SOME PROPERTIES OF COMMON FIXED POINT FOR TWO SELF-MAPPINGS ON SOME CONTRACTION MAPPINGS IN QUASI αb-METRIC SPACE

Budi Nurwahyu
Department of Mathematics, Hasanuddin University
Makassar, 90245, Indonesia
e-mail: budinurwahyu@unhas.ac.id

Abstract

This paper proposes the common fixed point theorems and its proof for two selfmappings on some contraction mappings in quasi α b-metric space, through the coincidence point and the weakly compatible mapping.

1. Introduction

We know that b-metric space was introduced by Bakhtin in 1989 [1], and then in 1993 Czerwik [2] used this space to show the properties of fixed point of functions on some types of contraction mapping. However, many authors used b-metric space to show the existence and uniqueness of common fixed point on contraction mapping or expansive mapping [$3,4,5,6,14$], even with using the notion of incidence point and weakly compatible functions [7, 8]. This space developing continuously to become quasi b-metric space, this space is obtained with omitting the symmetric property in b-metric space conditions, and many authors used as dislocated quasi b-metric space to show the existence of fixed point on some contraction mappings $[9,10,11]$. While, quasi b-metric space is extension of quasi b-metric space $[12,13]$.

[^0]The aim of this paper is to show the existence and uniqueness of common fixed point in quasi αb-metric space for some contraction mappings, by using coincidence and weakly compatible functions property.

2. Preliminaries

Definition 2.1. ([1, 2]) Let X be a nonempty set and let $b \geq 1$ be a given real number. Let $d: X \times X \rightarrow[0, \infty)$ be a mapping on X and for all $x, y, z \in X$ the following conditions are satisfied:
(1) $d(x, y)=d(y, x)=0$ if and only if $x=y$;
(2) $d(x, y)=d(y, x)$;
(3) $d(x, y) \leq b(d(x, z)+d(z, y))$.

Then d is called a b-metric on X and (X, d) is called a b-metric space. And (X, d) is a called quasi b-metric space, if the conditions (1) and (3) hold. From the definition of b-metric shows that every b-metric is a quasi b-metric, but the converse is not true.

Now we introduce a generalization of quasi b-metric space by modifying the triangle inequality condition in quasi b-metric space.

Definition 2.2. ([12]) Let X be a nonempty set, $0 \leq \alpha<1$ and $b \geq 1$ be given real number. Let $d: X \times X \rightarrow[0, \infty)$ be a mapping on X and for all $x, y, z \in X$ the following conditions are satisfied:
(1) $d(x, y)=d(y, x)=0$ if and only if $x=y$;
(2) $d(x, y) \leq \alpha d(y, x)+\frac{1}{2} b(d(x, z)+d(z, y))$.

Then d is called a b-metric on X and (X, d) is called a b-metric space. And (X, d) is called a quasi b-metric space, if the conditions (1) and (3) hold. From the definition of b-metric shows that every b-metric is a quasi b-metric, but the converse is not true.

Example 2.3. ([12, 13]) Let $X=R$ and defined $d: X \times X \rightarrow R^{+}$as

$$
d(x, y)= \begin{cases}2 x^{2}+y^{2}, & \text { if } x \neq y \\ 0, & \text { if } x=y\end{cases}
$$

For the first condition of quasi αb-metric, it is clear from definition of function d. While for the second condition, we have to show as follows: For all $x, y, z \in$ X and $x \neq y$, we have

$$
\begin{aligned}
d(x, y) & =2 x^{2}+y^{2} \\
& \leq \frac{5}{2} x^{2}+2 y^{2}+3 z^{2} \\
& =\frac{1}{2}\left(2 y^{2}+x^{2}\right)+\left(\left(2 x^{2}+z^{2}\right)+\left(2 z^{2}+y^{2}\right)\right) \\
& =\frac{1}{2} d(y, x)+\frac{2}{2}(d(x, z)+d(z, y))
\end{aligned}
$$

So we get

$$
d(x, y) \leq \frac{1}{2} d(y, x)+\frac{2}{2}(d(x, z)+d(z, y))
$$

Hence d is a quasi αb-metric with $\alpha=\frac{1}{2}$ and $b=2$.

Definition 2.4. ([12, 13]) Let (X, d) be a quasi αb-metric space. Then a sequence $\left\{x_{n}\right\}$ in (X, d) is said to be convergent to $x \in X$ if $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=$ $\lim _{n \rightarrow \infty} d\left(x, x_{n}\right)=0$, we write $\lim _{n \rightarrow \infty} x_{n}=x$.

Definition 2.5. ([12, 13]) Let (X, d) be a quasi αb-metric space. Then a sequence $\left\{x_{n}\right\}$ in (X, d) is said to be Cauchy in X if $\lim _{n, m \rightarrow \infty} d\left(x_{n}, x_{m}\right)=$ $\lim _{n, m \rightarrow \infty} d\left(x_{m}, x_{n}\right)=0$.

Definition 2.6. ([12, 13]) Let (X, d) be a quasi αb-metric space. Then (X, d) is said to be complete if every Cauchy sequence in X is convergent in X.

Definition 2.7. ([2]) Let X be a nonempty set and let T be a self-mapping on X. Then $x \in X$ is called a fixed point of T, if $T x=x$. We define for all $x \in X, T T^{(n-1)} x=T^{n} x$ with $T^{0} x=x$.

Definition 2.8. ([7, 8]) Let X be a nonempty set and $T_{1}, T_{2}: X \rightarrow X$ be self-mapping. If $T_{1} x=T_{2} x=y$ for some $x \in X$, then y is called a point of coincidence of T_{1} and T_{2}, and x is called a coincidence point of T_{1} and T_{2}.

Definition 2.9. ([7, 8]) Let X be a nonempty set and $T_{1}, T_{2}: X \rightarrow X$ be self-mapping. The pair $\left\{T_{1}, T_{2}\right\}$ is called weakly compatible, if for all $x \in X$, $T_{1} x=T_{2} x$ then $T_{2} T_{1} x=T_{1} T_{2} x$.

For the proof of main theorems, we need a lemma regarding sufficient conditions for the Cauchy sequence in quasi αb-metric space, this lemma has been proved in [12] as follows:

Lemma 2.10. ([12]) Let (X, d) be a quasi αb-metric space with $0 \leq \alpha<1$ and $b \geq 1$, and let $\left\{x_{n}\right\}$ be a sequence in X such that

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=\lim _{n \rightarrow \infty} d\left(x_{n+1}, x_{n}\right)=0 .
$$

Then $\left\{x_{n}\right\}$ is a Cauchy sequence in X.

3. Main Results

Now, we give the main results in this paper.
Theorem 3.1. Let (X, d) be a quasi αb-metric space with $0 \leq \alpha<1$ and $b \geq 1$. Let T_{1} and T_{2} be self-mappings on X such that

$$
\begin{equation*}
d\left(T_{1} x, T_{1} y\right) \leq \frac{\left(p d\left(T_{2} x, T_{1} x\right) d\left(T_{2} x, T_{1} y\right)+q d\left(T_{1} x, T_{2} y\right) d\left(T_{1} y, T_{2} y\right)\right)}{\left(1+d\left(T_{2} x, T_{1} y\right)+d\left(T_{1} x, T_{2} y\right)\right)} \tag{3.1}
\end{equation*}
$$

for all $x, y \in X$, where $0<p, q<1$. If $\left\{T_{1}, T_{2}\right\}$ is weakly compatible, $T_{1}(X) \subseteq$ $T_{2}(X)$ and $T_{2}(X)$ is complete, then T_{1} and T_{2} have a unique common fixed point in X.

Proof. Let $x_{0} \in X$. Then $T_{1} x_{0} \in T_{1}(X)$, it follows from $T_{1}(X) \subseteq T_{2}(X)$ that there exists $x_{1} \in X$ such that $T_{1} x_{0}=T_{2} x_{1}$. Since $x_{1} \in X, T_{1} x_{1} \in T_{1}(X)$. Similarly we have $T_{1} x_{1}=T_{2} x_{2}$ for some $x_{2} \in X$. With repeating this process, we can define a sequence $\left\{x_{n}\right\}$ such that $T_{2} x_{n}=T_{1} x_{n-1}$ for $n=1,2,3, \cdots$. By using (3.1) we have

$$
\begin{aligned}
& d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) \\
& =d\left(T_{1} x_{n-1}, T_{1} x_{n}\right) \\
& \leq \frac{p d\left(T_{2} x_{n-1}, T_{1} x_{n-1}\right) d\left(T_{2} x_{n-1}, T_{1} x_{n}\right)+q d\left(T_{1} x_{n-1}, T_{2} x_{n}\right) d\left(T_{1} x_{n}, T_{2} x_{n}\right)}{1+d\left(T_{2} x_{n-1}, T_{1} x_{n}\right)+d\left(T_{1} x_{n-1}, T_{2} x_{n}\right)} \\
& =\frac{p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right) d\left(T_{2} x_{n-1}, T_{2} x_{n+1}\right)+q d\left(T_{2} x_{n}, T_{2} x_{n}\right) d\left(T_{1} x_{n}, T_{2} x_{n}\right)}{1+d\left(T_{2} x_{n-1}, T_{2} x_{n+1}\right)+q d\left(T_{2} x_{n}, T_{2} x_{n}\right)} \\
& =\frac{p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right) d\left(T_{2} x_{n-1}, T_{2} x_{n+1}\right)}{1+d\left(T_{2} x_{n-1}, T_{2} x_{n+1}\right)} \\
& \leq p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right) .
\end{aligned}
$$

Thus we get

$$
d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) \leq p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right) .
$$

Repeating this process for $n=1,2,3, \cdots$, then we get

$$
d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) \leq p^{n} d\left(T_{2} x_{0}, T_{2} x_{1}\right) .
$$

Now we calculate for $d\left(T_{2} x_{n+1}, T_{2} x_{n}\right)$

$$
\begin{aligned}
& d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \\
& =d\left(T_{1} x_{n}, T_{1} x_{n-1}\right) \\
& \leq \frac{p d\left(T_{2} x_{n}, T_{1} x_{n}\right) d\left(T_{2} x_{n}, T_{1} x_{n-1}\right)+q d\left(T_{1} x_{n}, T_{2} x_{n-1}\right) d\left(T_{1} x_{n-1}, T_{2} x_{n-1}\right)}{1+d\left(T_{2} x_{n}, T_{1} x_{n-1}\right)+d\left(T_{1} x_{n}, T_{2} x_{n-1}\right)} \\
& =\frac{p d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) d\left(T_{2} x_{n}, T_{2} x_{n}\right)+q d\left(T_{2} x_{n+1}, T_{2} x_{n-1}\right) d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)}{1+d\left(T_{2} x_{n}, T_{2} x_{n}\right)+d\left(T_{2} x_{n+1}, T_{2} x_{n-1}\right)} \\
& \leq \frac{q d\left(T_{2} x_{n+1}, T_{2} x_{n-1}\right) d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)}{1+d\left(T_{2} x_{n+1}, T_{2} x_{n-1}\right)} .
\end{aligned}
$$

Thus we get

$$
d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \leq q d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)
$$

Continuing in this process for $n=1,2,3, \cdots$, then we get

$$
d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \leq q^{n} d\left(T_{2} x_{1}, T_{2} x_{0}\right)
$$

Thus we obtain

$$
d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) \leq p^{n} d\left(T_{2} x_{0}, T_{2} x_{1}\right)
$$

and

$$
\begin{equation*}
d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \leq q^{n} d\left(T_{2} x_{1}, T_{2} x_{0}\right) \tag{3.2}
\end{equation*}
$$

Since $0<p, q<1$, it implies from (3.2) that for $n \rightarrow \infty$

$$
d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) \rightarrow 0
$$

and

$$
\begin{equation*}
d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \rightarrow 0 \tag{3.3}
\end{equation*}
$$

Thus by using (3.3) and Lemma 2.10, we obtain that $\left\{T_{2} x_{n}\right\}$ is a Cauchy sequence in $T_{2}(X)$. Since $T_{2}(X)$ is complete, there exists $y^{*} \in T_{2}(X)$ such that

$$
d\left(T_{2} x_{n}, y^{*}\right) \rightarrow 0
$$

and

$$
\begin{equation*}
d\left(y^{*}, T_{2} x_{n}\right) \rightarrow 0, \tag{3.4}
\end{equation*}
$$

for $n \rightarrow \infty$. Since $y^{*} \in T_{2}(X)$, there is $x^{*} \in X$ such that $y^{*}=T_{2} x^{*}$.
We claim that $d\left(T_{1} x_{n}, T_{1} x^{*}\right) \rightarrow 0$ and $d\left(T_{1} x^{*}, T_{1} x_{n}\right) \rightarrow 0$.
From (3.1) we have

$$
\begin{aligned}
& d\left(T_{1} x_{n}, T_{1} x^{*}\right) \\
& \leq \frac{p d\left(T_{2} x_{n}, T_{1} x_{n}\right) d\left(T_{2} x_{n}, T_{1} x^{*}\right)+q d\left(T_{1} x_{n}, T_{2} x^{*}\right) d\left(T_{2} x^{*}, T_{1} x^{*}\right)}{1+d\left(T_{2} x_{n}, T_{1} x^{*}\right)+d\left(T_{1} x_{n}, T_{2} x^{*}\right)} \\
& =\frac{\left(p d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) d\left(T_{2} x_{n}, T_{1} x^{*}\right)+q d\left(T_{2} x_{n+1}, y^{*}\right) d\left(y^{*}, T_{1} x^{*}\right)\right)}{\left(1+d\left(T_{2} x_{n}, T_{1} x^{*}\right)+d\left(T_{2} x_{n+1}, y^{*}\right)\right)} \\
& =\frac{p d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) d\left(T_{2} x_{n}, T_{1} x^{*}\right)}{1+d\left(T_{2} x_{n}, T_{1} x^{*}\right)+d\left(T_{2} x_{n+1}, y^{*}\right)}+\frac{q d\left(T_{2} x_{n+1}, y^{*}\right) d\left(y^{*}, T_{1} x^{*}\right)}{1+d\left(T_{2} x_{n}, T_{1} x^{*}\right)+d\left(T_{2} x_{n+1}, y^{*}\right)} \\
& \leq \frac{p d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) d\left(T_{2} x_{n}, T_{1} x^{*}\right)}{1+d\left(T_{2} x_{n}, T_{1} x^{*}\right)+q d\left(T_{2} x_{n+1}, y^{*}\right) d\left(y^{*}, T_{1} x^{*}\right)} \\
& \leq p d\left(T_{2} x_{n}, T_{2} x_{n+1}\right)+q d\left(T_{2} x_{n+1}, y^{*}\right) d\left(y^{*}, T_{1} x^{*}\right)
\end{aligned}
$$

Thus we have

$$
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \leq p d\left(T_{2} x_{n}, T_{2} x_{n+1}\right)+q d\left(T_{2} x_{n+1}, y^{*}\right) d\left(y^{*}, T_{1} x^{*}\right)
$$

By using (3.2), we get

$$
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \leq p^{n+1} d\left(T_{2} x_{0}, T_{2} x_{1}\right)+q d\left(T_{2} x_{n+1}, y^{*}\right) d\left(y^{*}, T_{1} x^{*}\right)
$$

Since $0<p<1, d\left(T_{2} x_{n}, y^{*}\right) \rightarrow 0, d\left(y^{*}, T_{2} x_{n}\right) \rightarrow 0$ for $n \rightarrow \infty$, then we obtain

$$
\begin{equation*}
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \rightarrow 0 \tag{3.5}
\end{equation*}
$$

And we have

$$
\begin{aligned}
& d\left(T_{1} x^{*}, T_{1} x_{n}\right) \\
& \leq \frac{p d\left(T_{2} x^{*}, T_{1} x^{*}\right) d\left(T_{2} x^{*}, T_{1} x_{n}\right)+q d\left(T_{1} x^{*}, T_{2} x_{n}\right) d\left(T_{1} x_{n}, T_{2} x_{n}\right)}{1+d\left(T_{2} x^{*}, T_{1} x_{n}\right)+d\left(T_{1} x^{*}, T_{2} x_{n}\right)} \\
& =\frac{p d\left(y^{*}, T_{1} x^{*}\right) d\left(y^{*}, T_{2} x_{n+1}\right)+q d\left(T_{1} x^{*}, T_{2} x_{n}\right) d\left(T_{2} x_{n+1}, T_{2} x_{n}\right)}{1+d\left(y^{*}, T_{1} x_{n}\right)+d\left(T_{1} x^{*}, T_{2} x_{n}\right)} \\
& =\frac{p d\left(y^{*}, T_{1} x^{*}\right) d\left(y^{*}, T_{2} x_{n+1}\right)}{1+d\left(y^{*}, T_{1} x_{n}\right)+d\left(T_{1} x^{*}, T_{2} x_{n}\right)}+\frac{q d\left(T_{1} x^{*}, T_{2} x_{n}\right) d\left(T_{2} x_{n}, T_{2} x_{n+1}\right)}{1+d\left(y^{*}, T_{1} x_{n}\right)+d\left(T_{1} x^{*}, T_{2} x_{n}\right)} \\
& \leq \frac{p d\left(y^{*}, T_{1} x^{*}\right) d\left(y^{*}, T_{2} x_{n+1}\right)}{1+d\left(y^{*}, T_{1} x_{n}\right)}+\frac{q d\left(T_{1} x^{*}, T_{2} x_{n}\right) d\left(T_{2} x_{n}, T_{2} x_{n+1}\right)}{1+d\left(T_{1} x^{*}, T_{2} x_{n}\right)} \\
& \leq p d\left(y^{*}, T_{2} x_{n+1}\right)+d\left(T_{2} x_{n}, T_{2} x_{n+1}\right)
\end{aligned}
$$

By using (3.2), we get

$$
d\left(T_{1} x^{*}, T_{1} x_{n}\right) \leq d\left(y^{*}, T_{2} x_{n+1}\right)+q p^{n} d\left(T_{2} x_{0}, T_{2} x_{1}\right)
$$

Since $0<p<1,\left(T_{2} x_{n}, y^{*}\right) \rightarrow 0, d\left(y^{*}, T_{2} x_{n}\right) \rightarrow 0$ for $n \rightarrow \infty$, then we obtain

$$
\begin{equation*}
d\left(T_{1} x^{*}, T_{1} x_{n}\right) \rightarrow 0 \tag{3.6}
\end{equation*}
$$

We will show that y^{*} is a coincidence point of T_{1} and T_{2}. From (2.1) we have

$$
\begin{aligned}
& d\left(T_{1} x^{*}, T_{2} x^{*}\right) \\
& =d\left(T_{1} x^{*}, y^{*}\right) \\
& \leq \alpha d\left(y^{*}, T_{1} x^{*}\right)+\frac{b}{2}\left(d\left(T_{1} x^{*}, T_{1} x_{n}\right)+d\left(T_{1} x_{n}, y^{*}\right)\right) \\
& =\alpha d\left(y^{*}, T_{1} x^{*}\right)+\frac{b}{2}\left(d\left(T_{1} x^{*}, T_{1} x_{n}\right)+d\left(T_{2} x_{n+1}, y^{*}\right)\right) \\
& \leq \alpha\left[\alpha d\left(T_{1} x^{*}, y^{*}\right)+\frac{b}{2}\left(d\left(y^{*}, T_{2} x_{n+1}\right)+d\left(T_{1} x_{n}, T_{1} x^{*}\right)\right)\right] \\
& \quad+\frac{b}{2}\left(d\left(T_{1} x^{*}, T_{1} x_{n}\right)+d\left(T_{2} x_{n+1}, y^{*}\right)\right) .
\end{aligned}
$$

Thus we get

$$
\begin{aligned}
d\left(T_{1} x^{*}, y^{*}\right) \leq & \alpha\left[\alpha d\left(T_{1} x^{*}, y^{*}\right)+\frac{b}{2}\left(d\left(y^{*}, T_{2} x_{n+1}\right)+d\left(T_{1} x_{n}, T_{1} x^{*}\right)\right)\right] \\
& +\frac{b}{2}\left(d\left(T_{1} x^{*}, T_{1} x_{n}\right)+d\left(T_{2} x_{n+1}, y^{*}\right)\right) .
\end{aligned}
$$

By using (3.4), (3.5), (3.6) and $y^{*}=T_{2} x^{*}$ then we get for $n \rightarrow \infty$,

$$
d\left(T_{1} x^{*}, T_{2} x^{*}\right) \rightarrow 0 .
$$

Then we obtain $d\left(T_{1} x^{*}, T_{2} x^{*}\right)=0$. Thus we have $T_{1} x^{*}=T_{2} x^{*}=y^{*}$, this means that y^{*} is a coincidence point of T_{1} and T_{2}.

We will show that T_{1} and T_{2} have only one coincidence point. Suppose there is another coincidence point w^{*} such that $T_{1} x=T_{2} x=w^{*}$ for some $x \in X$. Then we have

$$
\begin{aligned}
d\left(y^{*}, w^{*}\right) & =d\left(T_{1} x^{*}, T_{1} x\right) \\
& \leq \frac{p d\left(T_{2} x^{*}, T_{1} x^{*}\right) d\left(T_{2} x^{*}, T_{1} x\right)+q d\left(T_{1} x^{*}, T_{2} x\right) d\left(T_{1} x, T_{2} x\right)}{1+d\left(T_{2} x^{*}, T_{1} x\right)+d\left(T_{1} x^{*}, T_{2} x\right)} \\
& =\frac{p d\left(T_{2} x^{*}, T_{2} x^{*}\right) d\left(T_{2} x^{*}, T_{1} x\right)+q d\left(T_{1} x^{*}, T_{2} x\right) d\left(T_{2} x, T_{2} x\right)}{1+d\left(T_{2} x^{*}, T_{1} x\right)+d\left(T_{1} x^{*}, T_{2} x\right)} \\
& =0 .
\end{aligned}
$$

Thus we have $y^{*}=w^{*}$. Therefore T_{1} and T_{2} have only one coincidence point in X.

Next, we show that T_{1} and T_{2} have a unique common fixed point. Since T_{1} and T_{2} is weakly compatible, from $T_{1} x^{*}=T_{2} x^{*}=y^{*}$, we have $T_{1} T_{2} x^{*}=$ $T_{2} T_{1} x^{*}$. Thus we get

$$
T_{1} y^{*}=T_{1} T_{2} x^{*}=T_{2} T_{1} x^{*}=T_{2} y^{*} .
$$

Therefore from (3.1) we have

$$
\begin{aligned}
d\left(y^{*}, T_{1} y^{*}\right) & =d\left(T_{1} x^{*}, T_{1} y^{*}\right) \\
& \leq \frac{p d\left(T_{2} x^{*}, T_{1} x^{*}\right) d\left(T_{2} x^{*}, T_{1} y^{*}\right)+q d\left(T_{1} x^{*}, T_{2} y^{*}\right) d\left(T_{1} y^{*}, T_{2} y^{*}\right)}{1+d\left(T_{2} x^{*}, T_{1} y^{*}\right)+d\left(T_{1} x^{*}, T_{2} y^{*}\right)} \\
& =\frac{p d\left(y^{*}, y^{*}\right) d\left(y^{*}, T_{1} y^{*}\right)+q d\left(y^{*}, T_{2} y^{*}\right) d\left(T_{2} y^{*}, T_{2} y^{*}\right)}{1+d\left(y^{*}, T_{1} y^{*}\right)+d\left(T_{1} x^{*}, T_{2} y^{*}\right)} \\
& =0 .
\end{aligned}
$$

Thus we get $d\left(y^{*}, T_{1} y^{*}\right)=0$, it implies that $y^{*}=T_{1} y^{*}$ is a fixed point of T_{1}. Since $T_{1} y^{*}=T_{2} y^{*}$, we have $y^{*}=T_{1} y^{*}=T_{2} y^{*}$. Hence, y^{*} is a common fixed point of T_{1} and T_{2}.

Furthermore, we will show that T_{1} and T_{2} have a unique common fixed point in X. Suppose there is another common fixed point s^{*} such that $T_{1} s^{*}=$ $T_{2} s^{*}=s^{*}$. Then, from (3.2) we have

$$
\begin{aligned}
d\left(y^{*}, s^{*}\right) & =d\left(T_{1} y^{*}, T_{1} s^{*}\right) \\
& \leq \frac{p d\left(y^{*}, y^{*}\right) d\left(T_{2} y^{*}, T_{1} s^{*}\right)+q d\left(T_{1} y^{*}, T_{2} s^{*}\right) d\left(s^{*}, s^{*}\right)}{1+d\left(T_{2} y^{*}, T_{1} s^{*}\right)+d\left(T_{1} y^{*}, T_{2} s^{*}\right)} \\
& =0 .
\end{aligned}
$$

Thus we get $d\left(y^{*}, s^{*}\right)=d\left(T_{1} y^{*}, T_{1} s^{*}\right)=0$, it implies $y^{*}=s^{*}$. Hence T_{1} and T_{2} have a unique common fixed point in X.

Theorem 3.2. Let (X, d) be a quasi αb-metric space with $0 \leq \alpha<1$ and $b \geq 1$. Let T_{1} and T_{2} be self-mappings on X such that $T_{1}(X) \subseteq T_{2}(X), T_{2}(X)$ be complete and

$$
\begin{equation*}
d\left(T_{1} x, T_{1} y\right) \leq p d\left(T_{2} x, T_{2} y\right)+q d\left(T_{2} y, T_{2} x\right) \tag{3.7}
\end{equation*}
$$

for all $x, y \in X$, where $p, q>0, p+q<1$. If $\left\{T_{1}, T_{2}\right\}$ is weakly compatible, then T_{1} and T_{2} have a unique common fixed point in X.

Proof. Let $x_{0} \in X$. Then $T_{1} x_{0} \in T_{1}(X)$, it implies there exists $x_{1} \in X$ such that $T_{1} x_{0}=T_{2} x_{1}$, from $T_{1}(X) \subseteq T_{2}(X)$. Since $x_{1} \in X, T_{1} x_{1} \in T_{1}(X)$. Similarly we have $T_{1} x_{1}=T_{2} x_{2}$ for some $x_{2} \in X$. With repeating this process, we can define a sequence $\left\{x_{n}\right\}$ such that $T_{2} x_{n}=T_{1} x_{n-1}$ for $n=1,2,3, \cdots$. By using (3.7) we have that

$$
\begin{aligned}
d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) & =d\left(T_{1} x_{n-1}, T_{1} x_{n}\right) \\
& \leq p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right)+q d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) & =d\left(T_{1} x_{n}, T_{1} x_{n-1}\right) \\
& \leq p d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)+q d\left(T_{2} x_{n-1}, T_{2} x_{n}\right) .
\end{aligned}
$$

So we have

$$
\begin{aligned}
& d\left(T_{2} x_{n}, T_{2} x_{n+1}\right)+d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \\
& \leq(p+q)\left(d\left(T_{2} x_{n-1}, T_{2} x_{n}\right)+q d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)\right) .
\end{aligned}
$$

Continuning this process, we get

$$
d\left(T_{2} x_{n}, T_{2} x_{n+1}\right)+d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \leq(p+q)^{n}\left(d\left(T_{2} x_{0}, T_{2} x_{1}\right)+q d\left(T_{2} x_{1}, T_{2} x_{0}\right)\right) .
$$

Thus we have

$$
d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) \leq(p+q)^{n}\left(d\left(T_{2} x_{0}, T_{2} x_{1}\right)+q d\left(T_{2} x_{1}, T_{2} x_{0}\right)\right)
$$

and

$$
d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \leq(p+q)^{n}\left(d\left(T_{2} x_{0}, T_{2} x_{1}\right)+q d\left(T_{2} x_{1}, T_{2} x_{0}\right)\right) .
$$

From $0<p+q<1$, for $n \rightarrow \infty$, we get

$$
\begin{equation*}
d\left(T_{2} x_{n}, T_{2} x_{(n+1)}\right) \rightarrow 0, \quad d\left(T_{2} x_{(n+1)}, T_{2} x_{n}\right) \rightarrow 0 \tag{3.8}
\end{equation*}
$$

By using Lemma 2.10, we get that $\left\{T_{2} x_{n}\right\}$ is a Cauchy sequence in $T_{2}(X)$. And since $T_{2}(X)$ is complete, there exists $y^{*} \in T_{2}(X)$ such that for $n \rightarrow \infty$

$$
\begin{equation*}
d\left(T_{2} x_{n}, y^{*}\right) \rightarrow 0, \quad d\left(y^{*}, T_{2} x_{n}\right) \rightarrow 0 \tag{3.9}
\end{equation*}
$$

Since $y^{*} \in T_{2}(X)$, there is x^{*} in X such that $y^{*}=T_{2} x^{*}$.
Claim that $d\left(T_{1} x_{n}, T_{1} x^{*}\right) \rightarrow 0$ and $d\left(T_{1} x^{*}, T_{1} x_{n}\right) \rightarrow 0$.
From (3.7) we have

$$
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \leq p d\left(T_{2} x_{n}, T_{2} x^{*}\right)+q d\left(T_{2} x^{*}, T_{2} x_{n}\right)
$$

and

$$
d\left(T_{1} x^{*}, T_{1} x_{n}\right) \leq p d\left(T_{2} x^{*}, T_{2} x_{n}\right)+q d\left(T_{2} x_{n}, T_{2} x^{*}\right)
$$

Thus we have

$$
\begin{aligned}
d\left(T_{1} x_{n}, T_{1} x^{*}\right)+d\left(T_{1} x^{*}, T_{1} x_{n}\right) & \leq(p+q)\left(d\left(T_{2} x_{n}, T_{2} x^{*}\right)+d\left(T_{2} x^{*}, T_{2} x_{n}\right)\right) \\
& =(p+q)\left(d\left(T_{2} x_{n}, y^{*}\right)+d\left(y^{*}, T_{2} x_{n}\right)\right) .
\end{aligned}
$$

Thus we get

$$
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \leq(p+q)\left(d\left(T_{2} x_{n}, y^{*}\right)+d\left(y^{*}, T_{2} x_{n}\right)\right)
$$

and

$$
\left.d\left(T_{1} x^{*}, T_{1} x_{n}\right)\right) \leq(p+q)\left(d\left(T_{2} x_{n}, y^{*}\right)+d\left(y^{*}, T_{2} x_{n}\right)\right) .
$$

By using (3.9), for $n \rightarrow \infty$ we get

$$
\begin{equation*}
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \rightarrow 0 \text { and } d\left(T_{1} x^{*}, T_{1} x_{n}\right) \rightarrow 0 . \tag{3.10}
\end{equation*}
$$

From (2.1) we have

$$
\begin{aligned}
d\left(T_{1} x^{*}, T_{2} x^{*}\right) \leq & \frac{1}{\left(1-\alpha^{2}\right)} \frac{b}{2}\left(d\left(y^{*}, T_{2} x_{n+1}\right)+d\left(T_{1} x_{n}, T_{1} x^{*}\right)\right) \\
& +\frac{b}{2}\left(d\left(T_{1} x^{*}, T_{1} x_{n}\right)+d\left(T_{2} x_{n+1}, y^{*}\right)\right) .
\end{aligned}
$$

Thus by (3.9), (3.10) and for $n \rightarrow \infty$, we get $d\left(T_{1} x^{*}, T_{2} x^{*}\right)=0$, this means that $T_{1} x^{*}=T_{2} x^{*}=y^{*}$. Thus T_{1} and T_{2} have coincidence point in X.

Next, we show the uniqueness of the coincidence point of T_{1} and T_{2}. Suppose there is another coincidence point w^{*} such that $T_{1} x=T_{2} x=w^{*}$ for some $x \in X$. Then we have

$$
\begin{aligned}
d\left(y^{*}, w^{*}\right) & =d\left(T_{1} x^{*}, T_{1} x\right) \\
& \leq p d\left(T_{2} x^{*}, T_{2} x\right)+q d\left(T_{2} x, T_{2} x^{*}\right) \\
& =p d\left(y^{*}, w^{*}\right)+q d\left(w^{*}, y^{*}\right) d\left(w^{*}, y^{*}\right) \\
& \leq p d\left(w^{*}, y^{*}\right)+q d\left(y^{*}, w^{*}\right) .
\end{aligned}
$$

Thus we have

$$
d\left(y^{*}, w^{*}\right)+d\left(w^{*}, y^{*}\right) \leq(p+q)\left(d\left(y^{*}, w^{*}\right)+d\left(w^{*}, y^{*}\right)\right)
$$

Thus we get

$$
(1-p-q)\left(d\left(y^{*}, w^{*}\right)+d\left(w^{*}, y^{*}\right)\right) \leq 0 .
$$

Since $p+q<1$, we get $d\left(y^{*}, w^{*}\right)=0$, this means that $y^{*}=w^{*}$.
Claim that T_{1} and T_{2} have a unique common fixed point in X. From (3.7) we have

$$
\begin{align*}
d\left(y^{*}, T_{1} y^{*}\right) & =d\left(T_{1} x^{*}, T_{1} y^{*}\right) \\
& \leq p d\left(T_{2} x^{*}, T_{2} y^{*}\right)+q d\left(T_{2} y^{*}, T_{2} x^{*}\right) . \tag{3.11}
\end{align*}
$$

Since $\left\{T_{1}, T_{2}\right\}$ is weakly compatible, from $T_{1} x^{*}=T_{2} x^{*}=y^{*}$, we can have $T_{1} T_{2} x^{*}=T_{2} T_{1} x^{*}$. Thus we get

$$
\begin{equation*}
T_{1} y^{*}=T_{1} T_{2} x^{*}=T_{2} T_{1} x^{*}=T_{2} y^{*} . \tag{3.12}
\end{equation*}
$$

Hence, from (3.11) we get

$$
\begin{aligned}
d\left(y^{*}, T_{1} y^{*}\right) & \leq p d\left(T_{2} x^{*}, T_{2} y^{*}\right)+q d\left(T_{2} y^{*}, T_{2} x^{*}\right) \\
& =p d\left(y^{*}, T_{1} y^{*}\right)+q d\left(T_{1} y^{*}, y^{*}\right) .
\end{aligned}
$$

Similarly, we have

$$
d\left(T_{1} y^{*}, y^{*}\right) \leq p d\left(T_{1} y^{*}, y^{*}\right)+q d\left(y^{*}, T_{1} y^{*}\right) .
$$

Thus we have

$$
(1-p-q)\left(d\left(y^{*}, T_{1} y^{*}\right)+d\left(T_{1} y^{*}, y^{*}\right)\right) \leq 0 .
$$

Since $p+q<1$, we get $d\left(y^{*}, T_{1} y^{*}\right)=0$ and $d\left(T_{1} y^{*}, y^{*}\right)=0$, this means that $y^{*}=T_{1} y^{*}$. From using (3.12) we get $T_{2} y^{*}=T_{1} y^{*}=y^{*}$. Thus y^{*} is a unique common fixed point of T_{1} and T_{2}.

Theorem 3.3. Let (X, d) be a quasi αb-metric space with $0 \leq \alpha<1$ and $b \geq 1$. Let T_{1} and T_{2} be self-mappings on X such that $T_{1}(X) \subseteq T_{2}(X), T_{2}(X)$ be complete and

$$
\begin{equation*}
d\left(T_{1} x, T_{1} y\right) \leq \frac{p d\left(T_{2} x, T_{2} y\right)+q d\left(T_{1} x, T_{2} y\right) d\left(T_{2} x, T_{1} y\right)}{1+d\left(T_{1} x, T_{2} y\right)+d\left(T_{2} x, T_{1} y\right)} \tag{3.13}
\end{equation*}
$$

for all $x, y \in X$, where $p, q>0, p+q<1$. If $\left\{T_{1}, T_{2}\right\}$ is weakly compatible, then T_{1} and T_{2} have a unique common fixed point in X.

Proof. Let $x_{0} \in X$, then $T_{1} x_{0} \in T_{1}(X)$, it implies there exists $x_{1} \in X$ such that $T_{1} x_{0}=T_{2} x_{1}$, since $T_{1}(X) \subseteq T_{2}(X)$. From $x_{1} \in X, T_{1} x_{1} \in T_{1}(X)$. Similarly we have $T_{1} x_{1}=T_{2} x_{2}$ for some $x_{2} \in X$. With repeating this process, we can define a sequence $\left\{x_{n}\right\}$ such that $T_{2} x_{n}=T_{1} x_{n-1}$ for $n=1,2,3, \cdots$. So by using (3.13) we have

$$
\begin{aligned}
& d\left(T_{2} x_{n}, T_{2} x_{n+1}\right) \\
& =d\left(T_{1} x_{n-1}, T_{1} x_{n}\right) \\
& \leq p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right)+\frac{q d\left(T_{1} x_{n-1}, T_{2} x_{n}\right) d\left(T_{2} x_{n-1}, T_{1} x_{n}\right)}{1+d\left(T_{1} x_{n-1}, T_{2} x_{n}\right)+d\left(T_{2} x_{n-1}, T_{1} x_{n}\right)} \\
& \leq p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right)+\frac{q d\left(T_{2} x_{n}, T_{2} x_{n}\right) d\left(T_{2} x_{n-1}, T_{1} x_{n}\right)}{1+d\left(T_{2} x_{n}, T_{2} x_{n}\right)+d\left(T_{2} x_{n-1}, T_{1} x_{n}\right)} \\
& =p d\left(T_{2} x_{n-1}, T_{2} x_{n}\right) .
\end{aligned}
$$

Continuning this process, we get

$$
d\left(T_{2} x_{n}, T_{2} x_{(n+1)}\right) \leq p^{n} d\left(T_{2} x_{0}, T_{2} x_{1}\right) .
$$

And also we consider that

$$
\begin{aligned}
& d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \\
& =d\left(T_{1} x_{n}, T_{1} x_{n-1}\right) \\
& \leq p d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)+\frac{q d\left(T_{1} x_{n}, T_{2} x_{n-1}\right) d\left(T_{2} x_{n}, T_{1} x_{n-1}\right)}{1+d\left(T_{1} x_{n}, T_{2} x_{n-1}\right)+d\left(T_{2} x_{n}, T_{1} x_{(n-1)}\right)} \\
& \leq p d\left(T_{2} x_{n}, T_{2} x_{n-1}\right)+\frac{q d\left(T_{1} x_{n}, T_{2} x_{n-1}\right) d\left(T_{2} x_{n}, T_{2} x_{n}\right)}{\left.1+d\left(T_{1} x_{n}, T_{2} x_{n-1}\right)+d\left(T_{2} x_{n}, T_{2} x_{n}\right)\right)} \\
& =p d\left(T_{2} x_{n}, T_{2} x_{n-1}\right) .
\end{aligned}
$$

Continuing this process, we get

$$
d\left(T_{2} x_{n+1}, T_{2} x_{n}\right) \leq p^{n} d\left(T_{2} x_{1}, T_{2} x_{0}\right) .
$$

Since $0<p+q<1$, for $n \rightarrow \infty$ we get

$$
d\left(T_{2} x_{n}, T_{2} x_{(n+1)}\right) \rightarrow 0 \quad \text { and } \quad d\left(T_{2} x_{(n+1)}, T_{2} x_{n}\right) \rightarrow 0
$$

So from Lemma 2.10, we know that $\left\{T_{2} x_{n}\right\}$ is a Cauchy sequence in $T_{2}(X)$. Since $T_{2}(X)$ is complete, there exists $y^{*} \in T_{2}(X)$ such that for $n \rightarrow \infty$

$$
\begin{equation*}
d\left(T_{2} x_{n}, y^{*}\right) \rightarrow 0, \quad d\left(y^{*}, T_{2} x_{n}\right) \rightarrow 0 \tag{3.14}
\end{equation*}
$$

Since $y^{*} \in T_{2}(X)$, there is $x^{*} \in X$ such that $y^{*}=T_{2} x^{*}$.
We will show that for $n \rightarrow \infty$,

$$
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \rightarrow 0 \quad \text { and } \quad d\left(T_{1} x^{*}, T_{1} x_{n}\right) \rightarrow 0 .
$$

From (3.13) we have

$$
\begin{aligned}
d\left(T_{1} x_{n}, T_{1} x^{*}\right) & \leq p d\left(T_{2} x_{n}, T_{2} x^{*}\right)+\frac{q d\left(T_{1} x_{n}, T_{2} x^{*}\right) d\left(T_{2} x_{n}, T_{1} x^{*}\right)}{1+d\left(T_{1} x_{n}, T_{2} x^{*}\right)+d\left(T_{2} x_{n}, T_{1} x^{*}\right)} \\
& \leq p d\left(T_{2} x_{n}, T_{2} x^{*}\right)+\frac{q d\left(T_{1} x_{n}, T_{2} x^{*}\right) d\left(T_{2} x_{n}, T_{1} x^{*}\right)}{1+d\left(T_{2} x_{n}, T_{1} x^{*}\right)} \\
& \leq p d\left(T_{2} x_{n}, T_{2} x^{*}\right)+q d\left(T_{1} x_{n}, T_{2} x^{*}\right) \\
& =p d\left(T_{2} x_{n}, y^{*}\right)+q d\left(T_{1} x_{n}, y^{*}\right) .
\end{aligned}
$$

By using (3.14), for $n \rightarrow \infty$, we get

$$
\begin{equation*}
d\left(T_{1} x_{n}, T_{1} x^{*}\right) \rightarrow 0 . \tag{3.15}
\end{equation*}
$$

From (3.13) we have

$$
\begin{aligned}
d\left(T_{1} x^{*}, T_{1} x_{n}\right) & \leq p d\left(T_{2} x^{*}, T_{2} x_{n}\right)+\frac{q d\left(T_{1} x^{*}, T_{2} x_{n}\right) d\left(T_{2} x^{*}, T_{1} x_{n}\right)}{1+d\left(T_{1} x^{*}, T_{2} x_{n}\right)+d\left(T_{2} x^{*}, T_{1} x_{n}\right)} \\
& \leq p d\left(T_{2} x^{*}, T_{2} x_{n}\right)+\frac{q d\left(T_{1} x^{*}, T_{2} x_{n}\right) d\left(T_{2} x^{*}, T_{1} x_{n}\right)}{1+d\left(T_{1} x^{*}, T_{2} x_{n}\right)} \\
& \leq p d\left(y^{*}, T_{2} x_{n}\right)+q d\left(y^{*}, T_{2} x_{n+1}\right) .
\end{aligned}
$$

By using (3.14), for $n \rightarrow \infty$, we get

$$
\begin{equation*}
d\left(T_{1} x^{*}, T_{1} x_{n}\right) \rightarrow 0 . \tag{3.16}
\end{equation*}
$$

Claim that T_{1} and T_{2} have only one coincidence point.
From (2.1), for $y^{*}=T_{2} x^{*}$, we can have

$$
\begin{aligned}
d\left(T_{1} x^{*}, T_{2} x^{*}\right) \leq & \frac{1}{\left(1-\alpha^{2}\right)} \frac{\alpha b}{2}\left(d\left(y^{*}, T_{2} x_{(n+1)}\right)+d\left(T_{1} x_{n}, T_{1} x^{*}\right)\right) \\
& +\frac{b}{2}\left(d\left(T_{1} x^{*}, T_{1} x_{n}\right)+d\left(T_{2} x_{(n+1)}, y^{*}\right)\right) .
\end{aligned}
$$

Then by using (3.14), (3.15), (3.16) and for $n \rightarrow \infty$, we obtain

$$
d\left(T_{1} x^{*}, T_{2} x^{*}\right)=0
$$

Thus we have $T_{1} x^{*}=T_{2} x^{*}=y^{*}$. This means that y^{*} is a coincidence point of T_{1} and T_{2}.

Suppose there is another coincidence point w^{*} such that $T_{1} x=T_{2} x=w^{*}$ for some $x \in X$. Then we have

$$
\begin{aligned}
d\left(y^{*}, w^{*}\right) & =d\left(T_{1} x^{*}, T_{1} x\right) \\
& \leq p d\left(T_{2} x^{*}, T_{2} x\right)+\frac{q d\left(T_{1} x^{*}, T_{2} x\right) d\left(T_{2} x^{*}, T_{1} x\right)}{1+d\left(T_{1} x^{*}, T_{2} x\right)+d\left(T_{2} x^{*}, T_{1} x\right)} \\
& =p d\left(y^{*}, w^{*}\right)+\frac{q d\left(y^{*}, w^{*}\right) d\left(y^{*}, w^{*}\right)}{1+d\left(y^{*}, w^{*}\right)+d\left(y^{*}, w^{*}\right)} \\
& \leq p d\left(y^{*}, w^{*}\right)+q d\left(y^{*}, w^{*}\right) .
\end{aligned}
$$

Thus we get

$$
(1-p-q) d\left(y^{*}, w^{*}\right) \leq 0 .
$$

Since $0<p+q<1$, we get $d\left(y^{*}, w^{*}\right)=0$. This means that $y^{*}=w^{*}$. Therefore T_{1} and T_{2} have only one coincidence point in X.

Claim that T_{1} and T_{2} have a unique common fixed point in X. From (3.14) we have

$$
\begin{align*}
d\left(y^{*}, T_{1} y^{*}\right) & =d\left(T_{1} x^{*}, T_{1} y^{*}\right) \\
& \leq p d\left(T_{2} x^{*}, T_{2} y^{*}\right)+\frac{q d\left(T_{1} x^{*}, T_{2} y^{*}\right) d\left(T_{2} x^{*}, T_{1} y^{*}\right)}{1+d\left(T_{1} x^{*}, T_{2} y^{*}\right)+d\left(T_{2} x^{*}, T_{1} y^{*}\right)} . \tag{3.17}
\end{align*}
$$

Since $\left\{T_{1}, T_{2}\right\}$ is weakly compatible, from $T_{1} x^{*}=T_{2} x^{*}=y^{*}$, we have $T_{1} T_{2} x^{*}=$ $T_{2} T_{1} x^{*}$. Thus we get

$$
\begin{equation*}
T_{1} y^{*}=T_{1} T_{2} x^{*}=T_{2} T_{1} x^{*}=T_{2} y^{*} \tag{3.18}
\end{equation*}
$$

Thus from (3.17) and (3.18) we get

$$
\begin{aligned}
d\left(y^{*}, T_{1} y^{*}\right) & \leq p d\left(T_{2} x^{*}, T_{1} y^{*}\right)+\frac{q d\left(T_{1} x^{*}, T_{1} y^{*}\right) d\left(T_{2} x^{*}, T_{1} y^{*}\right)}{1+d\left(T_{1} x^{*}, T_{1} y^{*}\right)+d\left(T_{2} x^{*}, T_{1} y^{*}\right)} \\
& =p d\left(y^{*}, T_{1} y^{*}\right)+\frac{q d\left(y^{*}, T_{1} y^{*}\right) d\left(y^{*}, T_{1} y^{*}\right)}{1+d\left(y^{*}, T_{1} y^{*}\right)+d\left(y^{*}, T_{1} y^{*}\right)} \\
& \leq p d\left(y^{*}, T_{1} y^{*}\right)+q d\left(y^{*}, T_{1} y^{*}\right) .
\end{aligned}
$$

Thus we get

$$
(1-p-q) d\left(y^{*}, T_{1} y^{*}\right) \leq 0 .
$$

Since $0<p+q<1$, we get $d\left(y^{*}, T_{1} y^{*}\right)=0$. This means that $y^{*}=T_{1} y^{*}$. So by using (3.18), we get $T_{2} y^{*}=T_{1} y^{*}=y^{*}$. Hence y^{*} is a unique common fixed point of T_{1} and T_{2}.

Acknowledgments: This work was supported by BMIS Research Project 2017 No. 3556/UN.4.3.2/LK.23/2017 Hasanuddin University, and thanks for
the anonymous referees for their valuable suggestions to towards the improvement of the manuscript.

References

[1] I.A. Bakhtin, The contraction mapping principle in quasi b-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26-37.
[2] S. Czerwik, Contraction Mappings in b-Metric Space, Acta. Math. Inf. Univ. Ostravinsis, 1 (1993), 5-11.
[3] M. Abbas, I.Z . Chema and A. Razani, Existence of common fixed point for b-metric rational type contraction, Filomat, 30(6) (2016), 1413-1429.
[4] S.K. Mohanta, Common fixed points in b-metric spaces endowed with a graph, Matematicki Vesnik, 68(2) (2016), 140-154.
[5] Z .Mostefaoui, M. Bousselsal and J.K. Kim, Some results in fixed point theory concerning rectangular b-metric spaces Nonlinear Funct. Anal. Appl., 24(1) (2019), 49-59.
[6] J.R. Roshan, N. Shobkolaei, S. Sedghi and M. Abbas, Common fixed point of four maps in b-metric spaces, Hacettepe J. Math. and Statistics, 43(4) (2014). 613-624.
[7] G.V.R. Babu, and G.N. Alemayehu, Common fixed point theorems for occasionally weakly compatible maps satisfying property (E. A) using an inequality involving quadratic terms, Appl. Math. Letters, 24(6) (2011), 975-981.
[8] M. Abbas, V. Rakoevi and A. Iqbal, Coincidence and common fixed points of Perov type generalized iri-contraction mappings, Mediterranean J. of Math., 13(5) (2016). 3537-3555.
[9] H. Aydi, M.F. Bota, E. Karapnar and S. Mitrovi, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory and Appl., 2012:88 (2012),
[10] C. Klin-eam and C. Suanoom, Dislocated quasi-b-metric spaces and fixed point theorems for cyclic contractions, Fixed Point Theory and Appl., 2015:74 (2015).
[11] M.U. Rahman and M. Sarwar, Dislocated quasi b-metric space and fixed point theorems, Electronic J. Math. Anal. Appl., 4(2) (2016), 16-24.
[12] B. Nurwahyu, Fixed point theorems for the multivalued contraction mapping in the quasi αb-metric space, Far East J. Math. Sciences, 102(9) (2017), 2105-2119.
[13] B. Nurwahyu, Fixed point theorems for generalized contraction mappings in quasi αb metric space, Far East J. Math. Sciences, 101(8) (2017), 1813-1832.
[14] M. Singh, N. Singh, O.P. Chauhan and M. Younis, Coupled fixed point theorems for single-valued mappings in complete b-metric spaces, Nonlinear Funct. Anal. Appl., 22(1) (2017), 77-86.

[^0]: ${ }^{0}$ Received June 24, 2019. Revised November 17, 2019.
 ${ }^{0} 2010$ Mathematics Subject Classification: 47H10, 54 H 25.
 ${ }^{0}$ Keywords: Fixed point, quasi αb-metric space, contraction mapping, incidence point, weakly compatible.

