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Abstract. In this paper, we shall prove a fixed point theorem for weakly contractive map-

pings which satisfies a generalized contraction condition on a complete metrically convex

metric spaces by using a function say (C− class function). The result in this paper generalizes

the relevant results due to Khan and Imdad [14], Rhoades [16], Alber and Guerre-Delabriere

[2] and others.

1. Introduction

Metric fixed point theory is one of the most rapidly growing area of research
in nonlinear functional analysis and emerged as a powerful tool in solving
existence and uniqueness problems in many branches of mathematical analysis
say variational analysis, integral and functional equations as applications of
fixed points of contraction mappings defined for different spaces.

In 1997, Alber and Guerre-Delabriere [2] coined the concept of weakly con-
tractive maps and obtained fixed point results in Hilbert spaces for self map-
pings. Rhoades [16] extended some of their works to Banach spaces for the
same setting.
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Recently, Khan and Imdad [14] proved the result due to Rhoades [16] for
nonself single valued mappings by using the concept of weakly contractive
maps and obtained fixed point results in complete metrically convex spaces.

In this paper, we prove a fixed point theorem for single valued nonself
mappings by using the concept of C-class functions, introduced by A. H. Ansari
[3], which either partially or completely generalize the results due to Khan and
Imdad [14], Rhoades [16], Alber and Guerre-Delabriere [2] and others.

Before proving the results, we collect the relevant definitions and example
for future use.

Definition 1.1. ([5]) A metric space (X, d) is said to be metrically convex if
for any x, y ∈ X with x 6= y there exists a point z ∈ X,x 6= z 6= y such that

d(x, z) + d(z, y) = d(x, y).

Definition 1.2. ([3]) A mapping F : [0,∞) × [0,∞) → R is called a C-class
function if it is continuous and satisfies following axioms:

(i) F (s, t) ≤ s,
(ii) F (s, t) = s implies that either s = 0 or t = 0, for all s, t ∈ [0,∞).

An extra condition on F is that F (0, 0) = 0 could be imposed in some cases
if required. The letter C denotes the set of all C-class functions. The following
example shows that C is nonempty.

Example 1.3. ([3]) Define a function F : [0,∞)× [0,∞)→ R by

(iii) F (s, t) = s− t, F (s, t) = s⇒ t = 0,
(iv) F (s, t) = ms, 0 < m < 1, F (s, t) = s⇒ s = 0,
(v) F (s, t) = s

(1+t)r , r ∈ (0,∞), F (s, t) = s ⇒ s = 0 or t = 0,

(vi) F (s, t) = log(t+ as)/(1 + t), a > 1, F (s, t) = s ⇒ s = 0 or t = 0,
(vii) F (s, t) = ln(1 + as)/2, a > e, F (s, 1) = s ⇒ s = 0,

(viii) F (s, t) = (s+ l)(1/(1+t)r) − l, l > 1, r ∈ (0,∞), F (s, t) = s ⇒ t = 0,
(ix) F (s, t) = s logt+a a, a > 1, F (s, t) = s⇒ s = 0 or t = 0,

(x) F (s, t) = s− (1+s
2+s)( t

1+t), F (s, t) = s⇒ t = 0,

(xi) F (s, t) = sβ(s), β : [0,∞) → [0, 1), and is continuous, F (s, t) = s ⇒
s = 0,

(xii) F (s, t) = s− t
k+t , F (s, t) = s⇒ t = 0,

(xiii) F (s, t) = s − ϕ(s), F (s, t) = s ⇒ s = 0, here ϕ : [0,∞) → [0,∞) is a
continuous function such that ϕ(t) = 0⇔ t = 0,

(xiv) F (s, t) = sh(s, t), F (s, t) = s⇒ s = 0, here h : [0,∞)×[0,∞)→ [0,∞)
is a continuous function such that h(t, s) < 1 for all t, s > 0,

(xv) F (s, t) = s− (2+t
1+t)t, F (s, t) = s⇒ t = 0,

(xvi) F (s, t) = s− (1+s
2+s)( t

1+t), F (s, t) = s⇒ t = 0,
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(xvii) F (s, t) = n
√

ln(1 + sn), F (s, t) = s⇒ s = 0,
(xviii) F (s, t) = φ(s), F (s, t) = s⇒ s = 0, here φ : [0,∞)→ [0,∞) is a upper

semicontinuous function such that φ(0) = 0, and φ(t) < t for t > 0,
(xix) F (s, t) = s

(1+s)r , r ∈ (0,∞), F (s, t) = s ⇒ s = 0,

(xx) F (s, t) = s
Γ(1/2)

∫∞
0

e−x
√
x+t

dx, where Γ is the Euler Gamma function.

Then F are elements of C .

Definition 1.4. ([3]) A function ψ : [0,∞) → [0,∞) is called an altering
distance function if the following properties are satisfied:

(xxi) ψ is non-decreasing and continuous function,
(xxii) ψ (t) = 0 if and only if t = 0.

Remark 1.5. ([3]) We denote Ψ the class of altering distance functions.

Definition 1.6. ([3]) A function ϕ : [0,∞) → [0,∞) is said to be an ultra
altering distance function, if it is continuous, non-decreasing such that ϕ(t) > 0
t > 0 and ϕ(0) ≥ 0.

Remark 1.7. ([3]) We denote Φu the class of ultra altering distance functions.

Definition 1.8. Let (X, d) be a metric space and K be a nonempty subset
of X. Let T : K → X be a mapping, T is said to be generalized weakly
contractive on K, if Tx ∈ K and

ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ(d(x, y))) (1.1)

for all x, y ∈ K, where F is a C-class function, ψ : [0,∞) → [0,∞) is non-
decreasing and continuous function with ψ (t) = 0 if and only if t = 0 and ϕ
is an ultra altering distance function.

2. Main Result

The following theorem is the main result of this paper, the proof which
proceeds by steps, is based on an argument similar to the one used by Khan
[13].

Theorem 2.1. Let (X, d) be a complete metrically convex metric space and
K be a nonempty closed subset of X. Let T : K → X be a mapping satisfying
for each x ∈ δK, Tx ∈ K, and

ψ(d(Tx, Ty)) ≤ F (ψ(d(x, y)), ϕ(d(x, y))) (2.1)

where F ∈ C,ψ ∈ Ψ and ϕ ∈ Φu. Then T has a unique fixed point in K.
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Proof. First, we proceed to construct two sequences {xn} and {yn} in the
following way. Let x0 ∈ K, define y1 = Tx0. If y1 ∈ K set y1 = x1. If y1 /∈ K,
then choose x1 ∈ δK so that

d(x0, x1) + d(x1, y1) = d(x0, y1).

If y2 ∈ K then set y2 = x2. If y2 /∈ K, then choose x2 ∈ δK so that

d(x1, x2) + d(x2, y2) = d(x1, y2).

Thus, repeating the foregoing arguments, we obtain two sequences {xn} and
{yn} such that

(xxiii) yn+1 = Txn,
(xxiv) yn = xn if yn ∈ K,
(xxv) if xn ∈ δK then

d(xn−1, xn) + d(xn, yn) = d(xn−1, yn), where yn /∈ K.

Here, we can obtain two types of sets which are denoted by

P = {xi ∈ {xn} : xi = yi}

and

Q = {xi ∈ {xn} : xi 6= yi}.

One can note that if xn ∈ Q then xn−1 ∈ P and xn+1 ∈ P. We, wish to
estimate d(xn, xn+1). Now, we distinguish the following three cases.

Case 1. If xn ∈ P and xn+1 ∈ P, then

ψ
(
d(xn, xn+1)

)
= ψ

(
d(Txn−1, Txn)

)
≤ F

(
ψ
(
d(xn−1, xn)

)
, ϕ
(
d(xn−1, xn)

))
≤ ψ

(
d(xn−1, xn)

)
.

Hence we have

d(xn, xn+1) ≤ d(xn−1, xn).

Case 2. If xn ∈ P and xn+1 ∈ Q, then

d(xn, xn+1) + d(xn+1, yn+1) = d(xn, yn+1).
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Therefore

ψ
(
d(xn, xn+1)

)
≤ ψ

(
d(xn, yn+1)

)
= ψ

(
d(Txn−1, Txn)

)
≤ F

(
ψ
(
d(xn−1, xn)

)
, ϕ
(
d(xn−1, xn)

))
≤ ψ

(
d(xn−1, xn)

)
.

Hence we have

d(xn, xn+1) ≤ d(xn−1, xn).

Case 3. Let xn ∈ Q and xn+1 ∈ P. Since xn ∈ Q and is a convex linear
combination of xn−1 and yn, it follows that

d(xn, xn+1) ≤ max{d(xn−1, xn+1), d(yn, xn+1)}.
If d(xn−1, xn+1) ≤ d(xn+1, yn), then

ψ
(
d(xn, xn+1)

)
≤ ψ

(
d(xn+1, yn)

)
= ψ

(
d(Txn−1, Txn)

)
≤ F

(
ψ
(
d(xn−1, xn)

)
, ϕ
(
d(xn−1, xn)

))
≤ ψ

(
d(xn−1, xn)

)
.

Hence we have

d(xn, xn+1) ≤ d(xn−1, xn).

Otherwise if d(xn+1, yn) ≤ d(xn−1, xn+1), then

ψ
(
d(xn, xn+1)

)
≤ ψ

(
d(xn−1, xn+1)

)
= ψ

(
d(Txn−2, Txn)

)
≤ F

(
ψ
(
d(xn−2, xn)

)
, ϕ
(
d(xn−2, xn)

))
≤ ψ

(
d(xn−2, xn)

)
.

Hence we have

d(xn, xn+1) ≤ d(xn−2, xn).

Notice that

d(xn−2, xn) ≤ d(xn−2, xn−1) + d(xn−1, xn)

≤ max{d(xn−2, xn−1), d(xn−1, xn)}.

Here, if d(xn−2, xn−1) ≤ d(xn−1, xn), then

d(xn, xn+1) ≤ d(xn−1, xn).



158 Ladlay Khan

Otherwise, if d(xn−1, xn) ≤ d(xn−2, xn−1), then

d(xn, xn+1) ≤ d(xn−2, xn−1).

Thus in all the cases, we have

d(xn, xn+1) ≤ max{d(xn−1, xn), d(xn−2, xn−1)}.
It follows that the sequence {d(xn, xn+1)} is monotonically decreasing. Hence
d(xn, xn+1)→ 0 as n→∞.

Now, we prove that the sequence {xn} is Cauchy. Let on contrary that
the sequence {xn} is not Cauchy. Then there exists ε > 0 for which we
can find subsequences {xnk

} and {xmk
} such that d(xmk

, xnk
) ≥ ε. Further,

corresponding to each m(k), we can find n(k) in such a way that the smallest
positive integer n(k) > m(k) satisfying d(xmk

, xnk−1
) < ε. Now, we have

ε ≤ d(xmk
, xnk

) ≤ d(xmk
, xnk−1

) + d(xnk−1
, xnk

) < ε+ d(xnk−1
, xnk

).

On letting k →∞, we have d(xmk
, xnk

) = ε. Again,

d(xnk
, xmk

) ≤ d(xnk
, xnk−1

) + d(xnk−1
, xmk−1

) + d(xmk−1
, xmk

)

whereas

d(xnk−1
, xmk−1

) ≤ d(xnk−1
, xnk

) + d(xnk
, xmk

) + d(xmk
, xmk−1

).

Now on letting k →∞ in the above inequalities, we obtain,

lim
k→∞

d(xnk−1
, xmk−1

) = ε.

By setting x = xmk−1
and y = xnk−1

in (2.1). On letting k →∞, we obtain,

ψ(ε) ≤ F
(
ψ(ε), ϕ(ε)

)
,

which implies ψ(ε) = 0 or ϕ(ε) = 0. That is ε = 0, which is a contradiction.
Thus the sequence {x0, x1, x2, · · · , xn−1, xn, xn+1, · · · } is Cauchy and hence
convergent. Let xn → z as n → ∞. Substituting x = xn−1 and y = z in
equation (2.1), we obtain

ψ
(
d(Tz, xn)

)
≤ F

(
ψ
(
d(z, xn−1)

)
, ϕ
(
d(z, xn−1)

))
.

Letting n→∞ and using continuity of φ, we have

ψ
(
d(Tz, z)

)
≤ F

(
ψ(0), ϕ(0)

)
≤ ψ(0) = 0,

implying thereby Tz = z. This shows that z is a fixed point T .

Next, to prove that the uniqueness of fixed points. Let us suppose that z1

and z2 are two fixed points of T. Then
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ψ
(
d(z1, z2)

)
= ψ

(
d(Tz1, T z2)

)
≤ F

(
ψ
(
d(z1, z2)

)
, ϕ
(
d(z1, z2)

))
≤ ψ

(
d(z1, z2)

)
.

which implies that ψ
(
d(z1, z2)

)
= 0. Hence d(z1, z2) = 0, that is z1 = z2. This

completes the proof.

Remark 2.2. By setting K = X,F (s, t) = s− t and ψ(t) = t in the Theorem
2.1, then we deduce a theorem due to Rhoades [16].

Remark 2.3. By setting K = X,F (s, t) = s− t and ψ(t) = t in the Theorem
2.1, then we deduce a partial generalization of theorem due to Alber and
Guerre-Delabriere [2].

By setting F (s, t) = s− t, ψ(t) = t in the Theorem 2.1, then we deduce the
following corollary in the form of the result due to Khan and Imdad [14].

Corollary 2.4. Let (X, d) be a complete metrically convex metric space and
K be a nonempty closed subset of X. Let T : K → X be a mapping satisfying
for each x ∈ δK, Tx ∈ K,

d(Tx, Ty) ≤ d(x, y)− ϕ
(
d(x, y)

)
where ϕ ∈ Ψ. Then T has a unique fixed point in K.

By setting F (s, t) = ks, 0 < k < 1 in the Theorem 2.1, then we deduce the
following corollary in the form of Banach Contraction Principle.

Corollary 2.5. Let (X, d) be a complete metrically convex metric space and
K be a nonempty closed subset of X. Let T : K → X be a mapping satisfying
for each x ∈ δK, Tx ∈ K,

d(Tx, Ty ≤ kd(x, y)

where 0 < k < 1. Then T has a unique fixed point in K.
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