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Abstract. A strong convergence theorem for the zero of a uniformly continuous accretive
operator in a real normed space is proved using the iteration formula

Tntl = Tn — AnQnATn — ApOn(Tn —x1), VN >1
where {an, }or1, {\n tne1 and {60, }52; are real sequences in (0, 1) satisfying certain conditions
given by Chidume and Zegeye [9]. Similar result for uniformly continuous pseudocontractive
map is also proved. Our result modifies the convergence results of Chidume and Ofoedu [7]

and many others.

1. INTRODUCTION AND PRELIMINARIES

Let E be a real Banach space with dual E*. The normalized duality mapping
from E to 2% is defined by

J(x) = {a* € B": (x,2") = |||, ||| = [|l="]}},

where (-, -) denotes the duality pairing between the elements of E and E*.

Definition 1.1. A mapping A: D(A) C E — FE is said to be accretive [2] if
for all x,y € E, there exists j(x —y) € J(x —y) such that

(Az — Ay, j(x ) > 0.
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When FE is a Hilbert space, accretive operators are also called monotone.
Let K be a nonempty subset of E.

Definition 1.2. The mapping T : K — K is called pseudocontractive [3] if
for all x,y € K, there exists j(x —y) € J(x —y) such that

(Te =Ty, j(z —y) < llz -yl

In the sequel, we will need the following results.

Lemma 1.3. [15] Let E be a real Banach space. Then for all z,y € E, there
exists j(x +y) € J(z +y) such that

lz +ylI? < llz[|* + 2{y, j(z + y)).

2. Main Results

Theorem 2.1. Let E be a real Banach Space and A: E — E be a uniformly
continuous accretive operator such that N(A) := {x € E : Az = 0} # ¢.
Suppose {an}o2 1, {\n}22 and {0,}°2, be real sequences in (0,1) satisfying
the conditions

lim A\, =0, o, =o0(6,). (2.1)

n—oo

Let the sequence {x,}5°, be generated iteratively from arbitrary x1 € E, by
Tntl = Tp — MA@ Az, — Apbn(xn — 1), V> 1 (2.2)
Then {x,}5° | is bounded.

Proof. Let x* € N(A). If x,, = «*, for all n > 1, then the theorem is proved.
So, let N, be the first smallest integer such that x, # z*. So that there exists
Ny > N, and r > 0 be sufficiently large such that

TN, € Br(z*)=B:={x € E: |z — 2| <r},

and z1 € Bz(2”). In order to prove that {z,};2, is bounded, it is sufficient

to show that x,, € B = B,.(z*), for all integers n > Ny, by induction. Now by
our construction, xy, € B. So we next assume that z,, € B for some n > Ny
and we shall prove that x,11 € B. Let x,,41 ¢ B, that is,

|xn1 — ™[] > 7.

Then by ( 2.2) and Lemma 1.3, we have
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|41 — 22

= ||z — 2" = M (@A + 0n (2, — 21)) |7

<y — 2% = 200 (e Azy + O0n (2 — 21), § (2011 — 7))

< lzn — x*HQ — 2 o (ATny1, §(Tny1 — %)) — 2X00n |01 — x*Hz

+ 2 pan (Axp g1 — Az, j(Tng1 — ) + 20000 (Tnt1 — T, J(Tpg1 — 7))
+ 2An0n<x1 - a:*,j(arn+1 - 33*)>

<lwn — 2*)1? = 2Anan (Azni1, 5 (@n41 — 2%)) — 2200 @1 — ¥
+2M0nl|z1 — 2 ||| Tng1 — 2| + 22000 |70t 1 — zalll| a1 — x*||

+ 2 \hanl|Azpt1 — Axy|||zns1 — =¥ (2.3)

Since A is a bounded operator, so we can define
My :=sup{||z — Az|| : ||z — =*|| < 4r}
and by uniform continuity of A, for given ¢y > 0, there exists § > 0 such that

| Az — Ay|| < eo, whenever [z — y|| < 6.

L P
‘= —minq 1, ———
=y My + 3r

andlet)\ngm’%g L Vn > Np.

Define

Also we have
[Zn+1 — Znll < Ananlzn — Azpll + Apbnlln — 1]
< A\ [an Mo + Oy ||y — 2| + Onl|z1 — 2]
3
<A [anMo + 29nr]
3
< y0[Mo + 57"]
<9,
which implies that

|Azpt1 — Azy || < eo.

Again since A is accretive, so

(Azni1,j(nga —27)) 2 0.
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Hence using the above estimates, equation ( 2.3) becomes

|zn+1 = 2*|* < llzn — 2|2 + 2Ananeoll@nit — 2| = 2Anbn]| 241 — 2|
+2A00n [an Mo + 0|20 — 27| + Onllz1 — 2*[] [2ns1 — 27|
+ 200 n 1 — 27 [[|lzn — 7.

Since ||xp41 — z*|| > ||z, — z*|| by our assumption,
* r 3
2Xn0n ||Tng1 — =¥ < 22X ame0 + 2/\n0n§ + 2/\%971 (ocho + 29nr)

where z, € B and 1 € Bz (). This implies that

« 3 r
|znsr — ¥ < e—neo + A (Mo + 7") +
n

2 2
<’I”+’F+T
-4 2 8
<r,

which is a contradiction of our assumption that z,+1 ¢ B. Hence, z,, € B for
all n > Ny, which implies that {z,}>° is bounded. O

Theorem 2.2. Let E be a real normed linear space and let A: E — E be a
uniformly continuous accretive operator with N(A) # ¢. Let x1 € E be fized
and {x,}52; be generated iteratively by

Tpt1 = Tn — Mp(anAzy + 0y (xy — 21)), n > 1, (2.4)
where {\n}22 1, {0,102, € (0,1) satisfy the conditions ( 2.1) of Theorem 2.1

n=1s
with Y 07y Apn, = 00. Then {x,}5, converges strongly to the unique element

z* € N(A).

Proof. The existence of a solution for the equation Ax = 0, for a continuous
accretive operator A follows from [13] and the uniqueness is obvious from the
definition of accretivity. Let z* be the unique solution and set

My = 2sup ||z — 2" ||[|[zn — 27,
n

My := 2sup{[|z, — Azn|| + 20 = z1[}[2ns1 — 27
n

and

Mj := 2sup [[#n41 — 27|
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Using ( 2.4) and Lemma 1.3 again, we have
[
< om = 22 = 2 nan{Azns1, (@1 — 7)) — Ponbullznss — 27
+ 2M00n (Tnt1 — T, J (Tng1 — 7)) + 22nbn (21 — 27, j(Tpg1 — 77))
+ 2 o (Axp 1 — Az, j(Tpge1 — 7))
<l = *1? = 2Mnbnllwnsr — 2 + 2Xnbnl|21 — 272041 — 27|
+ 220 0n[anlen — Azl + Onllwn — 21]]|@nsr — 27|
+ 2\ an || Axpy1 — Az ||||2ns1 — 27
Thus
i1 — 22 <lln — 22 = 2abnlns1 — 272 (2.5)
+ MM || Az sy — Az + N30, Mo + N, M.
Next we claim that inf{||zp4+1 — 2*||;n > 0} = 0. Let
inf{||zp41 — 2*|;n >0} =0 > 0.
Then we have,
|Xnt1 — 2| >0, Yn>0.
Also, since
|Znt1 — 2% Anfam||zn — Az || + On||zn, — 21]|]] — 0 as n — o0,

so that by uniform continuity of A, there exists Ny > 0 such that
52
|Azp g1 — Azy|| < A Vn> Ny

. Hence, for all n > Ny

|Zng1ll < [0 — 2> = 2000002 + Mud% 4+ X260, My + N, M
and

Mbnd? < (|lzn — %12 = [|zns1l]) + A (02 + M) + A26,, Mo,
that is,

n n n
02 it < (llzi — 2*|” = flwaral) + D Xi(6” + My + My),
i=1 i=1 i=1
which implies that > ; \;f; < co, which is a contradiction for Y ;" | \if; = oc.
Hence our claim is true. Thus, there exists a subsequence {xy;} of {z,} such
that lim, .o [|2n; — 2*|| = 0.



464 Niyati Gurudwan and B. K. Sharma

Let € > 0 be given. Since ||zp4+1 — 2| — 0 as n — oo and A is uniformly
continuous, we can choose an integer N7 > 0 such that Vn > Ny,

€
”Axn—i-l - Axn” < E

Now choose an integer No > N, such that ||z,, — 2| <€, ¥i> Na.
Fix i, > Ny. Then
|n, —2*|| <e.

We next claim that [[2n, ym — 2*|| <€, Vm = 1,2,---. We prove it by
induction on m. So we first show that ||z, +1 —2*|| < e. Suppose this is not
true. Then, [|z,, 11 —2*|| > €.

On the other hand, we have

2n1 = 2*[? <|zpsr — 2| = 2080|241 — 2*||?
+ M M3|| Az 1 — Axy|| + N260, Mo + A M;.
So that
T, +1 — z¥|? < |zn,. —a*| — 2AnOn€® + Mpe® 4+ N20, Mo + N\, M,
or
2200 €® < [|Zn—ar || — |Zn,—ar || + §€2)\n.

2
This implies that

n

n
2 3 9
2e ;/\nen < ([Jwn; -+ || ||xnj—ar*”) + 26 ;)‘n
< 00,
which is a contradiction. Hence, the claim holds for m = 1. Assume now it
holds for m = k. Following the similar arguments as above, we can show that
the claim holds for m = k 4+ 1 also. Hence it is true for all the values of m.

This implies that {x, } converges strongly to z* as n — oc. O

Remark 2.3. Our result modifies the corresponding results of [6, 7, 20] and
the references therein, to uniformly continuous accretive operators with weaker
conditions on the parameters. Also the results of [10, 9, 17] and many others
are extended to a more general reflexive Banach space.

Next we prove the strong convergence for pseudocontractive mappings.

Theorem 2.4. Let E be a real normed linear space and T : E — E be a
uniformly continuous pseudocontractive mapping such that
FT)={ze€E:Tx=uxa}# ¢.
Let x1 € E be fivred and {x,}2, be generated iteratively by
Tyl = (1 — Mpan)zn + Mn(anTxy — On (20 — 1)), n > 1, (2.6)



An iterative solution of a uniformly continuous accretive operator equation 465

where {\p,}22 1, {0n}22, € (0,1) satisfy the conditions ( 2.1) of Theorem 2.1
with > o2 1 Apbp = 00. Then {z, 152, converges strongly to some x* € F(T).

Proof. We first observe that T is pseudocontractive if and only A: =1 —T is
accretive [2]. Again, x* € Ky (| F(T) implies Tz = x, which again implies

Ax

= 0. Thus Kuyin[|N(A) # ¢. Clearly, T is also continuous. Hence,

replacing T by I — A in (2.4), then boundedness of {z,}5°,; follows from

Theorem 2.1 and rest of the result follows from Theorem 2.2. ]
REFERENCES
[1] Y. Alber and S. Reich, An iterative method for solving a class of nonlinear operator

2]
3]
[4]
[5]

[6]

[7]

equations in Banach spaces, PanAmer. Math. J., 4 (1994), 39-54.

F. E. Browder, Nonlinear mappings of nonexpansive and accretive type in Banach space,
Bull. Amer. Math. Soc., 73 (1967), 875-882.

F. E. Browder and W. V. Petryshyn, Construction of fized points of nonlinear mappings
in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197-228.

F. E. Browder, Nonlinear monotone and accretive operators in Banach space, Proc. Nat.
Acad. Sci. U.S.A., 61 (1968), 388-393.

R. E. Bruck, A strongly convergent solution of 0 € Uz for a mazimal monotone operator
U in Hilbert space, J. Math. Anal. Appl., 48 (1974), 114-126.

C. E. Chidume and C. O. Chidume, Convergence theorems for zeros of generalized
Lipschitz generalized ¢-quasi accretive operators, Proc. Amer. Math. Soc., 134 (2006),
243-251.

C. E. Chidume and E. U. Ofoedu, A new iteration process for gemeralized Lipschitz
pseudo-contractive and generalized Lipschitz accretive mappings, Nonlinear Anal. 67
(2007), 307-315.

C. E. Chidume and H. Zegeye, Global iterative schemes for accrteive operators, J. Math.
Anal. Appl., 257 (2001), 364-377.

C. E. Chidume and H. Zegeye, Approzimate fized point sequences and convergence the-
orems for Lipschitz pseudocontractive maps, Proc. Amer. Math. Soc., 132 (2004), 831—
840.

L. Ciric, A. Rafiq and N. Cakic, On Picard iterations for strongly accre-
tive and strongly pseudo-contractive Lipschitz mappings, Nonlinear Anal., (2008),
doi:10.1016/j.na.2008.10.001.

L. B. Ciric, J. S. Ume, S. N. Jeic and M. M. A. Milovanovic, Modified Ishikawa itera-
tion process for nonlinear Lipschitz generalized strongly pseudo-contractive operators in
arbitrary Banach spaces, Numer. Func. Anal. Opti., 28 (2007), 1231-1243.

W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506—
510.

R. H. Martin,Jr., A global eristence theorem for autonomous differential equations in
Banach spaces, Proc. Amer. Math. Soc., 26 (1970), 307-314.

O. Nevanlinna, Global iteration schemes for monotone operators, Nonlinear Anal., 3
(1979), 505-514.

W. V. Petryshyn, A characterization of strict convexity of Banach spaces and other uses
of duality mappings, J. Func. Anal., 6 (1970), 282—291.

S. Reich, [lterative methods for accretive sets: Linear spaces and approximation, Aca-
demic Press New York 1978, 317-326.



466
17)
18]
[19]

[20]

Niyati Gurudwan and B. K. Sharma

S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach
spaces, J. Math. Anal. Appl., 75 (1980), 287-292.

J. Schu, Approzimating fixed points of Lipschitzian pseudocontractive mappings, Hous-
ton J. Math., 19 (1993), 107-115.

N. Shioji and W. Takahashi, Strong convergence of approrimated sequences for nonex-
pansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125 (1997), 3641-3645.
Y. Song, A note on the paper ”A new iteration process for generalized Lipschitz pseudo-
contractive and generalized Lipschitz accretive mappings”, Nonlinear Anal., 68 (2008),
3047-3049.

W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory and Applications,
Yokohama Pub., Yokohama, 2000.

E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II. Monotone Op-
erators, SpringerVerlag Berlin-New York, 1985.



