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Abstract. A strong convergence theorem for the zero of a uniformly continuous accretive
operator in a real normed space is proved using the iteration formula

xn+1 = xn − λnαnAxn − λnθn(xn − x1), ∀ n ≥ 1

where {αn}∞n=1, {λn}∞n=1 and {θn}∞n=1 are real sequences in (0, 1) satisfying certain conditions

given by Chidume and Zegeye [9]. Similar result for uniformly continuous pseudocontractive

map is also proved. Our result modifies the convergence results of Chidume and Ofoedu [7]

and many others.

1. Introduction and Preliminaries

Let E be a real Banach space with dual E∗. The normalized duality mapping
from E to 2E∗ is defined by

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 , ‖x‖ = ‖x∗‖},
where 〈·, ·〉 denotes the duality pairing between the elements of E and E∗.

Definition 1.1. A mapping A : D(A) ⊆ E → E is said to be accretive [2] if
for all x, y ∈ E, there exists j(x− y) ∈ J(x− y) such that

〈Ax−Ay, j(x− y)〉 ≥ 0.
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When E is a Hilbert space, accretive operators are also called monotone.
Let K be a nonempty subset of E.

Definition 1.2. The mapping T : K → K is called pseudocontractive [3] if
for all x, y ∈ K, there exists j(x− y) ∈ J(x− y) such that

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2.

In the sequel, we will need the following results.

Lemma 1.3. [15] Let E be a real Banach space. Then for all x, y ∈ E, there
exists j(x + y) ∈ J(x + y) such that

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉.

2. Main Results

Theorem 2.1. Let E be a real Banach Space and A : E → E be a uniformly
continuous accretive operator such that N(A) := {x ∈ E : Ax = 0} 6= φ.
Suppose {αn}∞n=1, {λn}∞n=1 and {θn}∞n=1 be real sequences in (0, 1) satisfying
the conditions

lim
n→∞λn = 0, αn = o(θn). (2.1)

Let the sequence {xn}∞n=1 be generated iteratively from arbitrary x1 ∈ E, by

xn+1 = xn − λnαnAxn − λnθn(xn − x1), ∀ n ≥ 1. (2.2)

Then {xn}∞n=1 is bounded.

Proof. Let x∗ ∈ N(A). If xn = x∗, for all n ≥ 1, then the theorem is proved.
So, let N∗ be the first smallest integer such that xN∗ 6= x∗. So that there exists
N0 ≥ N∗ and r > 0 be sufficiently large such that

xN0 ∈ Br(x∗) = B := {x ∈ E : ‖x− x∗‖ ≤ r},
and x1 ∈ B r

2
(x∗). In order to prove that {xn}∞n=1 is bounded, it is sufficient

to show that xn ∈ B = Br(x∗), for all integers n ≥ N0, by induction. Now by
our construction, xN0 ∈ B. So we next assume that xn ∈ B for some n > N0

and we shall prove that xn+1 ∈ B. Let xn+1 /∈ B, that is,

‖xn+1 − x∗‖ > r.

Then by ( 2.2) and Lemma 1.3, we have
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‖xn+1 − x∗‖2

= ‖xn − x∗ − λn(αnAxn + θn(xn − x1))‖2

≤ ‖xn − x∗‖2 − 2λn〈αnAxn + θn(xn − x1), j(xn+1 − x∗)〉
≤ ‖xn − x∗‖2 − 2λnαn〈Axn+1, j(xn+1 − x∗)〉 − 2λnθn‖xn+1 − x∗‖2

+ 2λnαn〈Axn+1 −Axn, j(xn+1 − x∗)〉+ 2λnθn〈xn+1 − xn, j(xn+1 − x∗)〉
+ 2λnθn〈x1 − x∗, j(xn+1 − x∗)〉

≤ ‖xn − x∗‖2 − 2λnαn〈Axn+1, j(xn+1 − x∗)〉 − 2λnθn‖xn+1 − x∗‖2

+ 2λnθn‖x1 − x∗‖‖xn+1 − x∗‖+ 2λnθn‖xn+1 − xn‖‖xn+1 − x∗‖
+ 2λnαn‖Axn+1 −Axn‖‖xn+1 − x∗‖ (2.3)

Since A is a bounded operator, so we can define

M0 := sup{‖x−Ax‖ : ‖x− x∗‖ ≤ 4r}
and by uniform continuity of A, for given ε0 > 0, there exists δ > 0 such that

‖Ax−Ay‖ < ε0, whenever ‖x− y‖ < δ.

Define

γ0 :=
1
2

min

{
1,

δ

M0 + 3
2r

}

and let λn ≤ r
8(M0+ 3

2
r)

, αn
θn
≤ r

4ε0
, ∀n ≥ N0.

Also we have

‖xn+1 − xn‖ ≤ λnαn‖xn −Axn‖+ λnθn‖xn − x1‖
≤ λn [αnM0 + θn‖xn − x∗‖+ θn‖x1 − x∗‖]

≤ λn

[
αnM0 +

3
2
θnr

]

≤ γ0[M0 +
3
2
r]

≤ δ,

which implies that
‖Axn+1 −Axn‖ < ε0.

Again since A is accretive, so

〈Axn+1, j(xn+1 − x∗)〉 ≥ 0.
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Hence using the above estimates, equation ( 2.3) becomes

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 + 2λnαnε0‖xn+1 − x∗‖ − 2λnθn‖xn+1 − x∗‖2

+ 2λ2
nθn [αnM0 + θn‖xn − x∗‖+ θn‖x1 − x∗‖] ‖xn+1 − x∗‖

+ 2λnθn‖xn+1 − x∗‖‖x1 − x∗‖.
Since ‖xn+1 − x∗‖ > ‖xn − x∗‖ by our assumption,

2λnθn‖xn+1 − x∗‖ ≤ 2λnαnε0 + 2λnθn
r

2
+ 2λ2

nθn

(
αnM0 +

3
2
θnr

)

where xn ∈ B and x1 ∈ B r
2
(x∗). This implies that

‖xn+1 − x∗‖ ≤ αn

θn
ε0 + λn

(
M0 +

3
2
r

)
+

r

2

≤ r

4
+

r

2
+

r

8
< r,

which is a contradiction of our assumption that xn+1 /∈ B. Hence, xn ∈ B for
all n ≥ N0, which implies that {xn}∞n=1 is bounded. ¤

Theorem 2.2. Let E be a real normed linear space and let A : E → E be a
uniformly continuous accretive operator with N(A) 6= φ. Let x1 ∈ E be fixed
and {xn}∞n=1 be generated iteratively by

xn+1 = xn − λn(αnAxn + θn(xn − x1)), n ≥ 1, (2.4)

where {λn}∞n=1, {θn}∞n=1 ∈ (0, 1) satisfy the conditions ( 2.1) of Theorem 2.1
with

∑∞
n=1 λnθn = ∞. Then {xn}∞n=1 converges strongly to the unique element

x∗ ∈ N(A).

Proof. The existence of a solution for the equation Ax = 0, for a continuous
accretive operator A follows from [13] and the uniqueness is obvious from the
definition of accretivity. Let x∗ be the unique solution and set

M1 := 2 sup
n
‖x1 − x∗‖‖xn+1 − x∗‖,

M2 := 2 sup
n
{‖xn −Axn‖+ ‖xn − x1‖}‖xn+1 − x∗‖

and

M3 := 2 sup ‖xn+1 − x∗‖.
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Using ( 2.4) and Lemma 1.3 again, we have

‖xn+1 − x∗‖2

≤ ‖xn − x∗‖2 − 2λnαn〈Axn+1, j(xn+1 − x∗)〉 − 2λnθn‖xn+1 − x∗‖2

+ 2λnθn〈xn+1 − xn, j(xn+1 − x∗)〉+ 2λnθn〈x1 − x∗, j(xn+1 − x∗)〉
+ 2λnαn〈Axn+1 −Axn, j(xn+1 − x∗)〉

≤ ‖xn − x∗‖2 − 2λnθn‖xn+1 − x∗‖2 + 2λnθn‖x1 − x∗‖‖xn+1 − x∗‖
+ 2λ2

nθn[αn‖xn −Axn‖+ θn‖xn − x1‖]‖xn+1 − x∗‖
+ 2λnαn‖Axn+1 −Axn‖‖xn+1 − x∗‖.

Thus

‖xn+1 − x∗‖2 ≤‖xn − x∗‖2 − 2λnθn‖xn+1 − x∗‖2 (2.5)

+ λnM3‖Axn+1 −Axn‖+ λ2
nθnM2 + λnM1.

Next we claim that inf{‖xn+1 − x∗‖;n ≥ 0} = 0. Let

inf{‖xn+1 − x∗‖; n ≥ 0} = δ > 0.

Then we have,
‖xn+1 − x∗‖ > δ, ∀ n ≥ 0.

Also, since

‖xn+1 − x∗‖λn[αn‖xn −Axn‖+ θn‖xn − x1‖] → 0 as n →∞,

so that by uniform continuity of A, there exists N0 > 0 such that

‖Axn+1 −Axn‖ <
δ2

M3
, ∀ n ≥ N0

. Hence, for all n ≥ N0

‖xn+1‖ ≤ ‖xn − x∗‖2 − 2λnθnδ2 + λnδ2 + λ2
nθnM2 + λnM1

and
λnθnδ2 ≤ (‖xn − x∗‖2 − ‖xn+1‖) + λn(δ2 + M1) + λ2

nθnM2,

that is,

δ2
n∑

i=1

λiθi ≤
n∑

i=1

(‖xi − x∗‖2 − ‖xi+1‖) +
n∑

i=1

λi(δ2 + M1 + M2),

which implies that
∑n

i=1 λiθi < ∞, which is a contradiction for
∑n

i=1 λiθi = ∞.
Hence our claim is true. Thus, there exists a subsequence {xnj} of {xn} such
that limn→∞ ‖xnj − x∗‖ = 0.
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Let ε > 0 be given. Since ‖xn+1 − xn‖ → 0 as n → ∞ and A is uniformly
continuous, we can choose an integer N1 > 0 such that ∀n ≥ N1,

‖Axn+1 −Axn‖ ≤ ε

M3
.

Now choose an integer N2 > N , such that ‖xni − x∗‖ < ε, ∀ i ≥ N2.
Fix i∗ ≥ N2. Then

‖xni∗ − x∗‖ < ε.

We next claim that ‖xni∗+m − x∗‖ < ε, ∀ m = 1, 2, · · · . We prove it by
induction on m. So we first show that ‖xni∗+1 − x∗‖ < ε. Suppose this is not
true. Then, ‖xni∗+1 − x∗‖ ≥ ε.

On the other hand, we have

‖xn+1 − x∗‖2 ≤‖xn+1 − x∗‖ − 2λnθn‖xn+1 − x∗‖2

+ λnM3‖Axn+1 −Axn‖+ λ2
nθnM2 + λnM1.

So that

‖xni∗+1 − x∗‖2 ≤ ‖xni∗ − x∗‖ − 2λnθnε2 + λnε2 + λ2
nθnM2 + λnM1

or
2λnθnε2 ≤ ‖xni−x∗‖ − ‖xnj−x∗‖+

3
2
ε2λn.

This implies that

2ε2
n∑

i=1

λnθn ≤ (‖xni−x∗‖ − ‖xnj−x∗‖) +
3
2
ε2

n∑

i=1

λn

< ∞,

which is a contradiction. Hence, the claim holds for m = 1. Assume now it
holds for m = k. Following the similar arguments as above, we can show that
the claim holds for m = k + 1 also. Hence it is true for all the values of m.
This implies that {xn} converges strongly to x∗ as n →∞. ¤
Remark 2.3. Our result modifies the corresponding results of [6, 7, 20] and
the references therein, to uniformly continuous accretive operators with weaker
conditions on the parameters. Also the results of [10, 9, 17] and many others
are extended to a more general reflexive Banach space.

Next we prove the strong convergence for pseudocontractive mappings.

Theorem 2.4. Let E be a real normed linear space and T : E → E be a
uniformly continuous pseudocontractive mapping such that

F (T ) = {x ∈ E : Tx = x} 6= φ.

Let x1 ∈ E be fixed and {xn}∞n=1 be generated iteratively by

xn+1 = (1− λnαn)xn + λn(αnTxn − θn(xn − x1)), n ≥ 1, (2.6)
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where {λn}∞n=1, {θn}∞n=1 ∈ (0, 1) satisfy the conditions ( 2.1) of Theorem 2.1
with

∑∞
n=1 λnθn = ∞. Then {xn}∞n=1 converges strongly to some x∗ ∈ F (T ).

Proof. We first observe that T is pseudocontractive if and only A : = I −T is
accretive [2]. Again, x∗ ∈ Kmin

⋂
F (T ) implies Tx = x, which again implies

Ax = 0. Thus Kmin
⋂

N(A) 6= φ. Clearly, T is also continuous. Hence,
replacing T by I − A in (2.4), then boundedness of {xn}∞n=1 follows from
Theorem 2.1 and rest of the result follows from Theorem 2.2. ¤
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