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Abstract. The purpose of this paper is to introduce a new generalized cyclic weak (F,ψ, ϕ)-

contraction based on the generalized weak ϕ -contraction which is proposed in [6], where F

is a C-class function. Moreover, we obtain a corresponding best proximity point theorem

for this cyclic mapping under certain condition. Our results obtained in this paper improve

and extend previous known results in [6], as well as other results for cyclic contractions in

the existing literature.

1. Introduction and mathematical preliminaries

Let A and B be nonempty subsets of a metric space (X, d). As a non-self
mapping U : A → B does not necessarily have a fixed point, it is of natural
interest to find an element x ∈ A which is as close to Ux ∈ B as possible. In
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other words, if the fixed point equation Ux = x has no exact solution, then
it is contemplated to find an approximate solution x ∈ A such that the error
d(x, Ux) is minimum, where d is the distance function. Indeed, best prox-
imity point theorems investigate the existence of such optimal approximate
solutions, called best proximity points, to the fixed point equation Ux = x
when there is no exact solution. As the distance between any element x ∈ A
and its image Ux ∈ B is at least the distance between the sets A and B, a
best proximity pair theorem achieves global minimum of d(x, Ux) by stipulat-
ing an approximate solution x of the fixed point equation Ux = x to satisfy
the condition that d(x, Ux) = d(A,B).

Best proximity problems have been developed in this direction. Besides
establishing the existence of best proximity points, iterative algorithms are
also furnished to determine such optimal approximate solutions. Banach fixed
point theorem states that when (X, d) is a complete metric space and U : X →
X is a contraction, then U has a unique fixed point in X. If U is a non-self-
mapping from A to B, where A and B are nonempty subsets of X, solutions
of equation Ux = x may not exist, particularly when A∩B = ∅, then we want
to find a solution x∗ such that d(x∗, Ux∗) = min{d(x, Ux) : x ∈ A}. With
the variety of fixed point problems, the best proximity point problem becomes
a hot topic recently and a number of authors obtained best proximity point
results in many different settings (see [1], [3], [5], [8], [9], [10], for examples).
Moreover, the research on the fixed point theory for cyclic contractions have
received considerable interest.

In 2003, Kirk et al. [15] stated the first result in this area. Later, other
authors also obtained many important results in this area (see [8], [11], [13],
[16], [17] and the references therein).

The purpose of this article is to establish best proximity point theorems for
generalized cyclic weak contractive non-self mappings, yielding global optimal
approximate solutions of certain fixed point equations.

First, we present the definitions of a cyclic map.

Definition 1.1. ([15]) Let A and B be nonempty subsets of a metric space
(X, d). A mapping U : A

⋃
B → A

⋃
B is called a cyclic map provided that

U(A) ⊆ B and U(B) ⊆ A.

Next, we recall the definitions of several well-known cyclic maps and best
proximity point results.

Definition 1.2. ([12, 16]) Let A and B be nonempty subsets of a metric space
(X, d). If U is a cyclic map, we say that:
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(i) U is a cyclic contraction, if, for any x ∈ A, y ∈ B and some α ∈ (0, 1),

d(Ux,Uy) ≤ αd(x, y);

(ii) U is a Kannan Type cyclic contraction, if, for any x ∈ A, y ∈ B and
some α ∈ (0, 12),

d(Ux,Uy) ≤ α[d(Ux, x) + d(Uy, y)];

(iii) U is a Chatterjee Type cyclic contraction, if, for any x ∈ A, y ∈ B and
some α ∈ (0, 12),

d(Ux,Uy) ≤ α[d(Ux, y) + d(Uy, x)];

(iv) U is a Reich type cyclic contraction, if, for any x ∈ A, y ∈ B and some
α ∈ (0, 13),

d(Ux,Uy) ≤ αM(x, y),

where M(x, y) = max{d(x, y), d(Ux, x), d(Uy, y)}.

Recall that, Kirk et al. [15] first stated and proved fixed point theorems for
the cyclic contraction. In 2011, Karapinar and Erhan [12] proved fixed point
theorems for the above cyclic maps.

Recently, several authors presented many results for cyclic mappings sat-
isfying various (nonlinear) contractive conditions based on altering distance
functions ϕ which were introduced by Khan et al. [14].

Definition 1.3. ([2]) Let A and B be nonempty subsets of a metric space
(X, d). Suppose that ϕ : [0,∞)→ [0,∞) is a strictly increasing map. A cyclic
map U : A

⋃
B → A

⋃
B is called a cyclic weak ϕ-contraction, if for all x ∈ A

and y ∈ B
d(Ux,Uy) ≤ d(x, y)− ϕ(d(x, y)) + ϕ(d(A,B)).

Let X be a nonempty set, we know that (X, d,�) is an ordered metric space
if and only if (X, d) is a metric space and (X,�) is a partially ordered set.
Two elements x, y ∈ X are called comparable if x � y or y � x.

Definition 1.4. ([18]) Let (X, d) be a metric space and A,B be two nonempty
subsets of X. A point x∗ ∈ X is called a best proximity point of a cyclic map
U , if

d(x∗, Ux∗) = d(A,B),

where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

In 2010, Rezapour et al. (see [8, 17]) stated the following best proximity
point theorem for cyclic weak ϕ -contraction:
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Theorem 1.5. Let (X, d,�) be an ordered metric space, A and B be nonempty
subsets of X and U : A

⋃
B → A

⋃
B be a decreasing, cyclic weak ϕ-contraction.

Suppose there exists x0 ∈ A such that x0 � U2x0 � Ux0. Define xn+1 = Uxn
and dn := d(xn+1, xn) for all n ∈ N . Then dn → d(A,B).

Definition 1.6. Let A and B be nonempty subsets of a metric space (X, d).
Suppose that ϕ : [0,∞) → [0,∞) is a strictly increasing map. A cyclic map
U : A

⋃
B → A

⋃
B is called a Kannan type cyclic weak ϕ-contraction, if for

all x ∈ A and y ∈ B,

d(Ux,Uy) ≤ ρ(x, y)− ϕ(ρ(x, y)) + ϕ(d(A,B)),

where ρ(x, y) = 1
2 [d(x, fx) + d(y, fy)].

Recently, Cheng and Su [6] proposed a generalized cyclic weak ϕ-contraction
and proved the best proximity point theorem of generalized Kannan type cyclic
weak ϕ-contractions in ordered metric spaces.

Definition 1.7. ([6]) Let A and B be nonempty subsets of a metric space
(X, d). Suppose that ϕ : [0,∞)→ [0,∞) be a strictly increasing map. A cyclic
map U : A

⋃
B → A

⋃
B is called a generalized cyclic weak ϕ-contraction, if

for any x ∈ A and y ∈ B,

d(Ux,Uy) ≤ m(x, y)− ϕ(m(x, y)) + ϕ(d(A,B)),

where m(x, y) = max{d(x, y), d(x, Ux), d(y, Uy), 12 [d(x, Uy) + d(y, Ux)]}.

Theorem 1.8. ([6]) Let A and B be nonempty subsets of a metric space
(X, d). Suppose that U : A

⋃
B → A

⋃
B is a generalized cyclic weak ϕ-

contraction and there exists y0 ∈ A. Define yn+1 = Uyn for any n ∈ N . Then
d(yn, yn+1)→ d(A,B), as n→∞

The concept of C-class functions was introduced by Ansari [4] as follows.

Definition 1.9. ([4]) A continuous function F : [0,∞)2 → R is called a C-
class function, if for any s, t ∈ [0,∞), the following conditions hold:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0.

An extra condition on F that F (0, 0) = 0 could be imposed in some cases
if required.

Remark 1.10. We denote the class of all C-class functions as C.

Example 1.11. ([4]) Following examples show that the class C of C-class
functions is nonempty:
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(1) F (s, t) = s− t.
(2) F (s, t) = ms, 0 < m < 1.
(3) F (s, t) = s

(1+t)r for some r ∈ (0,∞).

(4) F (s, t) = log(t+ as)/(1 + t), for some a > 1.
(5) F (s, t) = ln(1 + as)/2, for a > e. Indeed F (s, 1) = s implies that

s = 0.
(6) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, for r ∈ (0,∞).
(7) F (s, t) = s logt+a a, for a > 1.

(8) F (s, t) = s− (1+s
2+s)( t

1+t).

(9) F (s, t) = sβ(s), where β : [0,∞)→ [0, 1).
(10) F (s, t) = s− t

k+t .

(11) F (s, t) = s− ϕ(s), where ϕ : [0,∞)→ [0,∞) is a continuous function
such that ϕ(t) = 0 if and only if t = 0.

(12) F (s, t) = sh(s, t), where h : [0,∞) × [0,∞) → [0,∞) is a continuous
function such that h(t, s) < 1 for all t, s > 0.

(13) F (s, t) = s− (2+t
1+t)t.

(14) F (s, t) = n
√

ln(1 + sn).
(15) F (s, t) = φ(s), where φ : [0,∞) → [0,∞) is an upper semicontinuous

function such that φ(0) = 0 and φ(t) < t for t > 0.
(16) F (s, t) = s

(1+s)r ; r ∈ (0,∞).

Definition 1.12. ([14]) A function ψ : [0,∞) → [0,∞) is called an altering
distance function, if the following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

Remark 1.13. We denote the class of altering distance functions as Ψ.

Definition 1.14. ([4]) An ultra altering distance function is a continuous,
non-decreasing mapping ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0, t > 0 and
ϕ(0) ≥ 0.

Remark 1.15. We denote the class of ultra altering distance functions as Ψu.

Lemma 1.16. ([7]) Suppose (X, d) is a metric space. Let {xn} be a sequence
in Xsuch that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence
then there exists an ε > 0 and sequences of positive integers {m(k)} and {n(k)}
with m(k) > n(k) > k such that

d(xm(k), xn(k)) ≥ ε,
d(xm(k)−1, xn(k)) < ε

and
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(i) limk→∞ d(xm(k)−1, xn(k)+1) = ε;
(ii) limk→∞ d(xm(k), xn(k)) = ε;

(iii) limk→∞ d(xm(k)−1, xn(k)) = ε.

Remark 1.17.

lim
k→∞

d(xm(k)+1, xn(k)+1) = ε

and

lim
k→∞

d(xm(k), xn(k)−1) = ε.

Motivated by the above mentioned results, the purpose of this paper is to
introduce a new generalized cyclic weak (F,ψ, ϕ)-contraction based on the
generalized weak ϕ-contraction which is proposed in [6], where F is a C-class
function. Moreover, we obtain a corresponding best proximity point theorem
for this cyclic mapping under certain conditions. Our results extend and
improve the results obtained in [6].

2. Main Results

In this section, we first introduce the definition of a generalized cyclic weak
(F,ψ, ϕ)-contraction, then we prove a new best proximity point theorem for
this cyclic mapping under certain condition.

Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d).
Suppose that ϕ,ψ : [0,∞) → [0,∞) and ϕ is a strictly increasing map. A
cyclic map U : A

⋃
B → A

⋃
B is called a generalized cyclic weak (F,ψ, ϕ)-

contraction, if for any x ∈ A and y ∈ B,

ψ(d(Ux,Uy)) ≤ F
(
ψ(M(x, y))− ψ(d(A,B)), ϕ(M(x, y))− ϕ(d(A,B))

)
+ψ(d(A,B)), (2.1)

where F ∈ C, ψ ∈ Ψ with ψ(s+ t) ≤ ψ(s) + ψ(t), ϕ ∈ Ψu and

M(x, y) = max{d(x, y), d(x, Ux), d(y, Uy),
1

2
[d(x, Uy) + d(y, Ux)]}.

Theorem 2.2. Let A and B be nonempty subsets of a metric space (X, d).
Suppose that U : A

⋃
B → A

⋃
B is a generalized cyclic weak (F,ψ, ϕ)-

contraction and there exists y0 ∈ A. Define yn+1 = Uyn for any n ∈ N .
Then d(yn, yn+1)→ d(A,B), as n→∞.
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Proof. Let dn = d(yn, yn+1). First we claim that the sequence {dn} is non-
increasing. By the assumption, we have

ψ(dn+1) = ψ(d(yn+1, yn+2))

= ψ(d(Uyn, Uyn+1))

≤ F
(
ψ(M(yn, yn+1))− ψ(d(A,B)),

ϕ(M(yn, yn+1))− ϕ(d(A,B))
)

+ ψ(d(A,B)),

(2.2)

where

M(yn, yn+1) = max{d(yn, yn+1), d(yn, Uyn), d(yn+1, Uyn+1),

1

2
[d(yn, Uyn+1) + d(yn+1, Uyn)]}

= max{d(yn, yn+1), d(yn+1, yn+2)}

Assume that there exists n0 ∈ N such that M(yn0 , yn0+1) = d(yn0+1, yn0+2).
From d(yn0+1, yn0+2) > d(yn0 , yn0+1), we have

ψ(d(yn0+1, yn0+2)) ≤ F
(
ψ(d(yn0+1, yn0+2))− ψ(d(A,B)),

ϕ(d(yn0+1, yn0+2))− ϕ(d(A,B))
)

+ ψ(d(A,B))

≤ ψ(d(yn0+1, yn0+2)).

This implies that

ψ(d(yn0+1, yn0+2))− ψ(d(A,B)) = 0

or
ϕ(d(yn0+1, yn0+2))− ϕ(d(A,B)) = 0,

which is a contradiction. Hence, for all n ∈ N
M(yn, yn+1) = d(yn, yn+1).

Then the expression (2.2) turns into

ψ(d(yn+1, yn+2)) ≤ F
(
ψ(d(yn, yn+1))− ψ(d(A,B)), ϕ(d(yn, yn+1))

− ϕ(d(A,B))
)

+ ψ(d(A,B))

≤ ψ(d(yn, yn+1)).

(2.3)

Therefore,
d(yn+1, yn+2) ≤ d(yn, yn+1).

That is, the sequence {dn} is non-increasing and bounded below, it is obvious
that limn→∞ dn exists.

If dn0 = 0, for some n0 ∈ N , obviously, dn → 0 and d(A,B) = 0, that is,
dn → d(A,B).



62 A. H. Ansari, J. Nantadilok and M. S. Khan

If dn 6= 0, for all n ∈ N , put dn → γ, thus γ ≥ d(A,B). Since ϕ is a strictly
increasing map, we have ϕ(γ) ≥ ϕ(d(A,B)). From the expression (2.3), we
get that

ψ(d(yn, yn+1)) ≤ F
(
ψ(d(yn−1, yn))− ψ(d(A,B)), ϕ(d(yn−1, yn))− ϕ(d(A,B))

)
+ ψ(d(A,B)),

from which it follows that

ψ(γ) ≤ F
(
ψ(γ)− ψ(d(A,B)), ϕ(γ)− ϕ(d(A,B))

)
+ ψ(d(A,B))

≤ ψ(γ).

This implies that

ψ(γ)− ψ(d(A,B)) = 0

or

ϕ(γ)− ϕ(d(A,B)) = 0.

Therefore, γ = d(A,B). That is, dn → d(A,B). This completes the proof. �

Example 2.3. Consider the Euclidean ordered space X = R with the usual
metric. Suppose A = [−3,−1], B = [1, 3], ϕ(t) = 1

3 t, ψ(t) = t, for all t ≥ 0
and F (s, t) = s− t, s, t ≥ 0. Define V : A

⋃
B → A

⋃
B by

V (x) =

{ −1
3x+ 2

3 , if x ∈ A,

−1
3x−

2
3 , if x ∈ B.

Clearly d(A,B) = 2, and V is a cyclic map. And

d(V x, V y) =
1

3
|y − x|+ 4

3
.

We can see that

F
(
ψ(M(x, y))− ψ(d(A,B)), ϕ(M(x, y))− ϕ(d(A,B))

)
+ ψ(d(A,B))− ψ(d(V x, V y))

= ψ(M(x, y))− ϕ(M(x, y))− ϕ(d(A,B))
)
− d(V x, V y)

=M(x, y)− 1

3
M(x, y)− 2

3
− 1

3
|y − x| − 4

3

=M(x, y)− 1

3
M(x, y)− 1

3
|y − x| − 2 ≥ 0,

for all x ∈ A, y ∈ B, where

M(x, y) = max{d(x, y), d(x, V x), d(y, V y),
1

2
[d(x, V y) + d(y, V x)]}.
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Therefore, V satisfies (2.1). That is, V is a generalized cyclic weak (F,ψ, ϕ)-
contraction. All the conditions of Theorem 2.2 hold true, and U has a best
proximity point. Here x∗ = −1 is the best proximity point of V .

Remark 2.4. By taking F (s, t) = s−t and ψ(t) = t in Theorem 2.2 we obtain
the corresponding result in [6].

Theorem 2.5. Let (X, d) be a complete metric space. Suppose that U : X →
X is a generalized cyclic weak (F,ψ, ϕ)-contraction with d(A,B) = 0 and
there exists y0 ∈ A. Define yn+1 = Uyn for any n ∈ N. Then there exists a
unique fixed point y ∈ X, that is, Uy = y.

Proof. By the assumption and Theorem 2.2, we have d(yn+1, yn) → 0. Next,
we show that {yn} is a Cauchy sequence. Suppose, to the contrary, that {yn}
is not a Cauchy sequence. By Lemma 1.16, there exists ε > 0 such that, for
each even integer k, we can find subsequences {ynk

} and {ymk
} of {yn} with

mk > nk > k such that

lim
k→∞

d(ym(k), yn(k)) = lim
k→∞

d(ym(k), yn(k)−1)

= lim
k→∞

d(ym(k)+1, yn(k)−1) = ε.

Consider

ψ(d(ym(k)+1, yn(k))) = ψ(d(Uym(k), Uyn(k)−1))

≤ F
(
ψ(M(ym(k), yn(k)−1)), ϕ(M(ym(k), yn(k)−1))

)
≤ ψ(M(ym(k), yn(k)−1)),

where

M(ym(k), yn(k)−1) = max{d(ym(k), yn(k)−1), d(ym(k), ym(k)+1),

d(yn(k)−1, yn(k)),
1

2
[d(ym(k), yn(k))

+ d(ym(k)+1, yn(k)−1)]}.

Letting k →∞ and considering the continuity of F,ψ, ϕ, we have

ψ(ε) ≤ F
(
ψ(ε), ϕ(ε)

)
≤ ψ(ε).

Thus, ψ(ε) = 0 or ϕ(ε) = 0. Therefore, ε = 0. This is a contradiction. Thus
{yn} is a Cauchy sequence in (X, d). Since X is complete, there exists y such
that yn → y. We have

d(y, Uy) ≤ d(y, yn+1) + d(yn+1, Uy) = d(y, yn+1) + d(Uyn, Uy), (2.4)
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and

ψ(d(Uyn, Uy)) ≤ F (ψ(M(yn, y)), ϕ(M(yn, y)))

≤ ψ(M(yn, y)).
(2.5)

M(yn, y) = max{d(yn, y), d(yn, Uyn), d(y, Uy),
1

2
[d(yn, Uy) + d(y, Uyn)]}

= max{d(yn, y), d(yn, yn+1), d(y, Uy),
1

2
[d(yn, Uy) + d(y, yn+1)]}.

(2.6)
Substituting (2.6) and (2.5) into (2.4), taking the limit as n→∞, we get that

ψ(d(y, Uy)) ≤ F (ψ(d(y, Uy)), ϕ(d(y, Uy)))

≤ ψ(d(y, Uy)).

If d(y, Uy) 6= 0, then ψ(d(y, Uy)) = 0 or ϕ(d(y, Uy)) = 0. Therefore d(y, Uy) =
0, which is a contradiction. So, d(y, Uy) = 0, that is, Uy = y.

To prove the uniqueness of y, we suppose that there exists y∗ ∈ X such
that Uy∗ = y∗ and y∗ 6= y. Since U is a generalized cyclic weak (F,ψ, ϕ)-
contraction, we have

ψ(d(y, y∗)) = ψ(d(Uy,Uy∗))

≤ F
(
ψ(M(y, y∗)), ϕ(M(y, y∗))

)
≤ ψ(M(y, y∗)),

where

M(y, y∗) = max{d(y, y∗), d(y, y), d(y∗, y∗),
1

2
[d(y, y∗) + d(y, y∗)]} = d(y, y∗).

Thus,

ψ(d(y, y∗)) ≤ F (ψ(d(y, y∗)), ϕ(d(y, y∗)))

≤ ψ(d(y, y∗)),

which means that ψ(d(y, y∗)) = 0 or ϕ(d(y, y∗)) = 0. This implies d(y, y∗) = 0.
Hence y∗ = y. This completes the proof. �

Example 2.6. Let X := R with the metric d(x, y) = |x − y|. Suppose that
A = B = [0, 1], ϕ(t) = 3

13 t, ψ(t) = t, for all t ≥ 0 and F (s, t) = s− t, s, t ≥ 0.
Define U : A

⋃
B → A

⋃
B by

U(x) =

{
1
8 , if x = 1,
1
2x+ 1

8 , if x ∈ [0, 1).

Clearly, d(A,B) = 0. If x = 1, y = 1, then we have

ψ(d(Ux,Uy)) = ψ(0) = 0
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and

F
(
ψ(M(x, y))− ψ(d(A,B)), ϕ(M(x, y))− ϕ(d(A,B))

)
+ ψ(d(A,B))− ψ(d(Ux,Uy))

= ψ(M(x, y))− ϕ(M(x, y))− d(Ux,Uy)

=M(x, y)− 3

13
M(x, y) ≥ 0.

If x = 1, y ∈ [0, 1), then we have

ψ(d(Ux,Uy)) = ψ(d(
1

8
,
1

2
y +

1

8
)) = ψ(

1

2
y) =

1

2
y.

And also, we have

d(x, y) = 1− y, d(x, Ux) =
7

8
, d(x, Uy) =

7

8
− 1

2
y, d(y, Ux) =

1

2
y,

d(y, Uy) = |1
2
y − 1

8
|

and
1

2
[d(x, Uy) + d(y, Ux)] =

7

8
.

Therefore, we have M(x, y) = max{1 − y, 7

8
}. If y ∈ [0,

1

8
], then M(x, y) =

1− y, we get

F
(
ψ(M(x, y))− ψ(d(A,B)), ϕ(M(x, y))− ϕ(d(A,B))

)
+ ψ(d(A,B))− ψ(d(Ux,Uy))

= ψ(M(x, y))− ϕ(M(x, y))− d(Ux,Uy)

=M(x, y)− 3

13
M(x, y)− 1

2
y

= (1− y)− 3

13
(1− y)− 1

2
y > 0,

for all y ∈ [0,
1

8
]. If y ∈ [

1

8
, 1), then M(x; y) =

7

8
, we have

F
(
ψ(M(x, y))− ψ(d(A,B)), ϕ(M(x, y))− ϕ(d(A,B))

)
+ ψ(d(A,B))− ψ(d(Ux,Uy))

= ψ(M(x, y))− ϕ(M(x, y))− d(Ux,Uy)

=
7

8
− (

3

13
)(

7

8
)− 1

2
y > 0,
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for all y ∈ [
1

8
, 1). Therefore, U obviously satisfies (2.1).

If x, y ∈ [0, 1), we have

d(x, y) = |x− y|, d(x, Ux) = |1
2
x− 1

8
|, d(x, Uy) = |x− 1

2
y − 1

8
|,

d(y, Ux) = |y − 1

2
x− 1

8
|, d(y, Uy) = |1

2
y − 1

8
|,

and d(Ux,Uy) =
1

2
|x − y|. If M(x, y) = d(x, y), then U obviously satisfies

(2.1). If d(x, y) <M(x, y) 6= d(x; y), we have

F
(
ψ(M(x, y))− ψ(d(A,B)), ϕ(M(x, y))− ϕ(d(A,B))

)
+ ψ(d(A,B))− ψ(d(Ux,Uy))

= ψ(M(x, y))− ϕ(M(x, y))− d(Ux,Uy)

=M(x, y)− 3

13
M(x, y)− 1

2
|x− y| > 0,

for all x, y ∈ [0, 1). Thus, from all cases above, for x, y ∈ [0, 1], we have

ψ(d(Ux,Uy)) ≤ F
(
ψ(M(x, y))− ψ(d(A,B)), ϕ(M(x, y))− ϕ(d(A,B))

)
+ ψ(d(A,B)).

Therefore U is a generalized cyclic weak (F,ψ, ϕ)-contraction. All the condi-

tions of Theorem 2.5 hold, and U has a fixed point. Here x∗ =
1

4
is the unique

fixed point of U .

Remark 2.7. By taking F (s, t) = s − t and ψ(t) = t in Theorem 2.5 we
obtain the result in [6].
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