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Abstract. We consider the stability and bifurcation of the famous Brusselator chemical

reaction-diffusion model. To reveal the mechanism with which the transition between the

fast and slow process happens, we employ the slow-fast analysis method. For the stabil-

ity, it is done through coordinate transformation in order to separate the system into slow

and fast subsystems. We will use the integral sliding mode control law to show the anti-

synchronization of the model for all initial conditions.

1. Introduction and Preliminaries

We consider a famous chemical reaction-diffusion model with oscillations
commonly called the Brusselator model. This reaction usually reaches a state
of homogeneity and equilibrium quickly which makes it different from most of
chemical reactions, see [6, 8, 11, 13].

The partial differential equations governing this reaction have the form:

∂u

∂t
= α− (β + 1)u+ u2v + k1

∂2u

∂x2

∂v

∂t
= βu− u2v + k2

∂2v

∂x2
(1.1)
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where α, β, k1, k2 are constants and u(t), v(t) are activator and inhibitor
variables respectively. In the absence of diffusion, that is, when k1 = k2 = 0,
the system becomes

∂u

∂t
= α− (β + 1)u+ u2v,

∂v

∂t
= βu− u2v. (1.2)

Notice that α, β are external system parameters that determines the system
dynamics. Hence the variation of these parameters have effect on the time
scale of the system and the shape of the limit cycles.

Recently this model was investigated, both theoretically and numerically,
to study its dynamics, stability of some equilibrium points, bifurcation, syn-
chronization and forced brusselator reactions. For example, Hopf-bifurcation,
double Hopf-bifurcation and steady state bifurcation were investigated by
[6, 14, 15]. The dynamics and control of the system was investigated by [11],
chaos was considered by [2, 5, 9] while synchronization was investigated by
[5, 12]. For computation and numerical considerations one can refer to [1, 7].

As mentioned earlier, the parameters α and β determine the dynamics of
the system. For example, if we choose α = 1 and β = 2, the system will almost
be based on a single time scale and the limit cycle will be similar to a simple
harmonic vibration, see Figures 1 and 2.

While if α is held fixed and β is allowed to increase such that β≫ α, then
the system will exhibit dynamical behavior with two time scales. In this case
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Figure 1: α = 1 and β = 2 Figure 2: α = 1 and β = 2
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Figure 3: α = 1 and β = 8 Figure 4: α = 1 and β = 8
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the system will interact with a slow and fast process, see for example Figures
3 and 4 (α = 1 and β = 8).

Lemma 1.1. (i) The system (1.2) has one steady state solution (referred

to as fixed point in some cases) which is u = α and v =
β

α
.

(ii) The system is stable if and only if β < α2+1 and unstable if β > α2+1.

Proof. The first part is clear and is obtained by substituting u2v from the
second equation of (1.2) in first equation. For the second part, notice that the
Jacobian of the system at this solution is given by

J =

[
β − 1 α2

−β −α2

]
.

The characteristic polynomial of J is

λ2 +
(
α2 − β + 1

)
λ+ α2 = 0. (1.3)

The result is clear again since the system is stable if and only if β < α2 + 1
(see Figures 5 and 6) and unstable if β > α2 + 1 which means in the unstable
case we will have a limit cycle (see Figures 7 and 8), Hairer et al [3]. �
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Figure 5: α = 1 and β = 1 Figure 6: α = 1 and β = 1

t

0 50 100 150 200 250 300

u
(t

)

0

1

2

3

4

5

6

7

8

u(t)

v(t)

u(t)

0 1 2 3 4 5 6 7

v
(t

)

0

1

2

3

4

5

6

7

8

Figure 7: α = 1 and β = 4 Figure 8: α = 1 and β = 4



192 B. S. Attili

t

0 50 100 150 200 250 300

u
(t

)

0

1

2

3

4

5

6

u(t)

v(t)

u(t)

0 1 2 3 4 5 6

v
(t

)

0

1

2

3

4

5

6

Figure 9: α = 2 and β = 5 Figure 10: α = 2 and β = 5

Notice also that the case β = α2 + 1 leads a characteristic polynomial with
purely imaginary eigenvalues and leads to Hopf bifurcation, see Figures 9 and
10 .

To reveal the mechanism with which the transition between the fast and
slow process happens, one needs to employ the slow-fast analysis method. It
should be mentioned that this method can not be used on the system given
in (1.2) directly since the parameters are present in both equations of (1.2).
This suggests a coordinate transformation in order to facilitate the separation
of the system into fast slow subsystems. Hence for β ≫ α, introduce the
transformation

x = v, y = u+ x (1.4)

which when substituted into (1.2) we obtain

(a)
dx

dt
= β (y − x)− (y − x)2 x, (b)

dy

dt
= α− (y − x) . (1.5)

This leads to the separation of the parameters α and β. Note also that the
new system (1.5) is topologically equivalent to (1.2) since the transformation
is invertible. Here x and y denote the fast and slow subsystems respectively
provided β≫ α and β≫ 1.

2. Main Results

In this section, we will discuss two results, one related to stability and
bifurcation of the fast system and the other related to the anti-syncronization
of the Brusselator system.

2.1. Stability and Bifurcation of the Fast System: We will discuss the
stability and the bifurcation of the fast system given by (1.5)-(a). In this
discussion, the slow variable y is considered as the bifurcation parameter.
Now the equilibrium of the fast subsystem have to satisfy

β (y − x)− (y − x)2 x = 0 or (y − x) [β − (y − x) x] = 0.
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Leading to

y = x, y =
x2 + β

x
, (2.1)

see Figure 11.

Let us investigate the spectrum of the Jacobian of the system at the regions
decided by the equilibrium conditions given in (2.1). Here the Jacobian is
given by

J =

[
−β − 2 (y − x) (−x)− (y − x)2 β − 2 (y − x) x

1 −1

]
.

The determinant of the matrix J is

det[J ] = (y − x)2

and its trace is Tra[J ] = −β − 1 + 2x (y − x) − (y − x)2 leading to the
eigenvalues of J given by

λ =
Tra[J ]±

√
Tra[J ]2 − 4 det[J ]

2
.

Consider the following cases:

(a) When y = x, then Tra[J ] = − (β + 1) and det[J ] = 0. Hence λ+ =
0, λ− = −β − 1.

(b) When 0 < x <
√
β and since y =

x2 + β

x
, then 0 < y < 2

√
β. Hence

det[J ] ≤
(

2
√
β −

√
β
)2

= β

and

Tra[J ] ≤ −β − 1 + 2
√
β
(

2
√
β −

√
β
)
−
(

2
√
β −

√
β
)2

= −β − 1 + 2β − β = −1.
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This leads to λ ≤ −1±
√

1− 4β

2
.

(c) When the parameter y > 2
√
β, consider (1.5)-(a) given by dx

dt =

β (y − x) − (y − x)2 x.To analyze the attraction domain of this equa-
tion, if we let y − x = z and with y considered the bifurcation param-
eter, then dz = −dx and the equation reduces to a variable separable
first order differential equation of the form

dz

βz + z2 (z − y)
= −dt or

dz

z [z2 − 2z + β]
= −dt.

Integrating using partial fractions on the left leads to

1

β
ln |y−x|− 1

2β

∣∣x2−xy+β
∣∣+ y

2β
√
y2−4β

ln

∣∣∣∣∣y−2x−
√
y2−4β

y−2x+
√
y2−4β

∣∣∣∣∣
= −t+ C

(2.2)

with C the constant of integration.

Theorem 2.1. If y > 2
√
β, then the attraction domain of the equilibrium

x =
y −

√
y2 − 4β

2
is x <

y +
√
y2 − 4β

2
and the attraction domain for the

other equilibrium y = x is x >
y +

√
y2 − 4β

2
. Furthermore, the system (1.5)-

(a) possesses only one stable attractor y = x when y < 2
√
β and the attraction

for the single attractor is R+.

Proof. From (2.2) and if y > 2
√
β and as t→∞, there are two stable attractors

when y = x and y − 2x −
√
y2 − 4β = 0 or x =

y −
√
y2 − 4β

2
. In this case

the region is divided into three subregions as follows, see Figure 11:

(1) R1 : x >
√
β and 2

√
β < y < x+

β

x
. In this region notice that∣∣∣∣∣y − 2x−

√
y2 − 4β

y − 2x+
√
y2 − 4β

∣∣∣∣∣ 6= 0

and hence when t → ∞, we have y = x or starting from any initial
point in R1 the solution converges into the stable attractor y = x.

(2) R2 : y > x+
β

x
. Again, in this region

∣∣∣∣∣y − 2x−
√
y2 − 4β

y − 2x+
√
y2 − 4β

∣∣∣∣∣ 6= 0. Then,

as t → ∞, the left side will approach −∞. This means either x = y
or x2 − xy + β = 0. Since x = y is not in the region, then we have
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x2 − xy + β = 0 or y = x +
β

x
. As a result the stable contractor is

y = x+
β

x
or x =

y −
√
y2 − 4β

2
.

(3) R3 : 0 < x <
√
β and 2

√
β < y < x+

β

x
. This case is similar to the case

of R2 and since x = y is not in the region and using the same argument,

we conclude that the stable attractor is x =
−y −

√
y2 − 4β

2
.

This completes the proof. �

2.2. Anti-Synchronization of the Brusselator System. Here we consider
the anti-synchronization of two identical systems evolving from two different
initial conditions. As a master or the drive system, consider the Brusselator
chemical reaction system of the form:

dx1
dt

= α− (β + 1)x1 + x21y1,
dy1
dt

= βx1 − x21y1. (2.3)

and the slave or the response system as

dx2
dt

= α− (β + 1)x2 + x22y2 + ux,
dy2
dt

= βx2 − x22y2 + uy. (2.4)

where ux and uy are the control input to be determined.
Define the anti-synchronization error between the systems (2.3) and (2.4)

by

ex = x2 + x1, ey = y2 + y1. (2.5)

Here ex → 0 and ey → 0 if and only if x2 → −x1 and y2 → −y1, respec-
tively. This means when the Brusselator systems (2.3) and (2.4) are anti-
synchronized, their states will be equal in magnitude but opposite in sign.
Here

dex
dt

=
dx1
dt

+
dx2
dt

= 2α+ x22y2 + x21y1 − (β + 1) ex + ux

and

dey
dt

=
dy1
dt

+
dy2
dt

= −x22y2 − x21y1 + βex + uy.

Using the sliding mode control theory, see [10], the integral sliding surface
of each error variable is defined by

Sx =

[
d

dt
+ λx

] t∫
0

ex (r) dr

 = ex + λx

t∫
0

ex (r) dr
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and

Sy =

[
d

dt
+ λy

] t∫
0

ey (r) dr

 = ey + λy

t∫
0

ey (r) dr. (2.6)

Differentiating with respect to t leads to

dSx
dt

=
dex
dt

+ λxex and
dSy
dt

=
dey
dt

+ λyey. (2.7)

The Hurwitz condition is satisfied if λx and λy are positive constants. Now
using the exponential reaching law, see Slotine and Li[10], we set

dSx
dt

= −ηxsgn (Sx)− kxSx =
dex
dt

+ λxex

and

dSy
dt

= −ηysgn (Sy)− kySy =
dey
dt

+ λyey. (2.8)

Substituting
dex
dt

and
dey
dt

from (2.6) into (2.7), we obtain

2α+ x22y2 + x21y1 − (β + 1) ex + ux + λxex = −ηxsgn (Sx)− kxSx
and

−x22y2 − x21y1 + βex + uy + λyey = −ηysgn (Sy)− kySy. (2.9)

Hence the control laws are obtained as

ux = −2α− x22y2 − x21y1 + (β + 1) ex − λxex − ηxsgn (Sx)− kxSx

uy = x22y2 − x21y1 + βex − λyey − ηysgn (Sy)− kySy. (2.10)

Now we have the following result:

Theorem 2.2. The Brusselator chemical reaction (2.3) and (2.4) are globally
and asymptotically anti-synchronized for all initial conditions by the integral
sliding mode control law (2.10), where the constants λx, λy, ηx, ηy, kx and ky
are all positive.

Proof. The result is proved using Lyapunov stability theory, see Khalil[4]. To

do so consider a Lyapunov function of the form V (Sx, Sy) =
1

2

(
S2
x + S2

y

)
where

Sx, Sy are as given in (2.7). This means the variation of V is given by

dV

dt
= Sx

dSx
dt

+ Sy
dSy
dt

. (2.11)
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Substituting (2.8) into (2.11), we have

dV

dt
= Sx [−ηxsgn (Sx)− kxSx] + Sy [−ηysgn (Sy)− kySy]

or
dV

dt
= −ηx |Sx| − kxS2

x − ηy |Sy| − kyS2
y . (2.12)

Since the constants ηx, ηy, kx and ky are all positive, this means that
dV

dt
is

a negative definite function. Now using the Lyapunov stability theory[4], it
follows that (Sx, Sy)→ (0, 0) as t→∞ and as a result (ex, ey)→ (0, 0) as
t→∞. Hence the systems (2.3) and (2.4) are global asymptotically stable. �
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