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Abstract. An essential numerical method for solving ordinary differential and differential

algebraic equations is the implicit midpoint rule. Comparing the rate of convergence of the

implicit midpoint rules by using numerical examples is common in the literatures. Under

suitable conditions imposed on the control parameters, it is shown in this paper that certain

two implicit iterative sequences converge to the same fixed point of a nonexpansive mapping

in uniformly smooth Banach spaces. Moreover, analytical comparison for the rate of con-

vergence of the implicit iterative sequences to a fixed point of a nonexpansive mapping in

uniformly smooth Banach spaces is presented. The implicit iterative sequence which con-

verges faster is determined by an analytical method which is more general than the numerical

methods.

1. Introduction

In 2000, Moudafi [11] introduced a well-known iterative method known as
the viscosity approximation method for approximating fixed points of a non-
expansive mapping. Later in 2004, Xu [20] applied a technique which uses
(strict) contractions to regularize a nonexpansive mapping for the purpose of
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selecting a particular fixed point of the nonexpansive mapping and studied the
sequence

xn+1 = αnf(xn) + (1− αn)Txn, n ∈ N, (1.1)

where f is a contraction on K and the nonexpansive mapping T : K → K
is also defined on K, which is a nonempty closed convex subset of a real
Hilbert space H. Xu [20] showed that under suitable conditions imposed on
the parameters, the iterative sequence {xn}∞n=1 generated by (1.1), converges
strongly to a fixed point p of a nonexpansive mapping T in Hilbert spaces that
also solves the following variational inequality

〈(I − f)p, x− p〉 ≥ 0, ∀ x ∈ F (T ), (1.2)

where F (T ) is the set of fixed points of mapping T .
Recently, Xu et al. [22] introduced the implicit midpoint procedure

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ∈ N, (1.3)

where f is a contraction and T is a nonexpansive mapping. They proved a
strong convergence theorem for the sequence {xn}∞n=1 to a fixed point p of T
which also solves the variational inequality (1.2) in Hilbert spaces. Yao et al.
[24] extended the work of Xu et al. [22] and considered the implicit midpoint
sequence

xn+1 = αnf(xn) + βnxn + γnT

(
xn + xn+1

2

)
, n ∈ N, (1.4)

where T and f are as defined in (1.1) and αn+βn+γn = 1 for all n ∈ N. Under
certain conditions on the parameters, they obtained that the sequence {xn}∞n=1
generated by (1.4) converges strongly to p = PF (T )f(p). In other words, the

sequence {xn}∞n=1 generated by (1.4) converges in norm to a fixed point p of
T, which is also the unique solution of the variational inequality (1.2). Luo
et al. [9] studied the convergence of the sequence (1.3) in uniformly smooth
Banach spaces. Furthermore, they used a numerical example to compare the
rate of convergence of the sequences (1.1) and (1.3). Also, in uniformly smooth
Banach spaces, numerical methods were used by Aibinu et al. [1] to compare
the rate of convergence of the iteration procedures (1.3), (1.4) and

xn+1 = (1− αn)xn + αnT

(
xn + xn+1

2

)
, n ∈ N, (1.5)

where T is a nonexpansive mapping and {αn}∞n=1 ⊂ (0, 1), introduced by
Alghamdi et al. [3] in 2014. Ke and Ma [8] chose {δn}∞n=1 ⊂ (0, 1) and
generalized the viscosity implicit midpoint rules of Xu et al. [22] and Yao et
al. [24] to the two viscosity implicit rules

xn+1 = αnf(xn) + (1− αn)T (δnxn + (1− δn)xn+1) , n ∈ N, (1.6)
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and

yn+1 = αnf(yn) + βnyn + γnT (δnyn + (1− δn)yn+1) , n ∈ N, (1.7)

where {αn}∞n=1 , {βn}
∞
n=1 , {γn}

∞
n=1 ⊂ [0, 1] with αn+βn+γn = 1. It was shown

that the sequences generated by (1.6) and (1.7) converge strongly to a fixed
point p of the nonexpansive mapping T, which solves the variational inequal-
ity (1.2). Extension of the main results of Ke and Ma [8] from Hilbert spaces
to uniformly smooth Banach spaces was considered by Yan et al. [23]. Aib-
inu and Kim [2] recently studied the viscosity implicit iterative algorithms for
nonexpansive mappings in Banach spaces (see also [17], [18]). Suitable condi-
tions were imposed on the control parameters to prove a strong convergence
theorem for the considered iterative sequence. Then, the following questions
arise are of interest for the consideration in this paper:

Question 1.1. Do the sequences (1.6) and (1.7) always converge to the same
fixed point of a nonexpansive mapping?

Question 1.2. Can one give an analytical proof, which is more general than
numerical examples to show which sequence converges faster between (1.6) and
(1.7)?

In this paper, an affirmative answers are given to those questions raised
above. Under suitable conditions imposed on the control parameters, the
analytical proof is given to show that the two sequences converge to the same
fixed point of a nonexpansive mapping. Moreover, it is shown analytically
that the sequence (1.7) converges faster than (1.6) in approximating a fixed
point of a nonexpansive mapping.

2. Preliminaries

A normed linear space E is said to be uniformly smooth whenever given
ε > 0 there exists δ > 0 such that for all x, y ∈ E with ‖x‖ = 1 and ‖y‖ ≤ δ,
then

‖x+ y‖+ ‖x− y‖ < 2 + ε‖y‖.
Let K be a nonempty closed convex subset of a real Banach space E and

T be a self-mapping of K. The set of fixed points of T will be denoted by
F (T ) := {p ∈ K : Tp = p} . Recall that T : K → K is said to be L-Lipschitzian
if there exists a constant L > 0 such that for all x, y ∈ K,

‖Tx− Ty‖ ≤ L‖x− y‖.

If 0 < L < 1, then T is a contraction and it called nonexpansive mapping if
L = 1.
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Definition 2.1. ([4]) Let {un}∞n=1 and {vn}∞n=1 be two sequences of real num-
bers that converge to u and v respectively, and assume that

l = lim
n→∞

|un − u|
|vn − v|

exist. (2.1)

(i) The sequence {un}∞n=1 is said to be convergent faster to u than {vn}∞n=1
to v, if l = 0.

(ii) The sequences {un}∞n=1 and {vn}∞n=1 are said to have the same conver-
gence rate, if 0 < l <∞.

(iii) The sequence {vn}∞n=1 is said to be convergent faster to v than {un}∞n=1
to u.

Definition 2.2. ([4]) Let {xn}∞n=1 and {yn}∞n=1 be two fixed point iteration
procedures that converge to the same fixed point p on a normed space X such
that the error estimates

‖xn − p‖ ≤ un, n ∈ N (2.2)

and

‖yn − p‖ ≤ vn, n ∈ N (2.3)

are available, where {un}∞n=1 and {vn}∞n=1 are two null sequences of positive
numbers (that is, sequences of positive numbers that have zero as their limit).
The sequence {xn}∞n=1 is said to be convergent faster to p than {yn}∞n=1 , if
{un}∞n=1 converges faster than {vn}∞n=1 .

The following lemma will also be needed in the sequel.

Lemma 2.3. ([21]) Assume {an}∞n=1 is a sequence of nonnegative real numbers
such that

an+1 = (1− σn)an + σnδn, n > 0,

where {σn}∞n=1 is a sequence in (0, 1) and {δn}∞n=1 is a real sequence such that

(i)
∞∑
n=1

σn =∞,

(ii) lim sup
n→∞

δn ≤ 0 or

∞∑
n=1

σn|δn| <∞.

Then lim
n→∞

an = 0.



On the rate of convergence of viscosity implicit iterative algorithms 139

3. Main Results

3.1. Analytical analysis for the convergence of sequences (1.6) and
(1.7) to the same fixed point of a nonexpansive mapping.

Here, the analytical proof is given to ascertain that the implicit iterative
sequences (1.6) and (1.7) converge to the same fixed point of a nonexpansive
mapping in uniformly smooth Banach spaces.

Theorem 3.1. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E, T be a nonexpansive self-mapping defined on K
with F (T ) 6= ∅ and f : K → K, be a c-contraction mapping. Suppose that
{αn}∞n=1 , {βn}

∞
n=1 and {γn}∞n=1 are sequences in [0, 1] with

(a) αn + βn + γn = 1;

(b)

∞∑
n=1

αn =∞;

(c) lim
n→∞

βn
αn

= 0.

Then (1.7) converges in norm to p if and only if (1.6) converges in norm to p.

Proof. It is shown that the implicit iterative sequences (1.6) and (1.7) converge
to the same fixed point of a nonexpansive mapping T.

‖yn+1 − xn+1‖ = ||αnf(yn) + βnyn + γnT (δnyn + (1− δn)yn+1)

− (αnf(xn) + (1− αn)T (δnxn + (1− δn)xn+1)) ||
= ||αn(f(yn)− f(xn)) + βn(yn − T (δnxn + (1− δn)xn+1))

+ γn (T (δnyn + (1− δn)yn+1)− T (δnxn + (1− δn)xn+1)) ||
≤ αn||f(yn)− f(xn)||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+ γn ‖T (δnyn + (1− δn)yn+1)− T (δnxn + (1− δn)xn+1)‖
≤ cαn||yn − xn||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+ γn ‖δn(yn − xn) + (1− δn)(yn+1 − xn+1)‖
≤ cαn||yn − xn||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+ γnδn‖yn − xn‖+ γn(1− δn)‖yn+1 − xn+1‖
≤ (cαn + γnδn)||yn − xn||+ βn ‖yn − T (δnxn + (1− δn)xn+1)‖

+ γn(1− δn)‖yn+1 − xn+1‖.
Note that {yn}∞n=1 and {T (δnxn + (1− δn)xn+1)}∞n=1 are bounded [23], let

M := sup
n
‖yn − T (δnxn + (1− δn)xn+1)‖ .

Then we have
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‖yn+1 − xn+1‖

≤ cαn + γnδn
1− γn(1− δn)

||yn − xn||+
βn

1− γn(1− δn)
M

= 1 +
cαn − (1− γn)

1− γn(1− δn)
||yn − xn||+

βn
1− γn(1− δn)

M

= 1 +
−βn − (1− c)αn
1− γn(1− δn)

||yn − xn||+
βn

1− γn(1− δn)
M

=

(
1− (1− c)αn + βn

1− γn(1− δn)

)
||yn − xn||+

βn
1− γn(1− δn)

M

≤
(

1− (1− c)αn
1− γn(1− δn)

)
||yn − xn||+

βn
1− γn(1− δn)

M

=

(
1− (1− c)αn

1− γn(1− δn)

)
||yn − xn||+

(1− c)αn
1− γn(1− δn)

βn
(1− c)αn

M

= (1− σn)||yn − xn||+
βn

(1− c)αn
σnM, (3.1)

where σn = (1−c)αn

1−γn(1−δn) . Notice that lim sup
n→∞

βn
αn
≤ 0. Then, we can apply

Lemma 2.3 to (3.1) in order to deduce that ||yn − xn|| → 0 as n→∞.
Furthermore, suppose ||xn − p|| → 0 as n→∞, we have that

||yn − p|| = ||yn − xn + xn − p||
≤ ||yn − xn||+ ||xn − p||
→ 0 as n→∞.

Similarly, suppose ||yn − p|| → 0 as n→∞, it is obtained that

||xn − p|| = ||xn − yn + yn − p||
≤ ||xn − yn||+ ||yn − p||
→ 0 as n→∞.

This completes the proof. �

3.2. Comparison of the rate of convergence

The terminologies and definitions of Berinde [4] will be adopted and the
methodology used in Ding et al. [7] and Olaleru ([12], [13], [14]), Yildirim and
Abbas [25] will be applied to compare the rate of convergence of the iterative
sequences (1.6) and (1.7).

The next result deals with the rate of convergence of implicit iterative se-
quences.
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Theorem 3.2. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E, T be a nonexpansive self-mapping defined on K with
F (T ) 6= ∅ and f : K → K be a c-contraction mapping. Let {δn}∞n=1 ⊂ (0, 1)
and {αn}∞n=1 , {βn}

∞
n=1 , {γn}

∞
n=1 ⊂ [0, 1] be real sequences which satisfy the

following conditions:

(i) αn + βn + γn = 1,

(ii) lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,

(iii) lim
n→∞

|βn+1 − βn| = 0, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.

Then for arbitrary x1, y1 ∈ K with x1 = y1, the iterative sequence (1.7) con-
verges faster than (1.6).

Proof. Suppose p ∈ F (T ), it can be obtained from the iterative scheme (1.6)
that

‖xn+1 − p‖ = ||αn (f(xn)− p) + (1− αn) (T (δnxn + (1− δn)xn+1)− p) ||
= ||αn (f(xn)− f(p)) + αn (f(p)− p)

+ (1− αn) (T (δnxn + (1− δn)xn+1)− p) ||
≤ αn||f(xn)− f(p)||+ αn||f(p)− p||

+ (1− αn)||T (δnxn + (1− δn)xn+1)− p||
≤ cαn||xn − p||+ αn||f(p)− p||

+ (1− αn)||δnxn + (1− δn)xn+1 − p||
≤ cαn||xn − p||+ αn||f(p)− p||

+ (1− αn)[δn||xn − p||+ (1− δn)||xn+1 − p||]
= (cαn + δn(1− αn))||xn − p||

+ αn||f(p)− p||+ (1− αn)(1− δn)||xn+1 − p||.

This leads to

[1− (1− αn)(1− δn)]||xn+1 − p|| ≤ (cαn + δn(1− αn)) ||xn − p||
+ αn||f(p)− p||.

Equivalently,
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||xn+1 − p|| ≤
cαn + δn(1− αn)

1− (1− αn)(1− δn)
||xn − p||

+
αn

1− (1− αn)(1− δn)
||f(p)− p||

≤ cαn + (1− αn)

1− (1− αn)(1− δn)
||xn − p||

+
αn

1− (1− αn)(1− δn)
||f(p)− p||

=
1− (1− c)αn

1− (1− αn)(1− δn)
||xn − p||

+
αn

1− (1− αn)(1− δn)
||f(p)− p||. (3.2)

Then from (3.2), we obtain that

||xn+1 − p|| ≤
1

1− (1− αn)(1− δn)
||xn − p||

+
αn

1− (1− αn)(1− δn)
||f(p)− p||

≤ 1

1− (1− αn)(1− δn)
[

1− (1− c)αn−1
1− (1− αn−1)(1− δn−1)

||xn−1 − p||

+
αn−1

1− (1− αn−1)(1− δn−1)
||f(p)− p|| ]

+
αn

1− (1− αn)(1− δn)
||f(p)− p||

=
1− (1− c)αn−1

n∏
j=n−1

(1− (1− αj)(1− δj))
||xn−1 − p||

+
αn−1

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

+
αn

1− (1− αn)(1− δn)
||f(p)− p||.

Since {αn}∞n=1 and {δn}∞n=1 are in (0, 1), we have

n−1∏
j=1

(1− (1− αj)(1− δj)) ≥
n∏
j=1

(1− (1− αj)(1− δj)) > 0.

Then, we obtain
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||xn+1 − p||

≤ 1− (1− c)αn−1
n∏

j=n−1
(1− (1− αj)(1− δj))

||xn−1 − p||

+

n∑
j=n−1

αj

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

≤ 1
n∏

j=n−1
(1− (1− αj)(1− δj))

||xn−1 − p||

+

n∑
j=n−1

αj

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

≤ 1
n∏

j=n−1
(1− (1− αj)(1− δj))

[
1− (1− c)αn−2

1− (1− αn−2)(1− δn−2)
||xn−2 − p||

+
αn−2

1− (1− αn−2)(1− δn−2)
||f(p)− p|| ]

+

n∑
j=n−1

αj

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

=
1− (1− c)αn−2

n∏
j=n−2

(1− (1− αj)(1− δj))
||xn−2 − p||

+
αn−2

n∏
j=n−2

(1− (1− αj)(1− δj))
||f(p)− p||
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+

n∑
j=n−1

αj

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

≤ 1
n∏

j=n−1
(1− (1− αj)(1− δj))

[
1− (1− c)αn−2

1− (1− αn−2)(1− δn−2)
||xn−2 − p||

+
αn−2

1− (1− αn−2)(1− δn−2)
||f(p)− p|| ]

+

n∑
j=n−1

αj

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

=
1− (1− c)αn−2

n∏
j=n−2

(1− (1− αj)(1− δj))
||xn−2 − p||

+
αn−2

n∏
j=n−2

(1− (1− αj)(1− δj))
||f(p)− p||

+

n∑
j=n−1

αj

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

=
1− (1− c)αn−2

n∏
j=n−2

(1− (1− αj)(1− δj))
||xn−2 − p||

+

n∑
j=n−2

αj

n∏
j=n−2

(1− (1− αj)(1− δj))
||f(p)− p||.
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Hence, by induction, we have

||xn+1 − p|| ≤
1− (1− c)α1

n∏
j=1

(1− (1− αj)(1− δj))
||x1 − p||

+

n∑
j=1

αj

n∏
j=1

(1− (1− αj)(1− δj))
||f(p)− p||. (3.3)

From (1.7), we have that

‖yn+1 − p‖
= ||αn (f(yn)− p) + βn(yn − p) + γn (T (δnyn + (1− δn)yn+1)− p) ||
= ||αn (f(yn)− f(p)) + αn (f(p)− p) + βn(yn − p)

+ γn (T (δnyn + (1− δn)yn+1)− p) ||
≤ αn||f(yn)− f(p)||+ αn||f(p)− p||+ βn||yn − p||

+ γn||T (δnyn + (1− δn)yn+1)− p||
≤ cαn||yn − p||+ αn||f(p)− p||+ βn||yn − p||

+ γn||δnyn + (1− δn)yn+1 − p||
≤ (cαn + βn)||yn − p||+ αn||f(p)− p||+ γn[δn||yn − p||

+ (1− δn)||yn+1 − p||]
= (cαn + βn + γnδn)||yn − p||+ αn||f(p)− p||

+ γn(1− δn)||yn+1 − p||.

This leads to

[1− γn(1− δn)]||yn+1 − p|| ≤ (cαn + βn + γnδn) ||yn − p||+ αn||f(p)− p||.

From αn + βn + γn = 1, we obtain that
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||yn+1 − p|| ≤
cαn + βn + γnδn
1− γn(1− δn)

||yn − p||+
αn

1− γn(1− δn)
||f(p)− p||

=
cαn + (1− αn − γn) + γnδn
1− (1− αn − βn)(1− δn)

||yn − p||

+
αn

1− (1− αn − βn)(1− δn)
||f(p)− p||

=
1− (1− c)αn − γn(1− δn)

1− (1− αn)(1− δn) + βn(1− δn)
||yn − p||

+
αn

1− (1− αn)(1− δn) + βn(1− δn)
||f(p)− p||

=
1− (1− c)αn − γn(1− δn)

1− (1− αn)(1− δn) + βn(1− δn)
||yn − p||

+
αn

1− (1− αn)(1− δn) + βn(1− δn)
||f(p)− p||

≤ 1− (1− c)αn − γn(1− δn)

1− (1− αn)(1− δn)
||yn − p||

+
αn

1− (1− αn)(1− δn)
||f(p)− p||. (3.4)

Clearly, it follows from (3.4) that

||xn+1 − p||

≤ 1

1− (1− αn)(1− δn)
||yn − p||+

αn
1− (1− αn)(1− δn)

||f(p)− p||

≤ 1

1− (1− αn)(1− δn)
[
1− (1− c)αn−1 − γn−1(1− δn−1)

1− (1− αn−1)(1− δn−1)
||yn−1 − p||

+
αn−1

1− (1− αn−1)(1− δn−1)
||f(p)− p|| ]

+
αn

1− (1− αn)(1− δn)
||f(p)− p||

=
1− (1− c)αn−1 − γn−1(1− δn−1)

n∏
j=n−1

(1− (1− αj)(1− δj))
||yn−1 − p||

+
αn−1

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||

+
αn

1− (1− αn)(1− δn)
||f(p)− p||.
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Since {αn} , {δn} ⊂ (0, 1). we know that

n−1∏
j=1

(1− (1− αj)(1− δj)) ≥
n∏
j=1

(1− (1− αj)(1− δj)) > 0.

Therefore, we have

||yn+1 − p|| ≤
1− (1− c)αn−1 − γn−1(1− δn−1)

n∏
j=n−1

(1− (1− αj)(1− δj))
||yn−1 − p||

+

n∑
j=n−1

αj

n∏
j=n−1

(1− (1− αj)(1− δj))
||f(p)− p||.

Hence, in a similar manner to (3.3) and by induction,

||yn+1 − p|| ≤
1− (1− c)α1 − γ1(1− δ1)
n∏
j=1

(1− (1− αj)(1− δj))
||y1 − p||

+

n∑
j=1

αj

n∏
j=1

(1− (1− αj)(1− δj))
||f(p)− p||. (3.5)

Since γ1(1− δ1) > 0, 0 < 1− (1− c)α1 − γ1(1− δ1) < 1− (1− c)α1. Hence

1− (1− c)α1 − γ1(1− δ1)
1− (1− αj)(1− δj)

<
1− (1− c)α1

1− (1− αj)(1− δj)
,

it implies that for all n > 0,

1− (1− c)α1 − γ1(1− δ1)
(1− (1− αj)(1− δj))n

<
1− (1− c)α1

(1− (1− αj)(1− δj))n
.

Let for all n > 0,

un =
1− (1− c)α1

n∏
j=1

(1− (1− αj)(1− δj))
≥ 0
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and

vn =
1− (1− c)α1 − γ1(1− δ1)
n∏
j=1

(1− (1− αj)(1− δj))
≥ 0.

Then we have

lim
n→∞

vn
un

= 0.

It follows from (3.3), (3.5) and Definition 2.2 that the iterative scheme (1.7)
converges faster than (1.6). �

In view of Theorems 3.1 and 3.2, the following results hold.

Corollary 3.3. Let K be a nonempty closed convex subset of a uniformly
smooth Banach space E, T be a nonexpansive self-mapping defined on K with
F (T ) 6= ∅ and f : K → K be a c-contraction mapping. Let {αn}∞n=1 , {βn}

∞
n=1

and {γn}∞n=1 be real sequences in [0, 1] which satisfy the following conditions:

(i) αn + βn + γn = 1,

(ii) lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,

(iii) lim
n→∞

|βn+1 − βn| = 0, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

Then for arbitrary x1, y1 ∈ K with x1 = y1, the iterative sequence (1.4), given
by

xn+1 = αnf(xn) + βnxn + γnT

(
xn + xn+1

2

)
, n ∈ N,

converges faster than (1.3), given by

xn+1 = αnf(xn) + (1− αn)T

(
xn + xn+1

2

)
, n ∈ N.

Proof. The desired result follows from Theorem 3.2 by taking δn = 1
2 for all

n ∈ N. �

4. Applications

The results in this section show an improvement and generalization of the
main results of Xu et al. [22], Yao et al. [24] and Ke and Ma [8]. It will
be assumed that the real sequences {αn}∞n=1 , {βn}

∞
n=1 , {γn}

∞
n=1 ⊂ [0, 1] and

{δn}∞n=1 ⊂ (0, 1) satisfy the following conditions:

(i) αn + βn + γn = 1,
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(ii) lim
n→∞

αn = 0,

∞∑
n=1

αn =∞,

(iii) lim
n→∞

|βn+1 − βn| = 0, 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(iv) 0 < ε ≤ δn ≤ δn+1 < 1 for all n ∈ N.

4.1. Finite combination of nonexpansive mappings

The proof of the proposition below is given in Wong et al. [19].

Proposition 4.1. Let K be a nonempty closed convex subset of a strictly
convex and uniformly smooth Banach space E and let θi > 0 (i = 1, 2, . . . , r)

such that
r∑
i=1

θi = 1. Let T1, T2, . . . , Tr : K → K be nonexpansive mappings

with ∩ri=1F (Ti) 6= ∅ and let T =

r∑
i=1

θiTi. Then T is nonexpansive from K into

itself and F (T ) = ∩ri=1F (Ti).

Therefore the following result holds.

Corollary 4.2. Suppose K is a nonempty closed convex subset of a strictly
convex and uniformly smooth Banach space E, f : K → K is a c-contraction

and let θi > 0 (i = 1, 2, . . . , r) such that
r∑
i=1

θi = 1. Let T1, T2, . . . , Tr : K → K

be nonexpansive mappings with ∩ri=1F (Ti) 6= ∅. Then the iterative sequence
{xn}∞n=1 which is defined from an arbitrary x1 ∈ K by

xn+1 = αnf(xn) + βnxn + γn

r∑
i=1

θiTi (δnxn + (1− δn)xn+1) , (4.1)

converges strongly to a fixed point p ∈ ∩ri=1F (Ti), which solves the variational
inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ ∩ri=1F (Ti). (4.2)

Proof. Define T :=

r∑
i=1

θiTi. It suffices to show that T is a nonexpansive map-

ping and ∩ri=1F (Ti) ⊆ F (T ). This is true by Proposition 4.1. �

4.2 Composition of finite family of nonexpansive mappings

Corollary 4.3. Suppose K is a nonempty closed convex subset of a uni-
formly smooth Banach space E and {Ti}Ni=1 a finite family of nonexpansive
self-mappings of K such that F := ∩Ni=1F (Ti) 6= ∅. Let f : K → K be a
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c-contraction. Then the iterative sequence {xn}∞n=1 which is defined from an
arbitrary x1 ∈ K by

xn+1 = αnf(xn) + βnxn + γnTNTN−1Tn−2...T1 (δnxn + (1− δn)xn+1) ,

converges strongly to a fixed point p ∈ F, which solves the variational inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F. (4.3)

Proof. It is known that a composition T of finite family of nonexpansive self-
mappings {Ti}Ni=1 on K is nonexpansive with F (T ) ⊇ ∩Ni=1F (Ti) 6= ∅. �

4.3 Monotone mappings

Let E be a real Banach space with the duality pairing 〈., .〉 and norm ‖.‖.
The dual of E is denoted by E∗. Let A be a set-valued mapping and denote
the domain and range of A by D(A) and R(A), respectively. The set G(A)
defined by

G(A) = {(u, v) ∈ E × E∗ : u ∈ D(A), v ∈ R(A)}
is called the graph of A.

A mapping A is said to be monotone if

〈u− v, x− y〉 = 0, (u, x), (v, y) ∈ G(A).

A is said to be maximal monotone if it is not properly contained in any other
monotone mapping. Monotone mappings have been studied extensively (see,
e.g., Bruck [5], Chidume [6], Martinet [10], Reich [15], Rockafellar [16]) due to
their role in convex analysis, in nonlinear analysis, in certain partial differential
equations and optimization theory. For a maximal monotone mapping A :
D(A)→ 2E

∗
, we define the resolvent of A by

JAt = (J + tA)−1J, t > 0. (4.4)

It is well known that JAt : E → D(A) is nonexpansive, and F (JAt ) = A−10,
where F (JAt ) denotes the set of fixed points of JAt .

We have the following.

Corollary 4.4. Suppose K is a nonempty closed convex subset of a uniformly
smooth Banach space E, f : K → K is a c-contraction and θi > 0 (i =

1, 2, . . . , r) such that
r∑
i=1

θi = 1. Let {Ai} ⊂ E × E∗ be a family of maximal

monotone mappings with resolvent JAi
t for t > 0 such that ∩ri=1A

−1
i 0 6= ∅. Then

the iterative sequence {xn}∞n=1 which is defined from an arbitrary x1 ∈ K by

xn+1 = αnf(xn) + βnxn + γn

r∑
i=1

θiJ
Ai
t (δnxn + (1− δn)xn+1) ,
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converges strongly to a unique point p ∈ ∩ri=1A
−1
i 0, which solves the variational

inequality problem: find p ∈ ∩ri=1A
−1
i 0 such that

〈(I − f)p, J((x− p)〉 ≥ 0 for all x ∈ ∩ri=1A
−1
i 0.

Proof. Define T :=

r∑
i=1

θiJ
Ai
t . Then T is nonexpansive self-mapping of K and

F (T ) ⊇ ∩ri=1F (JAi
t ) 6= ∅. �
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