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Abstract. We prove the generalized Hyers-Ulam stability of the cubic-additive functional

equation of the form Di,nf(x, y) = 0, where i ∈ {1, 2, 3, 4} and n is an integer larger than 1.

1. Introduction

Throughout this paper, let V and W be real vector spaces, X a real normed
space, Y a real Banach space, and let k be a nonzero real number with the
condition |k| 6= 1. Moreover, assume that a is a real number larger than 1 and
n is an integer larger than 1.

For a given mapping f : V →W , we use the following abbreviations:

fo(x) :=
f(x)− f(−x)

2
,

fe(x) :=
f(x) + f(−x)

2
,

Af(x, y) := f(x+ y)− f(x)− f(y),

Cf(x, y) := f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y),
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D1,kf(x, y) := f(x+ ky) + f(x− ky)− k2f(x+ y)− k2f(x− y)

+ (k2 − 1)f(x)− (k2 − 1)f(−x),

D2,kf(x, y) := f(x+ ky)− f(ky − x)− k2f(x+ y) + k2f(y − x)

+ 2(k2 − 1)f(x),

D3,kf(x, y) := f(kx+ y)− f(y − kx)− kf(x+ y) + kf(y − x)

− 2f(kx) + 2kf(x),

D4,kf(x, y) := f(kx+ y) + f(kx− y)− kf(x+ y)− kf(x− y)

− 2f(kx) + 2kf(x)

for all x, y ∈ V .

Every solution of functional equation Af(x, y) = 0 is called an additive
mapping, while each solution of functional equation Cf(x, y) = 0 is called a
cubic mapping. A mapping expressed by the sum of an additive mapping and
a cubic mapping is called a cubic-additive mapping. A functional equation
is called a cubic-additive functional equation provided that each solution of
the equation is a cubic-additive mapping and every cubic-additive mapping
is a solution of that equation. The functional equations Di,nf(x, y) = 0, for
i ∈ {1, 2, 3, 4}, are cubic-additive functional equations.

In 1940, Ulam [12] raised an important question concerning the stability
of group homomorphisms: When does the solution of an equation differing
slightly from a given one has to necessarily be close to the solution of the given
equation? In the following year, Hyers [3] solved the problem for the case of
Cauchy additive functional equation Af(x, y) = 0. After about three decades,
Rassias [11] generalized the Hyers’ result and then Găvruta [4] extended the
Rassias’ result by allowing unbounded control functions. The stability concept
presented by Rassias and Găvruta is known today as the term ‘generalized
Hyers-Ulam stability’ of functional equations.

We now consider the functional equation

Di,nf(x, y) = 0, (1.1)

where i ∈ {1, 2, 3, 4} and n is an integer larger than 1. One of typical examples
for solutions of equation (1.1) is the mapping f(x) = cx2 + dx with real
constants c and d. In 2015, Jin and Lee [6] proved the stability of equation
Da,bf(x, y) = 0 for an arbitrary real number a 6= 0 and b = 1 in Fuzzy spaces.
For more detailed information on the stability of cubic-additive functional
equations, we may refer to [1, 5, 7, 10, 13, 14, 15, 16].

In this paper, we will prove the generalized Hyers-Ulam stability of the
functional equation (1.1), where i ∈ {1, 2, 3, 4} and n is an integer larger than
1.
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2. Preliminaries

Let V and W be real vector spaces and let Y be a real Banach space. For
a given mapping f : V →W , we use the following abbreviations:

f (1)(x) :=
23f(x)− f(2x)

23 − 2
, f (2)(x) := −2f(x)− f(2x)

23 − 2

for all x ∈ V . We will first introduce the following lemmas. Since their proofs
are very similar to the proofs of [8, Corollaries 2.2 and 2.3], we omit their
proofs.

Lemma 2.1. Given a real constant a > 1, let φ : V \{0} → [0,∞) be a
function satisfying either

Φ(x) :=
∞∑
i=0

1

ai
φ
(
aix
)
<∞ (for all x ∈ V \{0})

or

Φ(x) :=
∞∑
i=0

a3iφ

(
x

ai

)
<∞ (for all x ∈ V \{0})

and let f : V → Y be a mapping. If there exists a mapping F : V → Y
satisfying

‖f(x)− F (x)‖ ≤ Φ(x) (2.1)

for all x ∈ V \{0} and

F (1)(ax) = aF (1)(x), F (2)(ax) = a3F (2)(x) (2.2)

for all x ∈ V , then F is the unique mapping satisfying (2.1) and (2.2).

Lemma 2.2. Given a real number a > 1, let φ, ψ : V \{0} → [0,∞) be
functions satisfying each of the following conditions:

∞∑
i=0

1

a2i
φ
(
aix
)
<∞,

∞∑
i=0

aiψ

(
x

ai

)
<∞,

Φ̃(x) :=

∞∑
i=0

aiφ

(
x

ai

)
<∞, Ψ̃(x) :=

∞∑
i=0

1

a2i
ψ
(
aix
)
<∞

for all x ∈ V \{0} and let f : V → Y be a mapping. If there exists a mapping
F : V → Y satisfying the inequality

‖f(x)− F (x)‖ ≤ Φ̃(x) + Ψ̃(x) (2.3)

for all x ∈ V \{0} as well as the conditions in (2.2) for all x ∈ V , then F is the
unique mapping satisfying the conditions (2.2) for all x ∈ V and the inequality
(2.3) for all x ∈ V \{0}.
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We define Df : V 2 →W by

Df(x, y) :=
m∑
i=1

cif(aix+ biy)

for all x, y ∈ V , where m is a positive integer and ai, bi, ci are real constants.

The following lemmas are essential for establishing our main theorems.

Lemma 2.3. Let µ : V → [0,∞) be a function satisfying the condition

∞∑
i=0

µ
(
aix
)

|a|i
<∞ (2.4)

for all x ∈ V and let ϕ : V 2 → [0,∞) be a function satisfying the condition

∞∑
i=0

ϕ
(
aix, aiy

)
|a|i

<∞ (2.5)

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0,∥∥f(a2x)− (a+ a3
)
f(ax) + a4f(x)

∥∥ ≤ µ(x) (2.6)

for all x ∈ V , and moreover

‖Df(x, y)‖ ≤ ϕ(x, y) (2.7)

for all x, y ∈ V , then there exists a unique mapping F : V → Y satisfying

DF (x, y) = 0 (2.8)

for all x, y ∈ V , equalities in (2.2) for all x ∈ V , and moreover

‖f(x)− F (x)‖ ≤
∞∑
i=0

a2i+2 + 1∣∣a3 − a∣∣|a|3i+3
µ
(
aix
)

(2.9)

for all x ∈ V .

Proof. First, we define A :=
{
f : V → Y | f(0) = 0

}
and a mapping Jm : A→

A by

Jmf(x) :=
f (2)(amx)

a3m
+
f (1)(amx)

am
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for all x ∈ V and all m ∈ N0, where we set N0 = N∪{0}. It follows from (2.6)
that ∥∥Jmf(x)− Jm+lf(x)

∥∥
≤

m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

=
m+l−1∑
i=m

∥∥∥∥∥f
(
ai+1x

)
− af

(
aix
)(

a3 − a
)
a3i

−
f
(
ai+2x

)
− af

(
ai+1x

)(
a3 − a

)
a3i+3

−
f
(
ai+1x

)
− a3f

(
aix
)(

a3 − a
)
ai

+
f
(
ai+2x

)
− a3f

(
ai+1x

)(
a3 − a

)
ai+1

∥∥∥∥∥
≤

m+l−1∑
i=m

∥∥∥∥∥−f
(
a2aix

)
−
(
a+ a3

)
f
(
ai+1x

)
+ a4f

(
aix
)(

a3 − a
)
a3i+3

+
f
(
a2aix

)
−
(
a+ a3

)
f
(
ai+1x

)
+ a4f

(
aix
)(

a3 − a
)
ai+1

∥∥∥∥∥
≤

m+l−1∑
i=m

∣∣a2i+2 + 1
∣∣µ(aix)∣∣a3 − a∣∣|a|3i+3

(2.10)

for all x ∈ V \{0}.
In view of (2.4) and (2.10), the sequence {Jmf(x)} is Cauchy for all x ∈

V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges
for all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

Jmf(x) = lim
m→∞

(
f (2)(amx)

a3m
+
f (1)(amx)

am

)
for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (2.10), then
we obtain the inequality (2.9). Since the remaining part of this theorem can
be proved in the same way as in [9, Theorem 3.1], we omit the remaining
proof. �

Lemma 2.4. Let µ : V → [0,∞) be a function satisfying the condition
∞∑
i=0

|a|3iµ
(
x

ai

)
<∞ (2.11)

for all x ∈ V and let ϕ : V 2 → [0,∞) be a function satisfying the condition
∞∑
i=0

|a|3iϕ
(
x

ai
,
y

ai

)
<∞ (2.12)
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for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0, the inequality
(2.6) for all x ∈ V , and also the inequality (2.7) for all x, y ∈ V , then there
exists a unique mapping F : V → Y satisfying (2.8) for all x, y ∈ V , equalities
in (2.2) for all x ∈ V , as well as

‖f(x)− F (x)‖ ≤
∞∑
i=0

∣∣a3i + ai
∣∣∣∣a3 − a∣∣ µ
(

x

ai+1

)
(2.13)

for all x ∈ V .

Proof. First, we define the mappings Jmf : V → Y by

Jmf(x) := a3mf (2)
(
x

am

)
+ amf (1)

(
x

am

)
for all x ∈ V and m ∈ N0. It follows from (2.6) that

‖Jmf(x)− Jm+lf(x)‖

≤
m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

≤
m+l−1∑
i=m

1∣∣a3 − a∣∣
×
∥∥∥∥a3i(f( a2xai+1

)
−
(
a+ a3

)
f

(
ax

ai+1

)
+ a4f

(
x

ai+1

))
− ai

(
f

(
a2x

ai+1

)
−
(
a+ a3

)
f

(
ax

ai+1

)
+ a4f

(
x

ai+1

))∥∥∥∥
≤

m+l−1∑
i=m

∣∣a3i + ai
∣∣∣∣a3 − a∣∣ µ
(

x

ai+1

)

(2.14)

for all x ∈ V \{0}.
On account of (2.11) and (2.14), the sequence {Jmf(x)} is Cauchy for all x ∈

V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)} converges
for all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

(
a3mf (2)

(
x

am

)
+ amf (1)

(
x

am

))
for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (2.14), we obtain
the inequality (2.13). Since the rest part of this theorem can be proved in the
same way as in [9, Theorem 3.2], we omit the remaining proof. �
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Lemma 2.5. Let µ : V → [0,∞) be a function satisfying the conditions

∞∑
i=0

µ
(
aix
)

|a|3i
<∞ and

∞∑
i=0

|a|iµ
(
x

ai

)
<∞ (2.15)

for all x ∈ V and let ϕ : V 2 → [0,∞) be a function satisfying the conditions

∞∑
i=0

ϕ
(
aix, aiy

)
|a|3i

<∞ and
∞∑
i=0

|a|iϕ
(
x

ai
,
y

ai

)
<∞ (2.16)

for all x, y ∈ V. If a mapping f : V → Y satisfies f(0) = 0, inequality (2.6)
for all x ∈ V, and inequality (2.7) for all x, y ∈ V, then there exists a unique
mapping F : V → Y satisfying equality (2.8) for all x, y ∈ V, equalities in (2.2)
for all x ∈ V, and moreover

‖f(x)− F (x)‖ ≤ 1∣∣a3 − a∣∣
∞∑
i=0

(
µ
(
aix
)

|a|3i+3
+ |a|iµ

(
x

ai+1

))
(2.17)

for all x ∈ V .

Proof. First, we define a set A := {f : V → Y | f(0) = 0} and a mapping
Jm : A→ A by

Jmf(x) :=
f (2)(amx)

a3m
+ amf (1)

(
x

am

)
for all x ∈ V and each m ∈ N0. It follows from (2.6) that

‖Jmf(x)− Jm+lf(x)‖

≤
m+l−1∑
i=m

‖Jif(x)− Ji+1f(x)‖

=
m+l−1∑
i=m

∥∥∥∥∥f (2)
(
aix
)

a3i
−
f (2)

(
ai+1x

)
a3i+3

+ aif (1)
(
x

ai

)
− ai+1f (1)

(
x

ai+1

)∥∥∥∥∥
≤ 1

a3 − a

m+l−1∑
i=m

∥∥∥∥∥− f
(
a2 · aix

)
−
(
a+ a3

)
f
(
ai+1x

)
+ a4f

(
aix
)

a3i+3

− ai
(
f

(
a2x

ai+1

)
−
(
a+ a3

)
f

(
ax

ai+1

)
+ a4f

(
x

ai+1

))∥∥∥∥∥
≤ 1∣∣a3 − a∣∣

m+l−1∑
i=m

(
µ
(
aix
)

|a|3i+3
+ |a|iµ

(
x

ai+1

))

(2.18)

for all x ∈ V \{0}.
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In view of (2.6), (2.15) and (2.18), the sequence {Jmf(x)} is Cauchy for
all x ∈ V \{0}. Since Y is complete and f(0) = 0, the sequence {Jmf(x)}
converges for all x ∈ V . Hence, we can define a mapping F : V → Y by

F (x) := lim
m→∞

f (2)(amx)

a3m
+ amf (1)

(
x

am

)
for all x ∈ V . Moreover, if we put m = 0 and let l → ∞ in (2.18), we obtain
the first inequality of (2.17). Since the rest part of this theorem can be proved
in the same way as in [9, Theorem 3.2], we omit the remaining proof. �

3. Characterizations of cubic-additive mappings

The following theorem is a specific version of Baker’s theorem [2] which is
essential for establishing Theorems 3.3, 3.4 and 3.5.

Theorem 3.1. ([2, Theorem 1]) Assume that V and W are vector spaces
over Q, R or C and α0, β0, . . . , αm, βm are scalars such that αjβ` − α`βj 6= 0
whenever 0 ≤ j < ` ≤ m. If the mappings f` : V →W satisfy

m∑
`=0

f`(α`x+ β`y) = 0

for all x, y ∈ V , then each f` is a generalized polynomial mapping of degree at
most m− 1.

Baker [2] also states that if f is a generalized polynomial mapping of degree

at most m − 1, then f is expressed as f(x) = x0 +
m−1∑̀
=1

a∗` (x) for x ∈ V ,

where a∗` is a monomial mapping of degree ` and f has a property f(rx) =

x0 +
m−1∑̀
=1

r`a∗` (x) for x ∈ V and r ∈ Q. We note that a∗1, a
∗
2 and a∗3 are called

an additive mapping, a quadratic mapping and a cubic mapping, respectively.

The following theorem immediately follows from Theorem 3.1.

Theorem 3.2. If a mapping f : V → W satisfies the functional equation
Di,kf(x, y) = 0 for all x, y ∈ V and for i ∈ {1, 2, 3, 4}, then f is a generalized
polynomial mapping of degree at most 3.

Assume that f, g : V → W are generalized polynomial mappings of degree
at most 3. In view of the above argument, it is obvious that if f(2x) = 2f(x)
and g(2x) = 23g(x) for all x ∈ V , then f and g are an additive mapping and
a cubic mapping, respectively. If f : V →W is a generalized polynomial even
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mapping of degree at most 3 and f(nx) = nf(x) for all x ∈ V , then f is an
even and additive mapping, i.e., f ≡ 0.

Theorem 3.3. If a mapping f : V → W satisfies the functional equation
Di,kf(x, y) = 0 for all x, y ∈ V and for i ∈ {1, 2, 3, 4}, then f is a cubic-
additive mapping.

Proof. Assume that a mapping f : V → W satisfies Di,kf(x, y) = 0 for all
x, y ∈ V and for i ∈ {1, 2, 4}. The following equalities are consequences of our
long and tedious calculations:

f(4x)− 10f(2x) + 16f(x)

=
1

k4 − k2
((

4k2 − 3
)
D1,kfo(x, x)− 2k2D1,kfo(2x, x)

+ 2k2D1,kfo(x, 2x)− 2D1,kfo
(
(k + 1)x, x

)
+ 2D1,kfo

(
(k − 1)x, x

)
− k2D1,kfo(2x, 2x)

+D1,kfo(x, 3x)−D1,kfo
(
(2k + 1)x, x

)
+D1,kfo

(
(2k − 1)x, x

))
− 1

2(k2 − 1)

(
D1,kf(4x, 0)− 10D1,kf(2x, 0) + 16D1,kf(x, 0)

)
,

(3.1)

f(4x)− 10f(2x) + 16f(x)

=
1

k4 − k2
((

4k2 − 3
)
D2,kfo(x, x)− 2k2D2,kfo(2x, x)

+ 2k2D2,kfo(x, 2x)− 2D2,kfo
(
(k + 1)x, x

)
+ 2D2,kfo

(
(k − 1)x, x

)
− k2D2,kfo(2x, 2x)

+D2,kfo(x, 3x)−D2,kfo
(
(2k + 1)x, x

)
+D2,kfo

(
(2k − 1)x, x

))
+

1

2
(
k2 − 1

)(D2,kf(4x, 0)− 10D2,kf(2x, 0) + 16D2,kf(x, 0)
)
,

(3.2)

f(4x)− 10f(2x) + 16f(x)

=
1

k − k3

(
8D4,kfo

(
x

2
,
kx

2

)
− 8kD4,kfo

(
x

2
,
(2k + 1)x

2

)
+ 8kD4,kfo

(
x

2
,
(2k − 1)x

2

)
− 8D4,kfo

(
x

2
,
3kx

2

)
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+
(
1− 8k2

)
D4,kfo(x, x)−D4,kfo(x, kx)

+ 2D4,kfo
(
x, (k + 1)x

)
+ 2D4,kfo

(
x, (k − 1)x

)
+ (k + 1)D4,kfo

(
x, (2k + 1)x

)
− (k − 1)D4,kfo

(
x, (2k − 1)x

)
+D4,kfo(x, 3kx)− 2D4,kfo(2x, x)

+ k2D4,kfo(2x, 2x)− 2D4,kfo(2x, kx)

−D4,kfo(2x, 2kx)−D4,kfo(3x, x)

)

+
1

2− 2k

(
D4,kf(0, 4x)− 10D4,kf(0, 2x) + 16D4,kf(0, x)

)

(3.3)

for all x ∈ V . From these equalities and our assumption, we get f(4x) −
10f(2x) + 16f(x) = 0 for all x ∈ V . Hence, we can show that f (1)(2x) =

2f (1)(x) and f (2)(2x) = 23f (2)(x) for all x ∈ V . Since f (1) and f (2) are

generalized polynomial mappings of degree at most 4 and f = f (1) + f (2), we
can conclude that f (1) is an additive mapping and f (2) is a cubic mapping,
i.e., f is a cubic-additive mapping.

We now consider the case of D3,kf(x, y) = 0. By a similar way, we see

that f
(1)
o (2x) = 2f

(1)
o (x) and f

(2)
o (2x) = 23f (2)(x) for all x ∈ V by using the

following equality

fo(4x)− 10fo(2x) + 16fo(x)

=
1

n− n3

(
8D3,nfo

(
x

2
,
nx

2

)
− 8nD3,nfo

(
x

2
,
(2n+ 1)x

2

)
+ 8nD3,nfo

(
x

2
,
(2n− 1)x

2

)
− 8D3,nfo

(
x

2
,
3nx

2

)
+
(
1− 8n2

)
D3,nfo(x, x)−D3,nfo(x, nx)

+ 2D3,nfo
(
x, (n+ 1)x

)
+ 2D3,nfo

(
x, (n− 1)x

)
+ (n+ 1)D3,nfo

(
x, (2n+ 1)x

)
− (n− 1)D3,nfo

(
x, (2n− 1)x

)
+D3,nfo(x, 3nx)− 2D3,nfo(2x, x) + n2D3,nfo(2x, 2x)

− 2D3,nfo(2x, nx)−D3,nfo(2x, 2nx)−D3,nfo(3x, x)

)

(3.4)

for all x ∈ V . Since f
(1)
o and f

(2)
o are generalized polynomial mappings of

degree at most 4 and fo = f
(1)
o +f

(2)
o , we may conclude that f

(1)
o is an additive

mapping and f
(2)
o is a cubic mapping, i.e., fo is a cubic-additive mapping.
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From the equality fe(nx)−nfe(x) = 1
2D3,nf(0, x) for all x ∈ V , we know that

fe(nx) = nfe(x) for all x ∈ V and fe ≡ 0, i.e., f = fo is a cubic-additive
mapping. �

Theorem 3.4. If f : V → W is an additive mapping, then f satisfies the
functional equation Di,nf(x, y) = 0 for all x, y ∈ V and for i ∈ {1, 2, 3, 4}.

Proof. We notice that f satisfies the equalities f(nx) = nf(x) and f(x) =
−f(−x) for all x ∈ V and n ∈ N. Thus, we get the equalities Dif(x, y) = 0
for i ∈ {5, 6} and Di,nf(x, y) = 0 for i ∈ {1, 2, 3, 4} by using the following
equalities

D1,nf(x, y) = −Af(x+ ny, x− ny) + n2Af(x+ y, x− y),

D2,nf(x, y) = −Af(x+ ny, x− ny) + n2Af(x+ y, x− y),

D3,nf(x, y) = −Af(nx+ y, nx− y) + nAf(x+ y, x− y),

D4,nf(x, y) = −Af(nx+ y, nx− y) + nAf(x+ y, x− y)

for all x, y ∈ V . �

Theorem 3.5. If f : V → W is a cubic mapping, then f satisfies the func-
tional equation Di,nf(x, y) = 0 for all x, y ∈ V and for i ∈ {1, 2, 3, 4}.

Proof. We remark that f(nx) = n3f(x) and f(x) = −f(−x) for all x ∈ V and
n ∈ N provided f is a cubic mapping.

First, we will verify that D1,nf(x, y) = 0 and D2,nf(x, y) = 0. It is easy to
see that the equalities Di,2f(x, y) = 0 and Di,3f(x, y) = 0 for i ∈ {1, 2} follow
from the equalities

Di,2f(x, y) = Cf(x, y) + Cf(x,−y),

Di,3f(x, y) = Di,2f(x+ y, y) +Di,2f(x− y, y) + 4Di,2f(x, y)

for all x, y ∈ V . If Di,jf(x, y) = 0 for all j ∈ N with 2 ≤ j ≤ n − 1, then the
equality Di,nf(x, y) = 0 for i = 1 or 2 follows from the equality

Di,nf(x, y) = Di,n−1f(x+ y, y) +Di,n−1f(x− y, y)−Di,n−2f(x, y)

+ (n− 1)2Di,2f(x, y)

for all x, y ∈ V . By applying mathematical induction, we conclude that
Di,nf(x, y) = 0 for all x, y ∈ V , i ∈ {1, 2}, and for all integers n > 1.

Secondly, we prove that D3,nf(x, y) = 0 and D4,nf(x, y) = 0. The equalities
Di,2f(x, y) = 0 and Di,3f(x, y) = 0 for i ∈ {3, 4} follow from the following
equalities

Di,2f(x, y) = Cf(y, x) + Cf(y − x, x), Di,3f(x, y) = Cf(y − x, 2x)
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for all x, y ∈ V . If Di,jf(x, y) = 0 for all j ∈ N with 2 ≤ j ≤ n − 1, then the
equality Di,kf(x, y) = 0 for i = 3 or 4 follows from the equality

Di,nf(x, y) = Di,n−1f(x+ y, y) +Di,n−1f(x− y, y)−Di,n−2f(x, y)

+ (n− 1)Di,2f(x, y)

for all x, y ∈ V . Hence, we conclude that Di,nf(x, y) = 0 for all x, y ∈ V ,
i ∈ {3, 4}, and for all integers n > 1. �

4. Stability of cubic-additive functional equations

In this section, by using Lemmas 2.3 to 2.5 from the previous section, we
will prove our main theorems concerning the generalized Hyers-Ulam stability
of cubic-additive functional equations. First, we will apply Lemma 2.3 to the
proof of the following theorem.

Theorem 4.1. Let the function ϕ : V 2 → [0,∞) satisfy the condition

∞∑
i=0

ϕ
(
2ix, 2iy

)
2i

<∞ (4.1)

for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y satisfies
f(0) = 0 and

‖D1,nf(x, y)‖ ≤ ϕ(x, y) (4.2)

for all x, y ∈ V , then there exists a unique mapping F : V → Y such that

D1,nF (x, y) = 0 (4.3)

for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

22i+2 + 1

3 · 23i+4
µ1
(
2ix
)

(4.4)

for all x ∈ V , where ϕe : V 2 → [0,∞) and µ1 : V → [0,∞) are defined by

ϕe(x, y) :=
ϕ(x, y) + ϕ(−x,−y)

2
,

µ1(x) :=
1

n4 − n2
((

4n2 − 3
)
ϕe(x, x) + 2n2ϕe(2x, x) + 2n2ϕe(x, 2x)

+ 2ϕe

(
(n+ 1)x, x

)
+ 2ϕe

(
(n− 1)x, x

)
+ n2ϕe(2x, 2x)

+ ϕe(x, 3x) + ϕe

(
(2n+ 1)x, x

)
+ ϕe

(
(2n− 1)x, x

))
+

1

2
(
n2 − 1

)(ϕ(4x, 0) + 5n2ϕ(2x, 0) + 8n2ϕ(x, 0)
)
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for all x, y ∈ V .

Proof. By (3.1) and (4.2), we get∥∥f(22x)− (2 + 23
)
f(2x) + 24f(x)

∥∥ ≤ µ1(x)

for all x ∈ V . If we put a = 2 and replace µ with µ1 in (2.4), then µ1 satisfies
the condition (2.4) instead of µ and the mapping f satisfies inequality (2.6)
for all x ∈ V in view of the last inequality.

By Lemma 2.3, there exists a mapping F : V → Y satisfying equality (4.3)
for all x, y ∈ V , equalities in (2.2) with a = 2 for all x ∈ V , and inequality
(4.4) for all x ∈ V . Since the equalities in (2.2) follow from the equality (4.3),
we can conclude that F : V → Y is the unique mapping satisfying (4.3) and
(4.4). �

We can prove the following theorem in the same way as we did in the proof
of Theorem 4.1 by applying Lemma 2.4 instead of Lemma 2.3. Hence, we omit
the proof.

Theorem 4.2. Let the function ϕ : V 2 → [0,∞) satisfy the condition

∞∑
i=0

23iϕ

(
x

2i
,
y

2i

)
<∞ (4.5)

for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y satisfies
f(0) = 0 and (4.2) for all x, y ∈ V , then there exists a unique mapping F :
V → Y satisfying (4.3) for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

23i + 2i

6
µ1

(
x

2i+1

)
for all x ∈ V .

The following theorem can be proved in the same way as we did in the proof
of Theorem 4.1 by applying Lemma 2.5 instead of Lemma 2.3. Hence, we omit
the proof.

Theorem 4.3. Let the function ϕ : V 2 → [0,∞) satisfy the conditions

∞∑
i=0

ϕ
(
2ix, 2iy

)
23i

<∞ and
∞∑
i=0

2iϕ

(
x

2i
,
y

2i

)
<∞ (4.6)

for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y satisfies
f(0) = 0 and (4.2) for all x, y ∈ V , then there exists a unique mapping F :
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V → Y satisfying equality (4.3) for all x, y ∈ V and

‖f(x)− F (x)‖ ≤ 1

6

∞∑
i=0

(
µ1
(
2ix
)

23i+3
+ 2iµ1

(
x

2i+1

))
for all x ∈ V .

In the following theorems, we deal with the stability problems of cubic-
additive functional equations D2,nf(x, y) = 0 by applying Lemmas 2.3, 2.4
and 2.5 in order.

Theorem 4.4. Let ϕ : V 2 → [0,∞) be a function satisfying the condition
(4.1) for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y
satisfies f(0) = 0 and

‖D2,nf(x, y)‖ ≤ ϕ(x, y) (4.7)

for all x, y ∈ V , then there exists a unique mapping F : V → Y such that
D2,nF (x, y) = 0 for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

22i+2 + 1

3 · 23i+4
µ2
(
2ix
)

(4.8)

for all x ∈ V , where µ2 : V → [0,∞) is defined by

µ2(x) :=
1

n4 − n2
((

4n2 − 3
)
ϕe(x, x) + 2n2ϕe(2x, x) + 2n2ϕe(x, 2x)

+ 2ϕe

(
(n+ 1)x, x

)
+ 2ϕe

(
(n− 1)x, x

)
+ n2ϕe(2x, 2x)

+ ϕe(x, 3x) + ϕe

(
(2n+ 1)x, x

)
+ ϕe

(
(2n− 1)x, x

))
+

1

2
(
n2 − 1

)(ϕ(4x, 0) + 5n2ϕ(2x, 0) + 8n2ϕ(x, 0)
)

for all x, y ∈ V .

Proof. First, it follows from equality (3.2) and inequality (4.7) that∥∥f(22x)− (2 + 23
)
f(2x) + 24f(x)

∥∥ ≤ µ2(x)

for all x ∈ V . If we put a = 2 and replace µ with µ2 in (2.4), then µ2 satisfies
(2.4) and the mapping f satisfies inequality (2.6) for all x ∈ V . According to
Lemma 2.3, there exists the unique mapping F : V → Y satisfying equality
D2,nF (x, y) = 0 for all x, y ∈ V and inequality (4.8) for all x ∈ V . �
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Theorem 4.5. Let ϕ : V 2 → [0,∞) be a function satisfying the condition
(4.5) for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y
satisfies f(0) = 0 and (4.7) for all x, y ∈ V , then there exists a unique mapping
F : V → Y satisfying D2,nF (x, y) = 0 for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

23i + 2i

6
µ2

(
x

2i+1

)
for all x ∈ V .

Theorem 4.6. Let ϕ : V 2 → [0,∞) be a function satisfying the conditions
in (4.6) for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y
satisfies f(0) = 0 and (4.7) for all x, y ∈ V , then there exists a unique mapping
F : V → Y satisfying equality D2,nF (x, y) = 0 for all x, y ∈ V and

‖f(x)− F (x)‖ ≤ 1

6

∞∑
i=0

(
µ2
(
2ix
)

23i+3
+ 2iµ2

(
x

2i+1

))

for all x ∈ V .

Now, the following three theorems deal with the stability problems of cubic-
additive functional equations D3,nf(x, y) = 0 by using Lemmas 2.3, 2.4 and
2.5 in order.

Theorem 4.7. For a fixed integer n > 1, let ϕ : V 2 → [0,∞) be a function
satisfying the conditions (4.1) and

∞∑
i=0

ϕ
(
nix, niy

)
ni

<∞ (4.9)

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and

‖D3,nf(x, y)‖ ≤ ϕ(x, y) (4.10)

for all x, y ∈ V , then there exists a mapping F : V → Y such that

D3,nF (x, y) = 0 (4.11)

for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

22i+2 + 1

3 · 23i+4
µ3
(
2ix
)

+
∞∑
i=0

ϕ
(
nix, 0

)
2ni+1

(4.12)
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for all x ∈ V , where

µ3(x) :=
1

n3 − n

(
8ϕe

(
x

2
,
nx

2

)
+ 8nϕe

(
x

2
,
(2n+ 1)x

2

)
+ 8nϕe

(
x

2
,
(2n− 1)x

2

)
+ 8ϕe

(
x

2
,
3nx

2

)
+
(
8n2 − 1

)
ϕe(x, x) + ϕe(x, nx) + 2ϕe

(
x, (n+ 1)x

)
+ 2ϕe

(
x, (n− 1)x

)
+ (n+ 1)ϕe

(
x, (2n+ 1)x

)
+ (n− 1)ϕe

(
x, (2n− 1)x

)
+ ϕe(x, 3nx) + 2ϕe(2x, x)

+ n2ϕe(2x, 2x) + 2ϕe(2x, nx) + ϕe(2x, 2nx) + ϕe(3x, x)

)
.

Proof. From equality (3.4) and inequality (4.10), it follows that∥∥fo(22x)− (2 + 23
)
fo(2x) + 24fo(x)

∥∥ ≤ µ3(x)

for all x ∈ V . If we put a = n = 2 temporarily and replace µ by µ3 in (2.4),
then µ3 satisfies the condition (2.4) instead of µ and the mapping fo satisfies
inequality (2.6) for all x ∈ V .

Due to Lemma 2.3, there exists a mapping F : V → Y satisfying equality
D3,nF (x, y) = 0 for all x, y ∈ V and inequality

‖fo(x)− F (x)‖ ≤
∞∑
i=0

22i+2 + 1

3 · 23i+4
µ3
(
2ix
)

for all x ∈ V .
In view of the equality fe(nx) − nfe(x) = −1

2D3,nf(x, 0) for all x ∈ V , we
have

‖fe(nx)− nfe(x)‖ ≤ ϕ(x, 0)

2

for all x ∈ V . Using the above inequality and (4.9), we can define F ′(x) =
lim
i→∞

1
ni fe(n

ix) ∈ Y for all x ∈ V such that F ′ : V → Y satisfies inequality

‖fe(x)− F ′(x)‖ ≤
∞∑
i=0

ϕ
(
nix, 0

)
2ni+1

and D3,nF
′(x) = 0 for all x ∈ V .

By the definition of F ′ and the equality D3,nF
′(x) = 0 for all x ∈ V , we

see that F ′ is an even mapping and a cubic-additive mapping, i.e., F ′ ≡ 0.
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Hence, we obtain

‖fe(x)‖ ≤
∞∑
i=0

ϕ
(
nix, 0

)
2ni+1

for all x ∈ V . Thus,

‖f(x)− F (x)‖ ≤ ‖fe(x)‖+ ‖fo(x)− F (x)‖

≤
∞∑
i=0

22i+2 + 1

3 · 23i+4
µ3
(
2ix
)

+
∞∑
i=0

ϕ
(
nix, 0

)
2ni+1

for all x ∈ V . �

Theorem 4.8. For a fixed integer n > 1, let ϕ : V 2 → [0,∞) be a function
satisfying the conditions (4.5) and

∞∑
i=0

niϕ

(
x

ni
,
y

ni

)
<∞

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and (4.10) for
all x, y ∈ V , then there exists a mapping F : V → Y satisfying (4.11) for all
x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

23i + 2i

6
µ3

(
x

2i+1

)
+

∞∑
i=0

ni

2
ϕ

(
x

ni+1
, 0

)
for all x ∈ V .

Theorem 4.9. For a fixed integer n > 1, let ϕ : V 2 → [0,∞) be a function
satisfying the conditions (4.6) and

∞∑
i=0

niϕ

(
x

ni
,
y

ni

)
<∞

for all x, y ∈ V . If a mapping f : V → Y satisfies f(0) = 0 and (4.10) for all
x, y ∈ V , then there exists a mapping F : V → Y satisfying equality (4.11) for
all x, y ∈ V and

‖f(x)− F (x)‖ ≤ 1

6

∞∑
i=0

(
µ3
(
2ix
)

23i+3
+ 2iµ3

(
x

2i+1

))
+

∞∑
i=0

ni

2
ϕ

(
x

ni+1
, 0

)
for all x ∈ V .

Analogously, we deal with the generalized Hyers-Ulam stability problems
of cubic-additive functional equations D4,nf(x, y) = 0 in the following three
theorems.
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Theorem 4.10. Let ϕ : V 2 → [0,∞) be a function satisfying the condition
(4.1) for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y
satisfies f(0) = 0 and

‖D4,nf(x, y)‖ ≤ ϕ(x, y) (4.13)

for all x, y ∈ V , then there exists a unique mapping F : V → Y such that
D4,nF (x, y) = 0 for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

22i+2 + 1

3 · 23i+4
µ4
(
2ix
)

(4.14)

for all x ∈ V , where

µ4(x) :=
1

n3 − n

(
8ϕe

(
x

2
,
nx

2

)
+ 8nϕe

(
x

2
,
(2n+ 1)x

2

)
+ 8nϕe

(
x

2
,
(2n− 1)x

2

)
+ 8ϕe

(
x

2
,
3nx

2

)
+
(
8n2 − 1

)
ϕe(x, x) + ϕe(x, nx) + 2ϕe

(
x, (n+ 1)x

)
+ 2ϕe

(
x, (n− 1)x

)
+ (n+ 1)ϕe

(
x, (2n+ 1)x

)
+ (n− 1)ϕe

(
x, (2n− 1)x

)
+ ϕe(x, 3nx) + 2ϕe(2x, x)

+ n2ϕe(2x, 2x) + 2ϕe(2x, nx) + ϕe(2x, 2nx) + ϕe(3x, x)

)

+
1

2n− 2

(
ϕ(0, 4x) + 10ϕ(0, 2x) + 16ϕ(0, x)

)
.

Proof. The inequality∥∥f(22x)− (2 + 23
)
f(2x) + 24f(x)

∥∥ ≤ µ4(x)

follows from (3.3) and (4.13) for all x ∈ V . If we put a = 2, then µ4 satisfies
the condition (2.4) and the mapping f satisfies inequality (2.6) for all x ∈ V .
By Lemma 2.3, there exists a unique mapping F : V → Y satisfying equality
D4,nF (x, y) = 0 for all x, y ∈ V and inequality (4.14) for all x ∈ V . �

Theorem 4.11. Let ϕ : V 2 → [0,∞) be a function satisfying the condition
(4.5) for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y
satisfies f(0) = 0 and (4.13) for all x, y ∈ V , then there exists a unique
mapping F : V → Y satisfying D4,nF (x, y) = 0 for all x, y ∈ V and

‖f(x)− F (x)‖ ≤
∞∑
i=0

23i + 2i

6
µ4

(
x

2i+1

)
for all x ∈ V .
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Theorem 4.12. Let ϕ : V 2 → [0,∞) be a function satisfying the conditions
(4.6) for all x, y ∈ V . Given an integer n > 1, if a mapping f : V → Y
satisfies f(0) = 0 and (4.13) for all x, y ∈ V , then there exists a unique
mapping F : V → Y satisfying equality D4,nF (x, y) = 0 for all x, y ∈ V and

‖f(x)− F (x)‖ ≤ 1

6

∞∑
i=0

(
µ4
(
2ix
)

23i+3
+ 2iµ4

(
x

2i+1

))
for all x ∈ V .
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