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Abstract. A new concept of the c-distance in cone metric space has been introduced

recently in 2011. In this paper, we prove some fixed point theorems for different type of

T -contractive conditions under c-distance in cone metric spaces. Our result improves and

generalizes several well-known results in literature.

1. Introduction

The famous Banach contraction principle is the first important result on
fixed points for contractive type mappings. There are many generalizations
of Banach’s contraction mapping principle in the literature. The concept of a
cone metric space was introduced in the work of Huang and Zhang [12] which
is more general than the concept of a metric space. They introduced cone
metric space without c-distance.
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Recently, Cho et al. [2] introduced the concept of c-distance in a cone metric
spaces and proved some fixed point theorems in ordered cone metric spaces.
Then several authors have proved fixed point theorems for c-distance in cone
metric spaces (see [6, 7, 8, 9, 10, 11, 14, 15] and [16]). In 2009, Beiranvand
et al.[1] introduced new classes of contractive functions and established the
Banach contraction principle. Since then, fixed point theorems for different
classes of mappings on cone metric spaces have been appeared, see for instance
[3], [4] and [5].

In this paper, we prove the existence of a unique fixed point for T -contractive
mapping under the concept of c-distance in the setting of complete cone metric
spaces. Throughout this paper, we do not impose the normality condition for
the cones, but the only assumption is that the cone P is solid, that is intP 6= φ.

2. Preliminaries

Let E be a real Banach space and θ denote to the zero element in E. A
cone P is a subset of E such that:

(1) P is a nonempty, closed and P 6= {θ};
(2) If a, b are non-negative real numbers and x, y ∈ P then ax+ by ∈ P ;
(3) x ∈ P and −x ∈ P ⇒ x = θ.

Given a cone P ⊆ E, we define a partial ordering � with respect to P by
x � y if and only if y − x ∈ P , we write x ≺ y to indicate that x � y but
x 6= y, while x � y will stand for y − x ∈ intP , intP denotes the interior of
P .

A cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E, θ � x � y implies ||x|| ≤ K||y||. The least positive number K
satisfying above is called the normal constant of P .

In the following we always suppose that E is a Banach space, P is a cone
in E with intP 6= φ and � is partial ordering with respect to P .

Definition 2.1. ([12]) Let X be a nonempty set and E be a real Banach space
equipped with the partial ordering � with respect to the cone P . Suppose that
the mapping d : X ×X → E satisfies the following conditions:

(i) If θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X ;

(iii) d(x, y) � d(x, z) + d(y, z) for all x, y, z ∈ X.

Then d is called a cone metric on X and (X, d) is called a cone metric space.

Example 2.2. Let E = R2, where R is a set of real numbers and P = {(x, y) ∈
E : x, y ≥ 0} ⊂ R2, X = R2 and suppose that d : X ×X → E is defined by
d(x, y) = d((x1, x2), (y1, y2)) = (|x1−y1|+|x2−y2|, αmax{|x1−y1|, |x2−y2|}),
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where α ≥ 0 is a constant. Then (X, d) is a cone metric space. It is easy to
see that d is a cone metric, and hence (X, d) becomes a cone metric space over
(E,P ). Also, we have P is a solid and normal cone where the normal constant
K = 1.

Definition 2.3. ([12]) Let (X, d) be a cone metric space, let {xn} be a se-
quence in X and x ∈ X:

(1) The sequence {xn} is said to be convergent to x, if for all c ∈ E with
θ � c, there exists a positive integer N such that d(xn, x)� c for all
n > N . In this case, we denote limn→∞ xn = x or xn → x as n→∞.

(2) The sequence {xn} is called Cauchy in X, if for all c ∈ E with
θ � c, there exists a positive integer N such that for all n,m > N ,
d(xn, xm)� c.

(3) (X, d) is called a complete cone metric space, if every Cauchy sequence
in X is convergent in X.

The following lemma is useful to prove our results.

Lemma 2.4. ([13])

(1) If E be a real Banach space with a cone P and a � λa where a ∈ P
and 0 ≤ λ < 1, then a = θ.

(2) If c ∈ intP , θ � an and an → θ, then there exists a positive integer N
such that an � c for all n ≥ N .

Next, we give the notion of c-distance on a cone metric space (X, d) of Cho
et al. in [2].

Definition 2.5. Let (X, d) be a cone metric space. A function q : X×X → E
is called a c-distance on X if the following conditions hold:

(q1) θ � q(x, y) for all x, y ∈ X,
(q2) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X,
(q3) for each x ∈ X and n ≥ 1 if q(x, yn) � u for some u = ux ∈ P , then

q(x, y) � u whenever {yn} is a sequence in X converging to a point
y ∈ X,

(q4) for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that
q(z, x)� e and q(z, y)� e imply d(x, y)� c.

Example 2.6. ([2]) Let E = R and P = {x ∈ E : x ≥ 0}, X = [0,∞) and a
mapping d : X×X → E be defined by d(x, y) = |x−y|, for all x, y ∈ X. Then
(X, d) is a cone metric space. Define a mapping q : X×X → E by q(x, y) = y
for all x, y ∈ X. Then q is a c-distance on X.



130 A. K. Dubey, M. Kasar and U. Mishra

Example 2.7. ([9, 10]) Let E = R2 and P = {(x, y) ∈ E : x, y ≥ 0}. Let X =
[0, 1] and a mapping d : X×X → E be defined by d(x, y) = (|x−y|, |x−y|), for
all x, y ∈ X. Then (X, d) is a complete cone metric space. Define a mapping
q : X ×X → E by q(x, y) = (y, y) for all x, y ∈ X. Then q is a c-distance on
X.

The following lemma is very important to prove our results.

Lemma 2.8. ([2]) Let (X, d) be a cone metric space and q be a c-distance on
X. Let {xn} and {yn} be sequences in X and x, y, z ∈ X. Suppose that {un}
is a sequence in P converging to θ. Then the following hold:

(1) If q(xn, y) � un and q(xn, z) � un, then y = z.
(2) If q(xn, yn) � un and q(xn, z) � un, then {yn} converges to z.
(3) If q(xn, xm) � un for m > n, then {xn} is a Cauchy sequence in X.
(4) If q(y, xn) � un, then {xn} is a Cauchy sequence in X.

Remark 2.9. ([2])

(1) q(x, y) = q(y, x) does not necessarily for all x, y ∈ X.
(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Next definition taken from [1]:

Definition 2.10. Let (X, d) be a cone metric space, P a solid cone and
T : X → X. Then

(a) T is said to be continuous if limn→∞ xn = x∗ implies that limn→∞ Txn =
Tx∗ for all {xn} in X,

(b) T is said to be sequentially convergent if for every sequence {xn},
{Txn} is convergent, then {xn} is also convergent,

(c) T is said to be subsequentially convergent if for every sequence {xn},
{Txn} is convergent, then {xn} has a convergent subsequence.

3. Main Results

Now we are ready to state and prove our main results.

Theorem 3.1. Let (X, d) be a complete cone metric space, P a solid cone
and q be a c-distance on X. In addition let T : X → X be an one to one,
continuous and subsequentially convergent function and f : X → X be a
mapping satisfies the contractive condition:

q(Tfx, Tfy) � a1q(Tx, Ty) + a2q(Tx, Tfx) + a3q(Ty, Tfy)

+a4[q(Tfx, Ty) + q(Tfy, Tx)]

for all x, y ∈ X, where a1, a2, a3, a4 are non-negative real numbers such that
a1 + a2 + a3 + 2a4 < 1. Then, f has a unique fixed point x∗ ∈ X and for any
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x ∈ X, iterative sequence {fnx} converges to the fixed point. If u = fu then
q(Tu, Tu) = θ.

Proof. Choose x0 ∈ X. Set x1 = fx0, x2 = fx1 = f2x0, ..., xn+1 = fxn =
fn+1x0. Then we have

q(Txn, Txn+1) = q(Tfxn−1, Tfxn)

� a1q(Txn−1, Txn) + a2q(Txn−1, T fxn−1)

+ a3q(Txn, T fxn) + a4[q(Tfxn−1, Txn) + q(Tfxn, Txn−1)]

= a1q(Txn−1, Txn) + a2q(Txn−1, Txn) + a3q(Txn, Txn+1)

+ a4q(Txn+1, Txn−1)

� a1q(Txn−1, Txn) + a2q(Txn−1, Txn) + a3q(Txn, Txn+1)

+ a4[q(Txn−1, Txn) + q(Txn, Txn+1)].

So,

q(Txn, Txn+1) �
a1 + a2 + a4
1− a3 − a4

q(Txn−1, Txn)

= hq(Txn−1, Txn),

� h2q(Txn−2, Txn−1)
...

� hnq(Tx0, Tx1),

where h = a1+a2+a4
1−a3−a4 < 1. Note that,

q(Tfxn−1, Tfxn) = q(Txn, Txn+1) � hq(Txn−1, Txn). (3.1)

Let m > n ≥ 1. Then it follows that,

q(Txn, Txm) � q(Txn, Txn+1) + q(Txn+1, Txn+2) + · · ·+ q(Txm−1, Txm)

� (hn + hn+1 + · · ·+ hm−1)q(Tx0, Tx1)

�
( hn

1− h

)
q(Tx0, Tx1)→ θ as n→∞.

Thus, Lemma 2.8(3) shows that {Txn} is a Cauchy sequence in X. Since X
is complete, there exists v ∈ X such that Txn → v as n → ∞. Since T is
subsequentially convergent, {xn} has a convergent subsequence. So, there are
x∗ ∈ X and {xni} such that xni → x∗ as i → ∞. Since T is continuous, we
obtain limTxni = Tx∗. The uniqueness of the limit implies that Tx∗ = v.
Then by (q3), we have

q(Txn, Tx
∗) �

( kn

1− k

)
q(Tx0, Tx1). (3.2)
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Now by (3.1), we have

q(Txn, T fx
∗) = q(Tfxn−1, T fx

∗)

� hq(Txn−1, Tx∗)

� h
( kn−1

1− k

)
q(Tx0, Tx1)

=
( hn

1− h

)
q(Tx0, Tx1).

(3.3)

By Lemma 2.8(1), (3.2) and (3.3), we have Tx∗ = Tfx∗. Since T is one to
one, x∗ = fx∗. Thus, x∗ is a fixed point of f . Suppose that u = fu, then we
have

q(Tu, Tu) = q(Tfu, Tfu)

� a1q(Tu, Tu) + a2q(Tu, Tfu) + a3q(Tu, Tfu)

+ a4[q(Tfu, Tu) + q(Tfu, Tu)]

= a1q(Tu, Tu) + a2q(Tu, Tu) + a3q(Tu, Tu)

+ a4[q(Tu, Tu) + q(Tu, Tu)]

= (a1 + a2 + a3 + 2a4)q(Tu, Tu).

Since a1 + a2 + a3 + 2a4 < 1, Lemma 2.4(1) shows that q(Tu, Tu) = θ.
Finally, suppose there is another fixed point y∗ of f , then we have

q(Tx∗, T y∗) = q(Tfx∗, T fy∗)

� a1q(Tx∗, Ty∗) + a2q(Tx
∗, T fx∗) + a3q(Ty

∗, Tfy∗)

+ a4[q(Tfx
∗, T y∗) + q(Tfy∗, Tx∗)]

= a1q(x
∗, y∗) + a2q(x

∗, x∗) + a3q(y
∗, y∗)

+ a4[q(x
∗, y∗) + q(y∗, x∗)]

= a1q(Tx
∗, Ty∗) + 2a4q(Tx

∗, T y∗)

� a1q(Tx∗, T y∗) + a2q(Tx
∗, Ty∗) + a3q(Tx

∗, T y∗)

+ 2a4q(Tx
∗, T y∗)

= (a1 + a2 + a3 + 2a4)q(Tx
∗, Ty∗).

Since a1 + a2 + a3 + 2a4 < 1, Lemma 2.4(1) shows that q(Tx∗, T y∗) = θ. Also
we have q(Tx∗, Tx∗) = θ. Thus, Lemma 2.8(1), Tx∗ = Ty∗. Since T is one to
one, x∗ = fx∗. Therefore the fixed point is unique. �

Remark 3.2. Put a4 = 0 in Theorem 3.1, we get the result of Fadail et al.
[11].

Now, from Theorem 3.1, we get the following corollaries.
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Corollary 3.3. Let (X, d) be a complete cone metric space, P be a solid
cone and q be a c-distance on X. In addition let T : X → X be an one to
one, continuous and subsequentially convergent function and f : X → X be a
mapping satisfies the contractive condition:

q(Tfx, Tfy) � a1q(Tx, Ty)

for all x, y ∈ X, where a1 ∈ [0, 1). Then, f has a unique fixed point x∗ ∈ X
and for any x ∈ X, iterative sequence {fnx} converges to the fixed point. If
u = fu then q(Tu, Tu) = θ.

Proof. Put a2 = a3 = a4 = 0 in Theorem 3.1, we get the required result. �

Corollary 3.4. Let (X, d) be a complete cone metric space, P be a solid cone
and q be a c-distance on X. In addition let T : X → X be an one to one,
continuous‘ and subsequentially convergent function and f : X → X be a
mapping satisfies the contractive condition

q(Tfx, Tfy) � a2q(Tx, Tfx) + a3q(Ty, Tfy),

for all x, y ∈ X, where a2, a3 ∈ [0, 1) are constants such that a2 + a3 < 1.
Then f has a unique fixed point x∗ ∈ X and for any x ∈ X, iterative sequence
{fnx} converges to the fixed point. If u = fu then q(Tu, Tu) = θ.

Proof. Put a1 = a4 = 0 in Theorem 3.1, we get the result of Corollary 3.4. �

Remark 3.5. If we take Tx = x in Theorem 3.1, we get the result of Dubey
et al. [6].

Theorem 3.6. Let (X, d) be a complete cone metric space, P be a solid cone
and q be a c-distance on X. In addition let T : X → X be an one to one,
continuous and subsequentially convergent function and f : X → X be a
mapping satisfies the contractive condition

q(Tfx, Tfy) � a1q(Tx, Ty) + a2[q(Tx, Tfy) + q(Ty, Tfx)]

+a3[q(Tx, Tfx) + q(Ty, Tfy)]

for all x, y ∈ X, where a1, a2, a3 are non-negative real numbers such that
a1 + 2a2 + 2a3 < 1. Then, f has a unique fixed point x∗ ∈ X and for any
x ∈ X, iterative sequence {fnx} converges to the fixed point. If u = fu then
q(Tu, Tu) = θ.

Proof. Proof of this theorem is same as Theorem 3.1. �
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