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Abstract. In this article, we present a conjugate duality for scalarmaximization and vector-

maximization problems involving concave increasing continuous homogeneous functions. We

will show that the obtained conjugate duality has zero-gap and a duality inequality helps to

characterize the weakly Pareto efficient for the vector-maximization problem. As a result, an

optimization problem over the weakly efficient set reduces to a bilevel optimization problem

solvable by monotonic optimization methods.

1. Introduction

The conjugate duality was constructed based on the conjugate of function
f : Rn+ → R+ in the form:

f∗(p) =
1

sup{f(x) : pTx ≤ 1, x ≥ 0}
, ∀ p ∈ Rn+,

by Thach, which has recently been applied to some optimization problems in
economics (see for instance [12], [13], [14]). In [12], Thach applied the conju-
gate duality to study a maximization of a Leontief production function over a
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convex region of activities, he obtained a dual problem that is a maximization
of an increasing linear function over a convex region. In [13], we developed the
conjugate duality to a problem of maximizing a polyhedral concave increasing
homogeneous function over a convex set, the obtained dual problem is also a
problem of maximizing a polyhedral concave increasing homogeneous function
over a convex feasible set. Moreover, when extended to a vector-maximization
problem we obtained symmetric duality scheme and a duality equation that
helps to characterize the weakly Pareto efficient. This duality scheme was ap-
plied to a nonlinear problem under resource allocation constraints. We shown
that a nonlinear feasibility problem of planning under a single resource al-
location constraint can be reduced to the maximization of a Cobb-Douglas
function over a polytope and the feasibility problem of planning under multi-
ple resource allocation constraints is reduced to a vector optimization problem
involving k Cobb-Douglas functions (k being the number of resources) ([14]).

So far, this duality has been restricted to the classes of scalarmaximiza-
tion and vector-maximization problems involving polyhedral concave criteria
functions or Cobb-Douglas functions. However, many functions encountered
in mathematical economics and other applications are not polyhedral concave
but only concave. The first part of the paper is to extend the conjugate du-
ality to the more general classes of concave scalar-maximization and concave
vector-maximization problems involving concave functions. The extension will
preserve the main properties earlier established in paper [13], specifically, the
conjugate duality is symmetric and the gap duality is zezo. We also present
duality relationships that can help to characterize the (weakly) Pareto efficient
solutions in vector-maximization problems. Note that the duality theory for
vector-optimization problems is often based on Lagrange duality applied for
the scalarization depending on the weight parameters (cf. [5], [8], [9], [11]). In
some extension the theory of set-valued map is used for vector-optimization
problems (cf. [6], [7]), but the conjugate duality obtained by these way often
requires convexity of the primal problem. The second part of this article is to
apply the conjugate duality scheme to reduce an optimization problem over
the weakly efficient set (this problem amounts to finding a feasible production
program with maximal profit) to a bilevel optimization problem solvable by
monotonic optimization methods.

The paper is organized as follows. After the introduction, in section 2, we
present duality conjugate for scalar-maximization problems. Next in section
3, we will develop duality for vector-maximization problems. Finally, section 4
is devoted to an application of the duality to optimization over weakly efficient
sets.
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2. Conjugate Duality

2.1. Conjugate Duality for Scalar-Maximization Problems. Let us con-
sider the nonnegative n−dimensional orthant Rn+ of activities. A vector x(x1,
x2, ..., xn) in Rn+ is called an activity vector where xi indicaties the i−th type of
activities. The production function for an activity vector x is f(x), where f(x)
is a increasing continuous concave homogeneous finite-valued function defined
on Rn+ and f is not identically zero on Rn+. We recall that f is increasing if

f(x) ≥ f(x
′
), ∀x ∈ Rn+, ∀x

′ ∈ Rn+ : x ≥ x′
.

X is said to be normal if x ∈ X : 0 ≤ x
′ ≤ x, then x

′ ∈ X. Let X be
a compact convex normal set in Rn+. Obviously, f(x) ≥ 0 for all x ∈ Rn+
(because f(x) is increasing and homogeneous).

Consider the following maximization problem:

max f(x), s.t. x ∈ X. (2.1)

Since f is continuous and X is compact, the problem (2.1) is solvable. More-
over, the optimal value of the problem is positive (because f is not identically
zero on Rn+).

Define
F =

{
x ∈ Rn+ : f(x) ≥ 1

}
.

F is said to be conormal if for x ∈ F, x ≤ x
′
, then x

′ ∈ F. Since f(x) is
increasing continuous concave, F is a closed convex conormal set in Rn+. Since
f is homogeneous, f is gauge function of F , that is,

f(x) = max {γ ≥ 0 : x ∈ γF} , ∀x ∈ Rn+.
We define F ∗ the upper conjugate of F .

F ∗ =
{
p ∈ Rn+ : pTx ≥ 1, ∀x ∈ F

}
.

Obviously, F ∗ is a subset in the dual space. Moreover, F ∗ is a closed convex
conormal set in Rn+. The conjugate of f is defined by

f∗(p) = max {γ ≥ 0 : x ∈ γF ∗} , ∀p ∈ Rn+.
We can check that

F ∗ =
{
p ∈ Rn+ : f∗(p) ≥ 1

}
,

and f∗ is a increasing continuous homogeneous finite-valued function defined
on Rn+.

Theorem 2.1. We have

f∗(p) =
1

sup{f(x) : pTx ≤ 1, x ≥ 0}
, ∀p ∈ Rn+,

(hear, we agree that 1
+∞ = 0).
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Proof. Define

f(p) =
1

sup{f(x) : pTx ≤ 1, x ≥ 0}
, ∀p ∈ Rn+.

If q = 0, we have f(0) = 1
+∞ = 0.

For p 6= 0 and θ > 0 we have

sup{f(x) : θpTx ≤ 1, x ≥ 0} = sup{f(
1

θ
x

′
) : pTx

′ ≤ 1, x
′ ≥ 0}

=
1

θ
sup{f(x

′
) : pTx

′ ≤ 1, x
′ ≥ 0},

hence, f(θp) = θf(p). So, f is homogeneous. In order to prove f∗ = f we
need to prove that

F ∗ =
{
p ∈ Rn+ : f(p) ≥ 1

}
.

For p ≥ 0 we have

f(p) ≥ 1

⇔ sup{f(x) : pTx ≤ 1, x ≥ 0} ≤ 1

⇔ f(x) ≤ 1 ∀x ≥ 0 : pTx ≤ 1

⇔ pTx > 1 ∀x ≥ 0 : f(x) > 1

⇔ pTx ≥ 1 ∀x ≥ 0 : f(x) ≥ 1

⇔ pTx ≥ 1 ∀x ∈ F
⇔ p ∈ F ∗.

This completes the proof. �

We obtain the following proposition.

Proposition 2.2. If F ∗ is a upper conjugate of F , then F is the upper con-
jugate of F ∗:

F =
{
x ∈ Rn+ : pTx ≥ 1, ∀p ∈ F ∗

}
.

Proof. Setting A =
{
x ∈ Rn+ : pTx ≥ 1∀p ∈ F ∗

}
, since F ∗ is upper conjugate

of F , it is obvious that F ⊆ A. Suppose that x ≥ 0 and x /∈ F . Since F is
a convex set in Rn+, F does not intersect with the line segment [0;x]. By the
separation theorem, there is q ∈ Rn \ {0} and number α ∈ R such that

qTx ≥ α, ∀x ∈ F ; (2.2)

qTx < α, ∀x ∈ [0;x]. (2.3)
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From (2.2) it follows that q ≥ 0, and from (2.3) it follows that α > 0. Setting
p = 1

αq , we have

pTx ≥ 1, ∀x ∈ F ; (2.4)

pTx < 1. (2.5)

From (2.4) it follows that p ∈ F ∗. This together with (2.5) implies that x does
not belong to A. �

Since the upper conjugate of F ∗ is F , the conjugate of f∗ is f , and so

f(x) =
1

sup{f∗(p) : pTx ≤ 1, p ≥ 0}
, ∀x ∈ Rn+.

Example 2.3. Let f be Leontief function on Rn+:

f(x) = min{xi
ci

: i = 1, 2, ..., n},

where c ∈ Rn, c > 0. It can be check that (cf. [12])

f∗(x) =

n∑
i=1

pici.

Example 2.4. Let f be polyhedral concave increasing and homogeneous func-
tion defined on Rn, i.e., there are q1 ∈ Rn+, q2 ∈ Rn+, ..., qs ∈ Rn+ such that

f(x) = min{qiTx : i = 1, 2, ..., s}.

Setting Y = {x ≥ 0 : qix ≥ 1 ∀i = 1, 2, ..., s}. The level set Y of f on Rn+ is a
polyhedral convex subset. Let {y1, y2, ..., yr} be the set of vertices of Y . It is
clear that yi ∈ Rn+ and yi 6= 0 for all i = 1, 2, ..., r. Define

f∗(p) = min{yiT p : i = 1, 2, ..., r}.

Then, f∗ is is conjugate of f on Rn+ and f∗ is also polyhedral concave increasing
and homogeneous function defined on Rn (cf. [13]).

Define P the lower conjugate of X: i.e,

P = {p ≥ 0 : pTx ≤ 1, ∀x ∈ X}.

We can check that P is also a compact convex set in Rn+. Moreover, we have
the following lemma.

Lemma 2.5. ([13]) If P is a lower conjugate of X, then X is the lower
conjugate of P :

X = {x ≥ 0 : pTx ≤ 1, ∀p ∈ P}.
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We consider the following problem as the dual problem of the primal prob-
lem (2.1)

max f∗(p), s.t. p ∈ P. (2.6)

Since X and P are the conjugates of each other and the conjugate of f∗ is
f , the duality between (2.1) and (2.6) is involutory. Now we present strong
duality for problems (2.1) and (2.6) in the following theorem.

Theorem 2.6. Let x ∈ X and p ∈ P . Then, x is optimal to (2.1) and p is
optimal to (2.6) if and only if

f(x)f∗(p) = 1. (2.7)

Proof. For every x ∈ X and p ∈ P , we have

f(x)f∗(p) ≤ 1. (2.8)

Indeed, if f(x) = 0 then f(x)f∗(p) = 0 ≤ 1. If f(x) > 0 then, from pTx ≤ 1
(because x ∈ X and p ∈ P ) it follows that

f(x)f∗(p) = f(x)
1

sup{f(x) : pTx ≤ 1, x ≥ 0}
≤ f(x)

1

f(x)
= 1.

So, if x ∈ X and p ∈ P satisfies the dual equation (2.7) then, we have

f(x)f∗(p) = max{f(x)f∗(p) : x ∈ X, p ∈ P} = max
x∈X

f(x) max
p∈P

f∗(p),

consequently,

f(x) = max
x∈X

f(x), f∗(p) = max
p∈P

f∗(p).

Hence, x solves (2.1) and p solves (2.6).

Conversely, suppose that x solves (2.1) and p solves (2.6). We have f(x) > 0.
So, intX ∩ int(f(x)F ) = ∅. By the separation theorem there is q ∈ Rn+ such
that

qTx ≤ 1, ∀x ∈ X; (2.9)

qTx ≥ 1, ∀x ∈ f(x)F . (2.10)

From (2.8) it follows q ∈ P . From (2.10) we have f(x)qTx ≥ 1 for all x ∈ Y ,
it implies f(x)q ∈ F ∗. Hence, f∗(f(x)q) ≥ 1 or f∗(q)f(x) ≥ 1. By virtue of
(2.8), it implies f∗(q)f(x) = 1, leading to q is optimal solution of the problem
(2.1). Since p also solves (2.1), we have f∗(q) = f∗(p). Therefore, we have
f∗(p)f(x) = 1. �

By Theorem (2.6), we can says that the equation (2.7) is dual equation for
the scalar-maximization problems.
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2.2. Duality for Vector-Maximization Problems. Suppose that the space
Rn is the Decarte product of the subspaces Rni i = 1, 2, ..., k(k ≥ 1)

Rn =
k∏
i=1

Rni ,

where n =
∑k

i=1 ni and ni ≥ 1, i = 1, 2, ..., k. For any i = 1, 2, ..., k let xi ∈
Rni

+ be an activity subvector, and denote x = (x1, x2, ..., xk). Similarly, for

any i = 1, 2, ..., k let pi ∈ Rni
+ be a dual activity subvector, and denote p =

(p1, p2, ..., pk).
For any i = 1, 2, ..., k we are given a production function fi defined on Rni

+

that is a increasing continuous concave homogeneous finite-valued function

and not identically zero on Rn
i
+ . Denote by f∗i the conjugate of fi on Rni

+ for
any i = 1, 2, ..., k. Let X be a compact convex normal set in Rn+ and denote
by P the lower conjugate of X. We consider the primal vector-maximization
problem

fi(x
i)→ max i = 1, 2, ..., k (2.11)

s.t x = (x1, x2, ..., xk) ∈ X

and the its dual problem

f∗i (pi)→ max i = 1, 2, ..., k (2.12)

s.t p = (p1, p2, ..., pk) ∈ P.

Example 2.7. Let fi be Leontief functions on Rni
+ , i.e.,

fi(x
i) = min{

xij
cij

: j = 1, 2, ..., ni}, i = 1, 2, ..., k;

where ci ∈ Rni , ci > 0. Then, we have primal vector-maximization problem

min{
xij
cij

: j = 1, 2, ..., ni} → max i = 1, 2, ..., k (2.13)

s.t x = (x1, x2, ..., xk) ∈ X.

By example (2.3) the dual problem of (2.13) is

pi
T
ci → max i = 1, 2, ..., k (2.14)

s.t p = (p1, p2, ..., pk) ∈ P.

The first result is the so-called weak duality theorem.
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Theorem 2.8. ([13]) For any x ∈ X and p ∈ P we have

k∑
i=1

fi(x
i)f∗i (pi) ≤ 1. (2.15)

Theorem 2.9. ([13]) Let x ∈ X and p ∈ P . If (x, p) satisfies the equation

k∑
i=1

fi(x
i)f∗i (pi) = 1, (2.16)

then x is primal weakly Pareto efficient and p is dual weakly Pareto efficient.

Theorem 2.10. ([13]) Let x ∈ X and p ∈ P such that (x, p) satisfies the
equation (2.16). If g∗i (p

i) > 0 for any i = 1, 2, ..., k, then x is primal Pareto
efficient. If f∗i (xi) > 0 for any i = 1, 2, ..., k, then p is dual Pareto efficient.

The above theorems says that the equation (2.16) is called the dual equation
that referee to the strong duality. For the strong duality we have the following
theorem.

Theorem 2.11. If x > 0 is primal weakly Pareto efficient then there is p ∈ P
such that (x, p) satisfies the dual equation (2.16). Similarly, If p > 0 is dual
weakly Pareto efficient then there is x ∈ X such that (x, p) satisfies the dual
equation (2.16).

Proof. Suppose x > 0 is primal weakly Pareto efficient. Setting

Ωx = {z ∈ Rn+ : fi(z
i) > fi(x

i) i = 1, 2, ..., k},

then Ωx is an open convex conormal set in Rn+ and Ωx has no intersection with
the X. By the separation theorem, there are u ∈ Rn \ {0} and α ∈ R such
that

uT z ≤ α, ∀z ∈ X (2.17)

and

uT z > α, ∀z ∈ Ωz. (2.18)

Since Ωx is an open convex conormal set in Rn+, from (2.18) it follows that

u ≥ 0. From (2.17) it follows that α > 0 (because X is normal). Set p = 1
αu.

Then, (2.17) and (2.18) are equivalent to

pT z ≤ 1, ∀z ∈ X (2.19)

and

pT z > 1, ∀z ∈ Ωz. (2.20)
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Then, from (2.19) it follows p ∈ P . From (2.20), there are µ ∈ Rk+ \ {0} such
that

p =

k⊕
i=1

µiq
i, (2.21)

1 ≤
k∑
i=1

µifi(x
i), (2.22)

qi ∈ ∂fi(xi) i = 1, 2, ..., k, (2.23)

where ∂fi(x
i) is the subdifferential set of fi at xi for any i = 1, 2, ..., k (see

[16]). From (2.23) we have

fi(0) ≤ fi(xi)− qi
T
xi,

fi(2x
i) ≤ fi(xi) + qi

T
xi.

Hence

qi
T
xi ≤ fi(xi),

fi(x
i) ≤ qiTxi,

consequently fi(x
i) = qi

T
xi. Moreover,

fi(x
i) = {max{fi(xi) : pi

T
xi ≤ piTxi, xi ≥ 0}

= {max{fi(xi) : pi
T
xi ≤ fi(xi), xi ≥ 0}.

Let
I = {i ∈ {1, 2, ..., k} : fi(x

i) > 0}.
Then for i ∈ I we have

sup{fi(xi) : pi
T
xi ≤ 1, xi ≥ 0}

= sup{fi(xi) : pi
T

(fi(x
i)xi) ≤ fi(xi), xi ≥ 0}

= sup{fi(
1

fi(xi)
xi) : pi

T
xi ≤ fi(xi), xi ≥ 0}

=
1

fi(xi)
sup{fi(xi) : pi

T
xi ≤ fi(xi), xi ≥ 0}

= 1.

So,
f∗i (qi) = 1, ∀x ∈ I.

Therefore,

f∗i (pi) = f∗i (µiq
i) = µif

∗
i (qi) = µi, ∀i ∈ I. (2.24)
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From (2.22) and (2.24) we have

1 ≤
∑
i∈I

fi(x
i)f∗i (pi) =

k∑
i=1

fi(x
i)f∗i (pi).

By Theorem (2.8), we have

1 =
k∑
i=1

fi(x
i)f∗i (pi).

Now, suppose x > 0 is primal weakly Pareto efficient. Since the duality
scheme is symmetric, by the arguments similar to the above we can show that
there is x ∈ X such that the duality equation (2.16) holds at (x, p). �

3. Optimization over weakly Pareto efficient set

In this last section, as an application of the above results, we present an
approach to optimization over the weakly Pareto efficient set based on bilevel
programming and monotonic optimization.

We consider the problem (2.11) with assumption that X is a compact convex
set in Rn+ such that x > 0 for all x ∈ X. Denote by XWE the set of all weakly
Pareto efficient of the vector-maximization problem (2.11). We consider the
following optimization problem over the weakly Pareto efficient set

max q(x), s.t. x ∈ XWE , (3.1)

where q(x) is a continuous concave function defined on Rn+ such that q(x) > 0
for all x > 0.

Define X− the normal hull of X in Rn+, i.e.,

X− = {y : ∃ x ∈ X,x ≥ y ≥ 0}

and P the lower conjugate of X−

P = {p ≥ 0 : pTx ≤ 1 ∀x ∈ X−}.

Obviously, P is also the lower conjugate of X.

We define the following problem:

fi(x
i)→ max i = 1, 2, ..., k (3.2)

s.t x = (x1, x2, ..., xk) ∈ X−

Theorem 3.1. Let x ∈ X. x is a solution weakly Pareto efficient of (2.11) if
and only if there is p ∈ P such that (x, p) satisfies the dual equation (2.16).
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Proof. Let x be a solution weakly Pareto efficient of (2.11). Then, x > 0 and
since the function f∗i is increasing on Rni

+ for any i = 1, 2, ..., k, it is easily see
that x is also the solution weakly Pareto efficient of (3.2). By Theorem (2.11),
there is p ∈ P such that (x, p) satisfies the dual equation (2.16).

Conversely, suppose for x ∈ X, there is p ∈ P such that (x, p) satisfies the
dual equation (2.16). Then, by Theorem (2.8), x is the solution weakly Pareto
efficient of (3.2). Consequently, x is also the solution weakly Pareto efficient
of (2.11). �

By Theorem 2.8 and Theorem 3.1, the problem (3.1) can be rewritten as
Bilevel Programming problem:

max q(x) (3.3)

x ∈ X, p ∈ P, (x, p) solves (3.4)

max

{
k∑
i=1

fi(x
i)f∗i (pi)| x ∈ X, p ∈ P

}
. (3.5)

This problem belongs to the class which is studied in [15]. Using the method
proposed in the paper for solving bilevel programs we define

θ(p) = max

{
q(x)|

k∑
i=1

fi(x
i)f∗i (pi) ≥ 1, x ∈ X

}
,

(hear we agree that max ∅ = 0).

By the definition of f∗i , for each p ∈ Rn+ we have f∗i (pi) ≥ 0 for all i =
1, 2, ..., k. Hence, θ(p) is a increasing function (because f∗i is the increasing
function on Rni

+ for any i = 1, 2, ..., k). Moreover, for each p ∈ Rk+ the function∑k
i=1 fi(x

i)f∗i (pi) is concave, this lead to the feasible set of the subproblem
that defines θ(p) is a convex subset of the X. Therefore, the value of θ(p) is
obtained by solving a convex problem (maximizing a concave function over a
convex compact set).

We now prove that problem (3.3)-(3.5) is equivalent to the following mono-
tonic optimization problem:

max{θ(p)| p ∈ P}. (3.6)

Theorem 3.2. The optimal values in problem (3.6) and problem (3.3)-(3.5)
are equal : θ∗ = q∗. Moreover, if p is an optimal solution of (3.6) then x∗

is an optimal solution of (3.3)-(3.5), where x∗ is a maximizer of the function

q(x) on {x ∈ X :
∑k

i=1 fi(x
i)f∗i (pi) = 1} .
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Proof. Let x be an optimal solution of (3.3)-(3.5), i.e., q(x) = q∗ and exits

p ∈ P such that (x, p) is a maximizer of the function
∑k

i=1 fi(x
i)f∗i (pi) on

X × P , this is equivalent to
∑k

i=1 fi(x
i)f∗i (pi) = 1. Then,

q∗ = q(x)

≤ max

{
q(x) :

k∑
i=1

fi(x
i)f∗i (pi) ≥ 1, x ∈ X

}
= θ(p)

≤ θ∗.

This particularly implies θ∗ > 0.
Conversely, let p be an optimal solution of (3.6), i.e., p ∈ P and θ(p) = θ∗.

We have {x ∈ X :
∑k

i=1 fi(x
i)f∗i (pi) = 1} is nonempty set. Indeed, if

{x ∈ X :
∑k

i=1 fi(x
i)f∗i (pi) = 1} = ∅. This, together with Theorem 2.8

we have

θ∗ = θ(p)

= max

{
q(x) :

k∑
i=1

fi(x
i)f∗i (pi) ≥ 1, x ∈ X

}

= max

{
q(x) :

k∑
i=1

fi(x
i)f∗i (pi) = 1, x ∈ X

}
(Because p ∈ P )

= max ∅
= 0

< θ∗,

which is a contradiction. Let x be a maximizer of the function q(x) on {x ∈
X :

∑k
i=1 fi(x

i)f∗i (pi) = 1}, we have x ∈ XWE and

θ∗ = θ(p)

= max

{
q(x) :

k∑
i=1

fi(x
i)f∗i (pi) ≥ 1, x ∈ X

}

= max

{
q(x) :

k∑
i=1

fi(x
i)f∗i (pi) = 1, x ∈ X

}
= q(x)

≤ q∗.

In summary we have θ∗ = q∗. This particularly implies that x is an optimal
solution of the problem (3.3)-(3.5). �
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�
Note that if p be an optimal solution of (3.6), then {x ∈ X :

∑k
i=1 fi(x

i)f∗i (pi) =
1} is the set of all solutions of the concave maximization problem:

max

{ k∑
i=1

fi(x
i)f∗i (pi) : x ∈ X

}
,

so {x ∈ X :
∑k

i=1 fi(x
i)f∗i (pi) = 1} is a compact convex set in X. Therefore,

max

{
q(x) :

k∑
i=1

fi(x
i)f∗i (pi) = 1, x ∈ X

}
is the problem of maximizing the concave function q(x) over convex compact
set (equivalent to a convex minimizing problem).
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