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Abstract. Impulsive fractional semilinear differential inclusions in Banach spaces are con-

sidered. We investigate the situation when the linear part generates a semigroup not required

to be compact and the multivalued function is lower semicontinuous and nonconvex. Our

result are obtained by using noncompactness Hausdorff measure (NCHM), multivalued prop-

erties and fixed point theorems. We finally present an example to lighten our results.

1. Introduction

In this paper, we investigate the existence of solutions for following impul-
sive differential inclusion with nonlocal condition:

cDαx(t) ∈ Ax(t) + F (t, x(t)), t ∈ J = [0, b], t 6= ti, i = 1, ...,m,

x(t+i ) = x(ti) + Ii(x(ti)),

x(0) = g(x),

(Q)

0Received April 6, 2019. Revised August 14, 2019.
02010 Mathematics Subject Classification: 34A60, 34G10.
0Keywords: Impulsive fractional differential inclusions, nonlocal conditions, fixed point

theorems, mild solutions.
0Corresponding author: Nawal A. Alsarori(n−alsarori@yahoo.com).



102 N. A. Alsarori and K. P. Ghadle

where cDα is the Caputo derivative of order α, A : D(A) ⊆ E → E is the
infinitesimal generator of a C0−semigroup {T (t), t ≥ 0} on a real separable
Banach space E, F : J × E → 2E is a multifunction, 2E is the power set of
E, 0 = t0 < t1 < · · · < tm < tm+1 = b, for every i = 1, 2, ...,m, Ii : E → E
are impulsive functions, g : PC(J,E)→ E is a nonlinear function, and x(t+i )
is the right limit of x(t) at the point ti.

Impulsive differential equations and inclusions occur in many disciplines;
physics, engineering, biology and et al. Because of their accuracy in modeling
phenomena which change rapidly at certain moments. For more details, see
[16, 21, 1, 6, 29, 8, 14, 12].

Nonlocal conditions problems were derived from physical problems, for in-
stance see [5, 15, 11]. The basic general theory of nonlocal conditions prob-
lems was initiated by Byszewski [11]. However, compactness of the solution
operator at zero remains the essential obstacle in case of nonlocal conditions
problems. Various methods and techniques have been embraced by many au-
thors in this direction. For further details, we refer to [2, 3, 23, 13, 14, 19, 28,
31, 32, 33, 12, 25, 22, 27]. Among them, Wang et al. [32] obtained existence
and uniqueness results when F is a Lipschitz single-valued function or continu-
ous function sends bounded sets into bounded sets and {T (t)}t>0 is compact.
Using NCHM, Li [25] gave existence results concerning nonlocal fractional
differential equations, where the semigroup is equicontinuous as well as the
nonlocal term is compact. Moreover, Ibrahim and Alsarori [22] established
sufficient conditions which guarantee the existence of mild solutions for the
problem (Q) with delay when the semigroup is compact. Recently, Lian et al.
[26] discussed the existence results of mild solutions for (Q) without impulses
when the operator semigroup is not necessarily compact and F is convex. Very
recently, Alsarori et al. [3] investigated the problem (Q) when the semigroup
is not compact and F is upper semicontinuous, convex and compact.

Motivated by the above works, we consider a case differs from previous
cases. We study the existence of mild solution for (Q) in the case when the
multifunction F : J × E → 2E is lower semicontinuous, and the convexity
condition on F is relaxed in this paper. Also in our results, the C0-semigroup
{T (t), t ≥ 0} generated by the linear part of (Q) on the real separable Banach
space E is equicontinuous.

After presenting some definitions and facts related to fractional calculus and
the set-valued analysis in Section 2. Section 3 proceeds to prove the existence
results of mild solutions for (Q) (mild solution concept as introduced in [32]).
The results are derived by techniques and methods of NCHM, as fixed point
theorems. An example is provided to clarify the applicability of our results in
section 4.
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2. Preliminaries

During this section, we state some previous known results so that we can use
them later throughout this paper. By C(J,E), we denote the Banach space of
all continuous functions on J with the uniform norm ‖x‖ = sup{‖x(t)‖, t ∈ J},
L1(J,E) the space of E−valued Bochner integrable functions on J with the

norm ‖x‖L1(J,E) =
∫ b

0 ‖x(t)‖dt.

Let Pb(E), Pcl(E) be denote the families of all nonempty subsets of E which
are bounded and closed, respectively, and conv(B) denote the closed convex
hull in E of subset B.

Definition 2.1. ([24]) The noncompactness Hausdorff measure(NCHM) on
E, χ : Pb(E)→ [0,+∞) is defined by

χ(B) = inf{ε > 0 : B ⊆ ∪nj=1Bj and radius(Bj) ≤ ε}.

Lemma 2.2. ([24]) Let χ be the noncompactness Hausdorff measure. Then
we have the following statements.

(1) If B1, B2 ∈ Pb(E), B1 ⊂ B2, then χ(B1) ≤ χ(B2).
(2) χ({a} ∪B) = χ(B), for every a ∈ E,B ∈ Pb(E).
(3) For any compact subset K ⊂ E and any B ∈ Pb(E), χ(B∪K) = χ(B).
(4) χ(B1 +B2) ≤ χ(B1) + χ(B2), for every B1, B2 ∈ Pb(E).
(5) χ(B) = 0 iff B is relatively compact, for every B ∈ Pb(E).
(6) χ(tB) =| t | χ(B), t ∈ R, B ∈ Pb(E).
(7) χ(L(B)) ≤ ‖L‖χ(B), for every B ∈ Pb(E), where L is a bounded linear

operator on E.

Let {t0, t1, · · · , tm, tm+1} be a partition on [0, b]. Let J0 = [0, t1] and for
each i, Ji =]ti, ti+1], define

PC(J,E)={x : J → E : x|Ji
∈ C(Ji, E), x(t+i ), x(t−i ) exist for all 0 ≤ i ≤ m}.

Obviously, PC(J,E) with uniform norm ‖x‖PC(J,E) is a Banach space. Also,
let us consider the map

χPC : Pb(PC(J,E))→ [0,∞[, χPC(B) = max
0≤i≤m

χi(B|Ji
), B ∈ Pb(PC(J,E),

where χi is defined on C(Ji, E) and

B|Ji
= {x∗ : Ji −→ E, x∗(t) = x(t), t ∈ Ji, x∗(ti) = x(t+i ), x ∈ B, 0 ≤ i ≤ m}.

Clearly, χPC is NCHM on PC(J,E).
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Definition 2.3. Let f ∈ L1(J,E). The Riemann-Liouville fractional integral
of order α ∈ (0, 1) of f is defined by

Iαf(t) =
1

Γ(α)

∫ t

0
(t− s)α−1f(s)ds,

provided the right side is pointwise defined on J , where Γ is the Euler gamma
function.

Definition 2.4. Let f : J → E be continuously differentiable function. The
Caputo derivative of order α ∈ (0, 1) of f is defined by

cDαf(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αf (1)(s)ds = I(1−α)f (1).

Definition 2.5. The mild solution for (Q) is a function x ∈ PC(J,E) such
that

x(t) =



Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ J0,

Tα(t)g(x) +
i=m∑
i=1

Tα(t− ti)Ii(x(t−i ))

+

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds, t ∈ Ji, 0 ≤ i ≤ m,

where

f ∈ S1
F (·,x(·)), $α(θ) =

1

π

∞∑
n=1

(−1)n−1θ−αn−1 Γ(nα+ 1)

n!
sin(nπα),

Tα(t) =

∫ ∞
0

ξα(θ)T (tαθ)dθ,Sα(t) = α

∫ ∞
0

θξα(θ)T (tαθ)dθ,

ξα(θ) =
1

α
θ−1− 1

α$α(θ
−1
α ) ≥ 0,

θ ∈ (0,∞) and ξ is a probability density function defined on (0,∞), that is∫∞
0 ξα(θ)dθ = 1.

Next, we restate some results regarding of Tα(·) and Sα(·).

Lemma 2.6. ([33])

(i) Tα(t),Sα(t) are linear, bounded and strongly continuous operators for
any fixed t ∈ [0,∞[.

(ii) For γ ∈ [0, 1],
∫∞

0 θγξα(θ)dθ =
Γ(1 + γ)

Γ(1 + αγ)
.
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(ii) If ‖T (t)‖ ≤ M, t ≥ 0, then for any x ∈ E, ‖Tα(t)x‖ ≤ M‖x‖,
‖Sα(t)x‖ ≤ M

Γ(α)
‖x‖.

(iv) If {T (t)}t≥0 is equicontinuous, then so Tα(t) and Sα(t).

Lemma 2.7. ([12]) Assume that (Wn)n≥1 is a decreasing sequence of nonempty
bounded and closed subsets of E with χ(Wn)→ 0 as n→∞. Then ∩∞n=1Wn

is nonempty compact subset of E.

Lemma 2.8. ([7]) Let W be a bounded and equicontinuous subset of C(J,E).
Then χ(W (t)) is a continuous function on J and χ(W ) = supt∈J χ(W (t)).

Lemma 2.9. ([18]) If {un}∞n=1 is a sequence of uniformly integrable functions
in L1(J,E), then χ({un(t)}∞n=1) is measurable and

χ({
∫ t

0
un(s)ds}∞n=1) ≤ 2

∫ t

0
χ({un(s)}∞n=1)ds.

Lemma 2.10. ([9]) If B ⊆ E is bounded, then for all ε > 0, there exists a
sequence {un}∞n=1 in B such that χ(B) ≤ 2χ({un}∞n=1) + ε.

Definition 2.11. ([18], [24]) If X, Y are topological spaces. A multifunction
F : X → P (Y ) is called:

(1) upper semicontinuous (u.s.c) if F−1(V ) is an open subset of X for
every open V ⊆ Y .

(2) lower semicontinuous (l.s.c) when F+1(V ) = {x ∈ X : F (x) ∩ V 6= ∅}
is an open for every open subset V of Y .

(3) closed in case when its graph is closed in the topological space X ×Y .
(4) F is said to have a fixed point if there is x ∈ X such that x ∈ F (x).

Remark 2.12.
(1) If U ⊂ X and F (U) are closed and F (U) is compact, then F is u.s.c.

iff F is closed.
(2) If F : X → P (Y )−{∅} is a multifunction. Then d(y, F (·)) is u.s.c. iff

F is l.s.c. for every y ∈ Y , where X,Y are Banach spaces.

Definition 2.13. If B is a nonempty subset of L1(J,E), we call B is decom-
posable if for every f, g ∈ B and for all Lebesgue measurable set M ⊂ J ,
fβM + gβ(J−M) ∈ B, where β is the characteristic function of M .

Lemma 2.14. ([10, Theorem 3]) If F : J × X → P (L1(J,X)) is a multi-
function with closed decomposable values, then F has a continuous selection,
where X is a separable metric space.
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Lemma 2.15. ([4, Lemma 4]) Let {fn}n≥1 be a sequence of integrable bounded
functions in LP (J,E), P ∈ [1,∞[ with χ{fn : n ≥ 1} ≤ %(t), a.e. t ∈ J ,
% ∈ L1(J,R+). Then, for all ε > 0 there exists a compact set Kε ⊆ E, a mea-
surable set Jε ⊂ J with measure less than ε and a sequence {ζn} ⊂ LP (J,E)
such that {ζn(t) : n ≥ 1} ⊆ Kε for all t ∈ J and

‖fn(t)− ζn(t)‖ < 2%(t) + ε, ∀ t ∈ J − Jε.

Theorem 2.16. ([17]) Let E be a Banach space, W be a nonempty, convex,
closed and bounded subset of E and G : W →W be a continuous function. If
either G or W is compact, then G has a fixed point.

3. Main Results

By using NCHM and fixed point theorems, we will prove the following
theorem:

Theorem 3.1. Suppose the following hypotheses:

(HA) The C0-semigroup {T (t) : t ≥ 0} is equicontinuous and for some posi-
tive constant M , supt∈J ‖T (t)‖ ≤M .

(HF) Let F : J × E → Pcl(E) be a multifunction such that:
(1) (t, x)→ F (t, x) is graph measurable.
(2) x→ F (t, x) is l.s.c. for a.e. t ∈ J .

(3) If q ∈ (0, α), there exists ς ∈ L
1
q (J,R+), with for any x ∈ E,

‖F (t, x)‖ ≤ ς(t) for a.e. t ∈ J .

(4) If q ∈ (0, α), then there exists µ ∈ L
1
q (J,R+), 4L‖µ‖

L
1
q (J,R+)

<

1 with for any bounded subset B of E, we have χ(F (t, B)) ≤

µ(t)χ(B) for a.e. t ∈ J , where L =
Mbα−q

Γ(α)(ω + 1)1−q , ω =
α− 1

1− q
.

(Hg) Let g : PC(J,E) → E be continuous, compact function and satisfies
‖g(x)‖ ≤ N on PC(J,E), where N is a positive constant.

(HI) For every i = 1, 2 · · · ,m, let Ii : E → E be continuous compact func-
tions with ‖Ii(x)‖ ≤ hi‖x‖ for all x ∈ E, where hi is a positive con-
stant.

(Hr) There is a positive constant r such that

MN +M

m∑
i=1

hir +
Mb(1+$)(1−q)

Γ(1 + α)(1 +$)(1−q) ‖ς‖
L

1
q

([0,t],R+)

≤ r. (3.1)

Then the problem (Q) has a mild solution on J .
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Proof. Let ∆ : PC(J,E)→ 2L
1(J,E) be defined by:

∆(x) = S1
F (·,x(·)) = {f ∈ L1(J,E) : f(t) ∈ F (t, x(t)), a.e. t ∈ J}.

We show that ∆ has a nonempty closed, lower semicontinuous and decom-
posable values. S1

F is closed because F has closed value. From (HF)(3), F is
integrably bounded so S1

F is nonempty ([20, Theorem 3.2]). One can easily
check that S1

F is decomposable. Now, we will prove that ∆ is l.s.c.. To do
this, we need to prove that x → d(u,∆(x)) is u.s.c. for every u ∈ L1(J,E).
From ([20, Theorem 2.2]),

d(u,∆(x)) = inf
f∈∆(x)

‖u− f‖L1

= inf
f(t)∈F (t,x(t))

∫ b

0
‖u(t)− f(t)‖dt

=

∫ b

0
inf

f(t)∈F (t,x(t))
‖u(t)− f(t)‖dt

=

∫ b

0
d(u(t), F (t, x(t))dt.

(3.2)

Now, we will prove that for every δ ≥ 0 the set uδ = {x ∈ PC(J,E) :
d(u,∆(x)) ≥ δ} is closed. To prove that, let {xn}n≥1 ⊆ uδ, xn → x in
PC(J,E). So, for every t ∈ J, xn(t) → x(t) in E. By (HF) (2) and Remark
2.12, we have z → d(u(t), F (t, z)) is u.s.c.. Therefore, by Fatou Lemma and
(3.2),

δ ≤ lim
n→∞

sup d(u,∆(xn))

= lim
n→∞

sup

∫ b

0
d(u(t), F (t, xn(t))dt

≤
∫ b

0
lim
n→∞

sup d(u(t), F (t, xn(t))dt

≤
∫ b

0
d(u(t), F (t, x(t))dt

= d(u,∆(x)).

Then, x ∈ uδ. This means that d(u,∆(x)) is u.s.c. and hence by Remark 2.12,
∆ is l.s.c.. Now, we apply Lemma 2.14 which follows that ∆ has a continuous
selection f : PC(J,E) → L1(J,E) with f(x) ∈ ∆(x), for all x ∈ PC(J,E).
That concludes f(x)(t) ∈ F (t, x(t)), a.e. t ∈ J . Further, let G : PC(J,E) →
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PC(J,E) defined as follows:

G(x)(t) =



Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(x)(s)ds, t ∈ J0,

Tα(t)g(x) +
k=i∑
k=1

Tα(t− tk)Ik(x(t−k ))

+

∫ t

0
(t− s)α−1Sα(t− s)f(x)(s)ds, t ∈ Ji, 1 ≤ i ≤ m,

(3.3)

where f ∈ S1
F (·,x(·)). Obviously, any fixed point for G is a mild solution for the

problem (Q). So, we will prove that G satisfies all the hypothesis of Theorem
2.16. The proof will be given in several steps. Let W0 = {x ∈ PC(J,E) :
‖x‖ ≤ r}. Clearly, W0 is bounded, convex and closed subset of PC(J,E).

Step 1. We prove that G(W0) ⊆ W0. Let x ∈ W0 and t ∈ J . Then, by
using Lemma 2.6, (HF)(3), (Hg), (1) and Holder’s inequality for t ∈ J0,

‖G(x)(t)‖ ≤ ‖Tα(t)g(x) +

∫ t

0
(t− s)α−1Sα(t− s)f(x)(s)ds‖

≤ ‖Tα(t)g(x)‖+ ‖
∫ t

0
(t− s)α−1Sα(t− s)f(x)(s)ds‖

≤MN +
M

Γ(1 + α)

∫ t

0
(t− s)α−1ς(s)ds

≤MN +
M

Γ(1 + α)

b(1+ω)(1−q)

(1 + ω)(1−q) ‖ς‖L 1
q (J,R+)

≤ r,

where ω =
α− 1

1− q
. In addition, by using (HI) and for t ∈ Ji, i = 1, · · · ,m, one

can get by similar argument,

‖G(x)(t)‖ ≤MN +M
k=i∑
k=1

hkr +
M

Γ(1 + α)

t(1+ω)(1−q)

(1 + ω)(1−q) ‖ς‖L 1
q (J,R+)

≤ r.

Then, G(W0) ⊆ W0. We define a sequence Wn = convG(Wn−1), n ≥ 1. By
induction, one can easily show that (Wn)∞n=1 is decreasing sequence. Now we
prove that the set W = ∩∞n=1Wn is nonempty and compact. From Lemma 2.7,
it is enough to prove that

lim
n→∞

χPC(Wn) = 0, (3.4)

where χPC is defined in the previous section. Next, we prove (3.4) by step 2
and step 3.
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Step 2. For each n ∈ N, Ji = (ti, ti+1] and i = 0, 1, · · · ,m, Wn|Ji
is

equicontinuous, where

Wn|Ji
= {x∗ ∈ C(Ji, E) : x∗(t) = x(t), t ∈ Ji, x∗(ti) = x(t+i ), x ∈Wn}.

Without loss of generality we show that W1|Ji is equicontinuous for all 0 ≤
i ≤ m. Since W1 = convG(W0), so it is enough to show that G(W0)|Ji is

equicontinuous on Ji. Let x ∈ W0 and y = G(x). Consider the following
cases:

Case 1. If i = 0, we have the following subcases:

1. Let t = 0 and τ > 0 with t + τ ∈ (0, t1]. By using (HA), Lemma 2.6 (vi)
and Holder’s inequality,

‖y∗(t+ τ)− y∗(t)‖ = ‖y(τ)− y(0)‖
≤ ‖Tα(τ)g(x)− Tα(0)g(x)‖

+ ‖
∫ τ

0
(τ − s)α−1Sα(τ − s)f(x)(s)ds‖

≤ ‖Tα(τ)− Tα(0)‖‖g(x)‖+
M

Γ(α)
‖ς‖

L
1
q (J,R+)

τα−q

($ + 1)1−q

→ 0

as τ → 0. Therefore, independently on x we have,

lim
τ→0
‖y∗(t+ τ)− y∗(t)‖ = 0. (3.5)

2. Let t ∈ (0, t1) and τ > 0 provided that t+ τ ∈ (0, t1), then

‖y∗(t+ τ)− y∗(t)‖ = ‖y(t+ τ)− y(t)‖
≤ ‖Tα(t+ τ)g(x)− Tα(t)g(x)‖

+ ‖
∫ t+τ

0
(t+ τ − s)α−1Sα(t+ τ − s)f(x)(s)ds

−
∫ t

0
(t− s)α−1Sα(t− s)f(s)ds‖

≤ G1 +G2 +G3 +G4,

where
G1 = ‖Tα(t+ τ)g(x)− Tα(t)g(x)‖,
G2 = ‖

∫ t
0 [(t+ τ − s)α−1 − (t− s)α−1]Sα(t+ τ − s)f(x)(s)ds‖,

G3 = ‖
∫ t

0 (t− s)α−1[Sα(t+ τ − s)− Sα(t− s)]f(x)(s)ds‖,
G4 = ‖

∫ t+τ
t (t+ τ − s)α−1Sα(t+ τ − s)f(x)(s)ds‖.
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We will show that Gi → 0 as τ → 0 for i = 1, 2, 3, 4. (HA) and Lemma 2.6
give

lim
τ→0

G1 = lim
τ→0
‖Tα(t+ τ)g(x)− Tα(t)g(x)‖

≤ ‖g(x)‖ lim
τ→0
‖Tα(t+ τ)− Tα(t)‖

= 0,

independent on x. For G2 and G4, one can see the proof in details in ([22,
Theorem 4]). For G3, from the equicontinuity of {Sα(t) : t ∈ J},

G3 ≤
∫ t

0
‖(t− s)α−1[Sα(t+ τ − s)− Sα(t− s)]f(x)(s)‖ds

→ 0, as τ → 0.

Therefore, we have

lim
τ→0
‖y∗(t+ τ)− y∗(t)‖ = 0. (3.6)

3. When t = t1. Let τ > 0 and δ > 0 provided that t1 + τ ∈ J1 and
t1 < δ < t1 + τ ≤ t2. Then

‖y∗(t1 + τ)− y∗(t1)‖ = lim
δ→t+1

‖y(t1 + τ)− y(δ)‖.

The definition of G implies that

‖y(t1 + τ)− y(δ)‖ ≤ ‖Tα(t1 + τ)g(x)− Tα(δ)g(x)‖

+
k=i∑
k=1

‖Tα(t1 + τ − tk)Ik(x(t−k ))− Tα(δ − tk)Ik(x(t−k ))‖

+ ‖
∫ t1+τ

0
(t1 + τ − s)α−1Sα(t1 + τ − s)f(x)(s)ds

−
∫ δ

0
(δ − s)α−1Sα(δ − s)f(x)(s)ds‖.

With similar argument as in the previous way, we have

lim
τ→0
δ→t+1

‖y(t1 + τ)− y(δ)‖ = 0. (3.7)

Case 2. In case of 1 ≤ i ≤ m, use the same way as Case 1.

lim
τ→0
‖y∗(t+ τ)− y∗(t)‖ = 0. (3.8)

From (3.5)-(3.8), W1|Ji
is equicontinuous for every 0 ≤ i ≤ m.

Step 3. We show that (3.4) is satisfied. Set W = ∩∞n=1Wn. We want to prove
that W is nonempty and compact in PC(J,E). By light of Lemma 2.7, it is
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enough to show that limn→∞ χPC(Wn) = 0. By Lemma 2.10, for arbitrary
ε > 0 there exists a sequence {yk}∞k=1 in G(Wn−1) such that

χPC(Wn) = χPCG(Wn−1) ≤ 2χPC{yk : k ≥ 1}+ ε.

It follows from definition of χPC that

χPC(Wn) ≤ 2 max
0≤i≤m

χi(v|Ji
) + ε,

where v = {yk : k ≥ 1}. By using the equicontinuity of Wn|Ji
, i = 0, 1, · · · ,m,

we can apply Lemma 2.8 and we get

χi(v|Ji
) = sup

t∈Ji
χ(v(t)).

Hence, using the nonsinglarity of χ we get

χPC(Wn) ≤ 2 max
i=0,1,··· ,m

[sup
t∈Ji

χ(v(t))] + ε = 2 sup
t∈J

χ(v(t)) + ε.

Then, we have

χPC(Wn) ≤ 2 sup
t∈J

χ{yk(t) : k ≥ 1}+ ε. (3.9)

Since yk ∈ G(Wn−1), k ≥ 1 there is xk ∈ Wn−1 such that yk ∈ G(xk), k ≥ 1.
From the definition of G, (3.9) can be written as:

χPC(Wn) ≤ 2 sup
t∈J

χ{yk(t) : k ≥ 1}

≤



χ(Tα(t)g(xk)) + χ(

∫ t

0
(t− s)α−1Sα(t− s)f(xk)(s)ds), t ∈ J0,

χ(Tα(t)g(xk)) +

j=i∑
j=1

χ(Tα(t− tj)Ij(xk(t−j )))

+ χ(

∫ t

0
(t− s)α−1Sα(t− s)f(xk)(s)ds), t ∈ Ji.

Since, g and Ii for all 1 ≤ i ≤ m are compact, Lemma 2.2 implies

χ{Tα(t)g(xk) : k ≥ 1} = 0, (3.10)

χ{Tα(t− tj)Ij(xk(t−j )) : k ≥ 1} = 0. (3.11)

Hence, by (3.10) and (3.11) for every t ∈ J , we have

χPC(Wn) ≤ ε+ 2 sup
t∈J

χ{
∫ t

0
(t− s)α−1Sα(t− s)f(xk)(s)ds : k ≥ 1}.
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Now, to estimate χ{
∫ t

0 (t − s)α−1Sα(t − s)fk(s)ds : k ≥ 1}, take the linear

continuous map Ω : L
1
q (J,E)→ C(J,E), where

Ω(f)(t) =

∫ t

0
(t− s)α−1Sα(t− s)f(s)ds.

For any f1, f2 ∈ L
1
q (J,E), and t ∈ J, Holder’s inequality implies

‖Ω(f1)(t)− Ω(f2‖ ≤
M

Γ(α)

∫ t

0
(t− s)α−1‖f1(s)− f2(s)‖ds

≤ M

Γ(α)
‖f1 − f2‖(

∫ t

0
(t− s)

α−1
1−q ds)1−q

≤ L‖f1 − f2‖
L

1
q (J,R+)

,

(3.12)

where, L =
Mbα−q

Γ(α)($ + 1)1−q . Let zk = f(xk)(·) for all k ≥ 1. From (HF)(3),

we have for almost t ∈ J , ‖fk(t)‖ ≤ ς(t) ∈ L
1
q (J,E). By using (HF)(4) and

for a.e. t ∈ J , we get

χ{zk(t) : k ≥ 1} ≤ χ{F (t, xk) : k ≥ 1}
≤ µ(t)χ{xk(t) : k ≥ 1}
≤ µ(t)χ(Wn−1(t))

≤ µ(t)χPC(Wn−1)

= %(t) ∈ L
1
q (J,R+).

Lemma 2.15 guarantees the existence of a compact set Kε ⊆ E, measurable set

Jε ⊂ J with measure less than ε, and a sequence of functions {ζk} ⊂ L
1
q (J,E)

such that for all s ∈ J, {ζk(s) : k ≥ 1} ⊆ Kε , ‖zk(s)− ζk(s)‖ < 2%(s) + ε, for
every s ∈ J − Jε. By using (3.12) we obtain for all t ∈ J, k ≥ 1

‖Ω(zk)(t)− Ω(ζk)(t)‖ ≤ L‖zk − ζk‖
L

1
q (J,R+)

≤ L[

∫
J−Jε

‖zk(s)− ζk(s)‖
1
q ds

+

∫
Jε

‖zk(s)− ζk(s)‖
1
q ds]q

≤ L[

∫
J−Jε

(2%(s) + ε)
1
q ds+

∫
Jε

‖zk(s)− ζk(s)‖
1
q ds]q.

But ε is arbitrary, then for all t ∈ J, k ≥ 1

‖Ω(zk)(t)− Ω(ζk)(t)‖ ≤ 2L

∫
J
%(s)ds = 2LχPC(Wn−1)‖µ‖

L
1
q (J,R+)

. (3.13)
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Therefore, from (3.9), (3.10), (3.11) and (3.13) we get

χPC(Wn) ≤ 4LχPC(Wn−1)‖µ‖
L

1
q (J,R+)

+ ε.

Since ε is arbitrary, we find

χPC(Wn) ≤ 4LχPC(Wn−1)‖µ‖
L

1
q (J,R+)

.

Clearly, after finite steps one can write

0 ≤ χPC(Wn) ≤ (4L‖µ‖
L

1
q (J,R+)

)n−1χPC(W1).

By using (HF)(4), if we take the limit as n→∞, we get

lim
n→∞

χPC(Wn) = 0.

Thus, W = ∩∞n=1Wn is nonempty and compact by Lemma 2.7.

Step 5. We will prove the continuity of G on W .
Let (xn) be a sequence in W with xn → x in W ⊂ PC(J,E). Which

follows that limn→∞ xn(t) = x(t), for t ∈ J . As consequence, for every t ∈ J ,
limn→∞ f(xn)(t) = f(x)(t). Now, for every t, s ∈ J we have

‖(t− s)α−1f(xn)(s)‖ ≤ (t− s)α−1ς(s) ∈ L1(J,R+).

and

‖(t− s)α−1f(x)(s)‖ ≤ (t− s)α−1ς(s) ∈ L1(J,R+).

Then, Lebesgue dominated convergence theorem concludes that

lim
n→∞

∫ t

0
(t− s)α−1‖f(xn)(s)− f(x)(s)‖ds = 0.

Therefore, if t ∈ J0, continuity of g gives

lim
n→∞

‖G(xn)(t)−G(x)(t)‖ ≤ lim
n→∞

M‖g(xn)− g(x)‖

+ lim
n→∞

M

Γ(α)

∫ t

0
(t− s)α−1‖f(xn)(s)− f(x)(s)‖ds

= 0.

Similarly, if t ∈ Ji, 1 ≤ i ≤ m, then by the continuity of Ii, we get

lim
n→∞

‖G(xn)(t)−G(x)(t)‖ ≤ lim
n→∞

M‖g(xn)− g(x)‖

+M

k=i∑
k=1

lim
n→∞

‖Ik(xn(tk))− Ik(xn(tk))‖

+ lim
n→∞

M

Γ(α)

∫ t

0
(t− s)α−1‖f(xn)(s)− f(x)(s)‖ds

= 0.
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Hence G is continuous. Thus, G : W →W satisfies the hypotheses in Theorem
2.16, so there is x ∈W ⊂ PC(J,E) which is a mild solution for (Q). �

4. Example

We consider the following system:

∂αt y(t, z) ∈ ∂2
zy(t, z) +R(t, y(t, z)), t 6= ti,

y(t, 0) = y(t, 1) = 0,

y((
i

m+ 1
)+, z) = y(

i

m+ 1
, z) +

1

2i
,

y(0, z) =

j=q∑
j=0

∫ 1

0
kj(z, v)tan−1(y(sj , v))dv,

(4.1)

where q is a positive integer, 0 < s0 < s1 < · · · < sq < 1, i = 1, · · · ,m,
t, z ∈ [0, 1], kj ∈ C([0, 1]×[0, 1],R), j = 0, 1, · · · , q, ∂αt is the Caputo fractional
partial derivative of order α, where 0 < α < 1 and R : [0, 1]× E → P (E).

In order to rewrite (4.1) in the abstract form, we put E = L2([0, 1],R), and

A is the Laplace operator, i.e., A =
∂2

∂z2
on the domain D(A) = {x ∈ E :

x, x′ are absolutely continuous, and x′′ ∈ E, x(0) = x(1) = 0}. From [30], A
generates an analytic and compact semigroup {T (t)}t≥0 in E. This leads to A
satisfies the assumption (HA).

For every i = 1, · · · ,m define Ii : E → E by

Ii(x)(z) =
1

2i
, z ∈ [0, 1].

Note that the assumption (HI) is valid. For every j = 0, 1, · · · , q, define
Hj : E → E as

(Hj(x))(z) =

∫ 1

0
kj(z, v)tan−1(x(v))dv, z ∈ [0, 1].

Now take g : PC([0, 1], E)→ E as

g(x) =

j=q∑
j=0

Hj(x(sj)).

Finally, let F (t, x)(z) = R(t, x(z)) and x(t)(z) = x(t, z), where z ∈ [0, 1].
Then, the system (4.1) takes the form:

cDαx(t) ∈ Ax(t) + F (t, x(t)) t ∈ J = [0, 1], t 6= ti,

x(t+i ) = x(ti) + Ii(x(t−i )),

x(0) = g(x).
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If we put some conditions on F as in Theorem 3.1, then (4.1) possesses a mild
solution on [0, 1].

Conclusion

The present article discussed the existence of mild solutions of nonlocal
impulsive differential inclusions in Banach space in case when the operator
semigroup is not necessarily compact and the multivalued function is lower
semicontinuous and nonconvex. We used methods and results of NCHM, and
theorems of fixed point in order to determine sufficient conditions that guar-
antee the existence of mild solutions for (Q). The results given in this study
developed and extended some previous results. An example was presented to
support our main results.
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