ω∗.

Definition 2.14. A mapping Q : H → H is said to be

(i) ξ-Lipschitz continuous if there exists ξ > 0 such that

‖Q(x)−Q(y)‖ ≤ ξ‖x− y‖, ∀x, y ∈ H;

(ii) weakly sequentially continuous if for each sequence {xn} we have

xn ⇀ x

implies

Q(xn) ⇀ Q(x).

Lemma 2.15. ([19]) Let Ω be a nonempty, closed and convex subset of H,
and {xn} be a sequence on H if

(i) limn→∞ ‖xn − x‖ exists for each x ∈ Ω;
(ii) Wω(xn) ⊆ Ω;

then {xn} weakly converges to a point in Ω.

Proposition 2.16. ([11])

(i) If Q is strictly monotone, then variational inequality (2.1) has at most
one solution.

(ii) If Q is strongly monotone, then variational inequality (2.1) has a
unique solution.

Proposition 2.17. ([8]) Let Ω be a nonempty, closed and convex subset of a
real Hilbert space H and Q : Ω → H be a pseudomonotone and continuous.
Then, x∗ is a solution of V I(Ω, Q) if and only if

〈Q(x), x− x∗〉 ≥ 0, ∀x ∈ Ω.
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3. Weakly Convergence

In this section, we consider the problem V I(Ω, Q) with Ω being nonempty,
closed and convex and Q being relaxed γ-pseudomonotone on H and Lipschitz
continuous with constant ξ > 0. We assume that the solution set Sol(Ω, Q) 6=
∅.

Algorithm 3.1. Input: x0 ∈ Ω and {λ`} ∈ [a, b], where 0 < a ≤ b < 1

ξ
.

Step 0: Set ` = 0.
Step 1: If x` = PΩ(x` − λ`Q(x`)) then stop.
Step 2: Otherwise, set

x̄` = PΩ(x` − λ`Q(x`)),

x`+1 = PΩ(x` − λ`Q(x̄`)).

Replace ` by `+ 1; go to Step 1.

Remark 3.2. Assume that Q(x`) = 0, then

x` = PΩ(x` − λ`Q(x`)),

and the Algorithm terminates at step ` with a solution x`. Again, we assume
that Q(x`) 6= 0 for all ` then algorithm generates an infinite sequence.

Lemma 3.3. ([15, 18]) Assume that Q is pseudomonotone and ξ-Lipschitz
continuous on Ω and Sol(Ω, Q) is nonempty. Let x∗ be a solution of V I(Ω, Q).
Then, for every ` ∈ N, we have

‖x`+1 − x∗‖2 ≤ ‖x` − x∗‖2 − (1− λ2
`ξ

2)‖x` − x̄`‖2. (3.1)

Theorem 3.4. Suppose that Q is relaxed γ-pseudomonotone on H, weakly se-
quentially continuous, ξ-Lipschitz continuous on Ω and Sol(Ω, Q) 6= ∅. Then,
the sequence {x`} defined by Algorithm 3.1 weakly converges to a solution of
V I(Ω, Q).

Proof. Since 0 < a ≤ λ` ≤ b <
1

ξ
, it satisfies that

0 < 1− b2ξ2 ≤ 1− λ2
`ξ

2 ≤ 1− a2ξ2 < 1.

From Lemma 3.3, the sequence {x`} is bounded and

lim
`→∞

‖x` − x̄`‖ = 0.

By the ξ-Lipschitz continuity of Q in Ω, we have

‖Q(x`)−Q(x̄`)‖ ≤ ξ‖x` − x̄`‖.
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Therefore

lim
`→∞

‖Q(x`)−Q(x̄`)‖ = 0.

Since {x`} is a bounded sequence, there exists a subsequence {x`i} of {x`}
weakly converging to x̂ ∈ Ω. Since

lim
`→∞

‖x` − x̄`‖ = 0,

we have

x̄`i ⇀ x̂.

We show that x̂ ∈Sol(Ω, Q). Since

x̄` = PΩ(x` − λ`Q(x`)),

by the projection characterization (2.2), it holds

〈x`i − λ`iQ(x`i)− x̄`i , y − x̄`i〉 ≤ 0, ∀y ∈ Ω,

it implies that

1

λ`i
〈x`i − x̄`i , y − x̄`i〉 ≤ 〈Q(x`i), y − x̄`i〉, ∀y ∈ Ω.

Hence we have

1

λ`i
〈x`i − x̄`i , y − x̄`i〉+ 〈Q(x`i), x̄`i − x`i〉 ≤ 〈Q(x`i), y − x`i〉,∀y ∈ Ω. (3.2)

Letting i→ +∞ in the last inequality, we obtain

lim
`→∞

‖x` − x̄`‖ = 0, fixed y ∈ Ω,

and λ` ∈ [a, b] ⊂]0, 1
ξ [ for all `, we have

lim inf
i→∞
〈Q(x`i), y − x`i〉 ≥ 0. (3.3)

Now we choose a sequence {εi}i of positive numbers decreasing and tending
to 0. For each εi, the ni is a smallest positive integer such that

〈Q(x`j ), y − x`j 〉+ εi > 0, ∀j ≥ ni, (3.4)

where the existence of ni follows from (3.3). Since {εi} is decreasing, it is
easy to see that the sequence {ni} is increasing. Furthermore, for each i,
Q(x`ni ) 6= 0 and, setting

y`ni =
Q(x`ni )

‖Q(x`ni )‖2
,

we have

〈Q(x`ni ), y`ni 〉 = 1 for each i.
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From (3.4), for each i

〈Q(x`ni ), y + εi y
`ni − x`ni 〉 ≥ 0.

Since Q is relaxed γ-pseudomonotone, that is

〈Q(y + εi y
`ni ), y + εi y

`ni − x`ni 〉 ≥ −γ‖y + εiy
`ni − x`ni‖2 = 0.

Hence we have

〈Q(y + εi y
`ni ), y + εi y

`ni − x`ni 〉 ≥ 0. (3.5)

On the other hand, when i→∞ we have

x`i ⇀ x̂.

Since Q is weakly sequentially continuous on Ω, , we have

Q(x`i) ⇀ Q(x̂).

We can suppose that Q(x̂) 6= 0 (otherwise, x̂ is a solution). Since the norm
mapping is weakly sequentially lower semicontinuous, we have

‖Q(x̂)‖ ≤ lim inf
i→∞
‖Q(x`i)‖.

Since {x`ni} ⊂ {x`i} and εi → 0 as i→ 0, we obtain

0 ≤ lim
i→∞
‖εi y`ni‖ = lim

i→∞

εi

‖Q(x`ni )‖
≤

0

‖Q(x̂)‖
= 0.

Hence, when i→∞ in (3.5), we get

〈Q(y), y − x̂〉 ≥ 0.

It show that x̂ ∈ Sol(Ω, Q).

Finally, we show that x` ⇀ x̂. To do this, it is sufficient to show that {x`}
can not have two distinct weak sequential limit points in Sol(Ω, Q). Let {x`j}
be another subsequence of {x`} converging weakly to x̄. We have to prove
that x̂ = x̄ and x̄ ∈ Sol(Ω, Q). From Lemma 3.3, the sequences {‖x`− x̂‖} and
{‖x` − x̄‖} are monotonically decreasing and therefore converge. Since for all
` ∈ N,

2〈x`, x̄− x̂〉 = ‖x` − x̂‖2 − ‖x` − x̄‖2 + ‖x̄‖2 − ‖x̂‖2.
We deduce that the sequence {〈x`, x̄− x̂〉} also converges. Setting

= = lim
`→∞
〈x`, x̄− x̂〉,

and passing to the limit along {x`i} and {x`j} yields,

= = 〈x̂, x̄− x̂〉 = 〈x̄, x̄− x̂〉.
This implies that ‖x̂− x̄‖2 = 0 and therefore x̂ = x̄. �
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Remark 3.5. (i) In [14], author discussed the extragradient method for
solving strongly pseudomonotone variational inequalities with choice
of the step sizes:

∞∑
`=0

λ` =∞, lim
`→∞

λ` = 0,

and proved that the iterative sequence defined by the extragradient
method converges strongly to a solution.

(ii) If Q is monotone function but it is not necessary to weakly sequentially
continuous on Q. Then, from the monotonicity of Q and (3.2) we have

1

λ`i
〈x`i − x̄`i , y − x̄`i〉+ 〈Q(x`i), x̄`i − x`i〉 ≤ 〈Q(x`i), y − x`i〉

≤ 〈Q(y), y − x`i〉, ∀y ∈ Ω.

From last inequality letting i→ +∞, we have

lim
`→∞

‖x` − x̄`‖ = 0

and λ` ∈ [a, b] ⊂ (0, 1
ξ ) for all `, we obtain

〈Q(y), y − x̂〉 ≥ 0, ∀y ∈ Ω.
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