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Abstract. In this paper, we study the convergence rates for an operator method of regu-

larization to solve ill-posed mixed variational inequalities involving monotone operators in

Banach spaces, in case perturbative operators are inverse-strongly monotone. Our results

are presented in the form of combination of finite-dimensional approximations of spaces. An

illustrative numerical result is given.

1. Introduction

Variational inequality problems appear in many fields of applied mathe-
matics such as convex programming, nonlinear equations, equilibrium models
in economics, technics (see [2], [9]). These problems are studied in finite-
dimensional spaces as well as infinite-dimensional spaces.

In this paper, they are considered in a real reflexive Banach space X having
a property that weak and norm convergence of any sequence in X imply its
strong convergence, and the dual space X∗ of X is strictly convex. For the sake
of simplicity, the norms of X and X∗ are denoted by the symbol ‖·‖. We write
〈x∗, x〉 instead of x∗(x) for x∗ ∈ X∗ and x ∈ X. Then, the mixed variational
inequality problem can be formulated as follows: for a given f ∈ X∗, find an
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element x0 ∈ X such that

〈A(x0)− f, x− x0〉+ ϕ(x)− ϕ(x0) ≥ 0, ∀x ∈ X. (1.1)

where A is a hemi-continuous and monotone operator from X into X∗, and
ϕ(x) is a weakly lower semicontinuous and proper convex functional on X.
We will suppose that Problem (1.1) has at least one solution. For existence
theorems, we refer the reader to [5]. Many problems can be seen as special
cases of the problem (1.1). When ϕ is the indicator function of a closed convex
set K in X, that is

ϕ(x) = IK(x) =

{
0, if x ∈ K,

+∞, otherwise,

then the problem (1.1) is equivalent to that of finding x0 ∈ K such that

〈A(x0)− f, x− x0〉 ≥ 0, ∀x ∈ K.

When K is the whole space X, this variational inequality is of the form of oper-
ator equation A(x0) = f . When A is the Gâteaux derivative of a finite-valued
convex function F defined on X, Problem (1.1) becomes the nondifferentiable
convex optimization problem (see [5]):

min
x∈X

{F (x) + ϕ(x)}. (1.2)

Some methods have been proposed for solving Problem (1.1), for example, the
proximal point method (see [12]), and the auxiliary subproblem principle (see
[8]). However, the problem (1.1) is in general ill-posed, as its solutions do
not depend continuously on the data (A, f, ϕ), we have use stable methods for
solving it. A widely used and efficient method is the regularization method
introduced by Liskoves using the perturbative mixed variational inequality
(see [10]):

〈Ah(xτ
α) + αU s(xτ

α − x∗)− fδ, x− xτ
α〉+ ϕε(x)− ϕε(xτ

α) ≥ 0, ∀x ∈ X,
(1.3)

where α is a regularization parameter, U s is a generalized duality mapping of
X, i.e., U s is a mapping from X onto X∗ satisfying

〈U s(x), x〉 = ‖x‖s, ‖U s(x)‖ = ‖x‖s−1, s ≥ 2,

(Ah, fδ, ϕε) are approximations of (A, f, ϕ), τ = (h, δ, ε) and x∗ is in X which
plays the role of a criterion of selection. By the choice of x∗ we can obtain
approximate solutions.

In this paper, we use the inequality (1.3) with the following conditions posed
on the perturbations: Ah : X → X∗ is the hemi-continuous monotone operator
and (Ah, fδ) are approximations for (A, f) in the sense that

‖Ah(x)−A(x)‖ ≤ hg(‖x‖), h → 0, ‖fδ − f‖ ≤ δ, δ → 0, (1.4)
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where g(t) is a nonnegative function satisfying the condition g(t) ≤ g0 +
g1t

η, η = s − 1, g0, g1 ≥ 0, ϕε are functionals defined on X having the same
properties as ϕ, and

|ϕ(x)− ϕε(x)| ≤ εd(‖x‖), ε → 0,

|ϕε(x)− ϕε(y)| ≤ C0‖x− y‖, ∀x, y ∈ X,
(1.5)

for some positive constant C0 and d(t) has the same properties as g(t).
The existence and uniqueness of solutions xτ

α for every α > 0 are shown in
[10]. The regularized solutions xτ

α converges to x0 ∈ S0, where S0 is the set of
solutions of (1.1) which is assumed to be nonempty with x∗-minimum norm
solution, i.e.

‖x0 − x∗‖ = min
x∈S0

‖x− x∗‖,

if (h + δ + ε)/α, α → 0. The parameter choice and the convergence rate for
the regularized solution xτ

α are considered in [4] under conditions of inverse-
strongly monotonicity for A. The question arises as to what happens if Ah are
inverse-strongly monotones, too.

Our main purpose of this paper is to solve problem (1.2) in Banach space X
for inverse-strongly monotonicity perturbations, i.e. Ah possesses the following
property

〈Ah(x)−Ah(y), x− y〉 ≥ mA‖Ah(x)−Ah(y)‖2, ∀x, y ∈ X. (1.6)

Then, we present these results combined with finite-dimensional approxima-
tions of the space. Finally, an illustrative example is given.

Assume that the dual mapping U s satisfies the following conditions

〈U s(x)− U s(y), x− y〉 ≥ ms‖x− y‖s, ms > 0, (1.7)

‖U s(x)− U s(y)‖ ≤ C(R)‖x− y‖ν , 0 < ν ≤ 1, (1.8)

where C(R), R > 0, is a positive increasing function on R = max{‖x‖, ‖y‖}.
It is well-known that when X = L2[a, b] is a Hilbert space, then U s = I, s = 2,
ms = 1, ν = 1 and C(R) = 1, where I denotes the identity operator in the
setting space (see [1]).

Finally, we use the symbols ⇀ and → to denote the weak convergence and
convergence in norm, respectively, and the notation a ∼ b means that a = O(b)
and b = O(a).

2. Main result

Theorem 2.1. If for h, δ, ε > 0 conditions (1.4), (1.5) hold and
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(i) Ah is an inverse-strongly monotone operator from X into X∗, Fréchet
differentiable at some neighborhood of x0 ∈ S0 and satisfies that

‖Ah(x)−Ah(x0)−A′h(x0)(x− x0)‖ ≤ τ̃‖Ah(x)−Ah(x0)‖; (2.1)

(ii) there exists elements zh such that {zh} is bounded, and

A′h(x0)∗zh = U s(x0 − x∗);

Then, if α is chosen such that α ∼ (h + δ + ε)η, 0 < η < 1, we have

‖xτ
α(h,δ,ε) − x0‖ = O((h + δ + ε)µ1), µ1 = min

{
1− η

s
,

η

2s

}
.

Proof. It follows from (1.1), (1.3) that

〈Ah(xτ
α)−Ah(x0), xτ

α − x0〉+ α〈U s(xτ
α − x∗)− U s(x0 − x∗), xτ

α − x0〉
≤ α〈U s(x0 − x∗), x0 − xτ

α〉+ 〈Ah(x0)−A(x0), x0 − xτ
α〉

+ 〈f − fδ, x0 − xτ
α〉+ ϕε(x0)− ϕ(x0) + ϕ(xτ

α)− ϕε(xτ
α).

(2.2)

Using the monotone property of Ah and (1.4), (1.5), (1.7), the inequality (2.2)
becomes

‖xτ
α − x0‖s ≤〈U s(x0 − x∗), x0 − xτ

α〉

+
hg(‖x0‖) + δ

α
‖x0 − xτ

α‖

+
ε

α
[d(‖x0‖) + d(‖xτ

α‖)].
(2.3)

Hence, the boundedness of the sequence {xτ
α} follows from (2.3) and the prop-

erties of g(t), d(t) and α. On the other hand, basing on (2.2), the property of
U s and the inverse-strongly monotone property of Ah, we get

‖Ah(xτ
α)−Ah(x0)‖2 ≤m−1

A

{
[hg(‖x0‖) + δ + α‖x0 − x∗‖s−1]‖x0 − xτ

α‖

+ ε[d(‖x0‖) + d(‖xτ
α‖)]

}
.

Hence,
‖Ah(xτ

α)−Ah(x0)‖ = O(
√

h + δ + ε + α).

Further, by virtue of conditions (i), (ii) and the last inequality we obtain

〈U s(x0 − x∗), x0 − xτ
α〉 = 〈zh, A′h(x0)(x0 − xτ

α)〉
≤ ‖zh‖(τ̃ + 1)‖Ah(xτ

α)−Ah(x0)‖
≤ ‖zh‖(τ̃ + 1)O(

√
h + δ + ε + α).
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Consequently, (2.3) has the form

‖xτ
α − x0‖s ≤ hg(‖x0‖) + δ

α
‖x0 − xτ

α‖

+ ‖zh‖(τ̃ + 1)O(
√

h + δ + ε + α) +
ε

α
[d(‖x0‖) + d(‖xτ

α‖)].
When α is chosen such that α ∼ (h + δ + ε)η, 0 < η < 1, then from the last
inequality we have

‖xτ
α(h,δ,ε) − x0‖s = O

(
(h + δ + ε)1−η

)‖x0 − xτ
α(h,δ,ε)‖

+ O
(
(h + δ + ε)η/2

)
+ O

(
(h + δ + ε)1−η

)
.

Therefore,
‖xτ

α(h,δ,ε) − x0‖ = O((h + δ + ε)µ1).

¤

Remarks.
1. Note that condition (2.1) was proposed in [7] for studying convergence

analysis of the Landweber iteration method for a class of nonlinear op-
erator. The use of this condition to estimate the convergence rates of
the regularized solutions of ill-posed variational inequalities was con-
sidered in [3].

2. In the works [6, 11] the given conditions are required for exact oper-
ator A, when studying nonlinear ill-posed problems. Therefore, they
contain some negative aspects in solving ill-posed problems, when:

(i) the exact operator A is not always known priori;
(ii) the exact operator A is well-know, but it is not differentiable

and;
(iii) the well-know approximated operators Ah are not differentiable.

In all those cases, we can also approximate them by differentiable
operators (see example).

Now we consider the question of finite-dimensional approximations. Let Xn

be a sequence of finite-dimensional subspaces of X: Xn ⊂ Xn+1, ∀n and Pn

a linear projection from X onto Xn such that Pnx → x, ∀x ∈ X as n → ∞.
Assume that Pn is uniformly bounded on X. Without loss of generality, we
suppose that ‖Pn‖ = 1 (see [15]). Then the inequality

〈An
h(xτ

α,n) + αU sn(xτ
α,n − xn

∗ )− fn
δ , xn − xτ

α,n〉
+ ϕε(xn)− ϕε(xτ

α,n) ≥ 0, ∀xn ∈ Xn,
(2.4)

where
An

h = P ∗
nAhPn, U sn = P ∗

nU sPn, xn = Pnx, fn
δ = P ∗

nfδ
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and P ∗
n is the conjugate of Pn, has an unique solution xτ

α,n for every fixed
α > 0, τ > 0 and n.

We are now in a position to prove the following result.

Theorem 2.2. The sequence xτ
α,n converges the solutions xτ

α of (1.3), as
n →∞.

Proof. It follows from (1.7) and (2.4) that

αms‖xτ
α,n − Pnxτ

α‖s ≤ α〈U s(xτ
α,n − xn

∗ )− U s(Pnxτ
α − xn

∗ ), x
τ
α,n − Pnxτ

α〉
≤ 〈An

h(xτ
α,n)− fn

δ , Pnxτ
α − xτ

α,n〉+ ϕε(Pnxτ
α)− ϕε(xτ

α,n)

+ α〈U s(Pnxτ
α − xn

∗ ), Pnxτ
α − xτ

α,n〉.
Using the monotonicity of Ah and the projective property of Pn, the last
inequality has the form

αms‖xτ
α,n − Pnxτ

α‖s ≤ 〈Ah(Pnxτ
α)−A(Pnxτ

α) + A(Pnxτ
α)

− fδ, Pnxτ
α − xτ

α,n〉
+ ϕε(Pnxτ

α)− ϕε(xτ
α,n)

+ α〈U s(Pnxτ
α − xn

∗ ), Pnxτ
α − xτ

α,n〉.

(2.5)

We invoke (1.4), (1.5) and (2.5) to deduce that

αms‖xτ
α,n − Pnxτ

α‖s ≤ (
hg(‖Pnxτ

α‖) + ‖A(Pnxτ
α)‖+ ‖fδ‖+ C0

)

× ‖Pnxτ
α − xτ

α,n‖
+ α〈U s(Pnxτ

α − xn
∗ ), Pnxτ

α − xτ
α,n〉.

(2.6)

Obviously, the inequality (2.6) gives the boundedness of the sequence xτ
α,n.

Without loss of generality, we suppose that xτ
α,n ⇀ x̄τ

α ∈ X as n → ∞. It
follows from (2.4) that

〈An
h(xτ

α,n) + αU s(xτ
α,n − xn

∗ )− fn
δ , Pnx− xτ

α,n〉+ ϕε(Pnx)− ϕε(xτ
α,n) ≥ 0,

∀x ∈ X.

In this inequality, by letting n → ∞ and using properties of Ah, ϕε, Pn and
the weak convergence of the sequence {xτ

α,n}, we get

〈Ah(x̄τ
α) + αU s(x̄τ

α − x∗)− fδ, x− x̄τ
α〉+ ϕε(x)− ϕε(x̄τ

α) ≥ 0, ∀x ∈ X.

Since the problem (1.3) has a unique solution, so x̄τ
α = xτ

α and all the sequences
{xτ

α,n} converge weakly to xτ
α. It follows from (2.6) that the sequence {xτ

α,n}
converges strongly to xτ

α as n →∞. ¤
Now we set

γn(x) = ‖(I − Pn)x‖, x ∈ X.

The convergence of xτ
α,n to x0 is determined by the following theorem.
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Theorem 2.3. If h/α, δ/α, ε/α and γn(x)/α → 0 as α → 0 and n →∞, then
the sequence {xτ

α,n} converges to x0 ∈ S0.

Proof. For x ∈ S0, x
n = Pnx. In the same way as in the proof of Theorem 2.2,

we have

ms‖xτ
α,n − xn‖s ≤ 1

α

[
〈Ah(xn)−A(xn) + A(xn)−A(x) + A(x)− f

+ f − fδ, x
n − xτ

α,n〉+ ϕε(xn)− ϕε(xτ
α,n)

]
+ 〈U s(xn − xn

∗ ), x
n − xτ

α,n〉.
(2.7)

On the other hand, we invoke the monotonicity of A to deduce that

‖A(xn)−A(x)‖ ≤ C̃0γn(x),

where C̃0 is a positive constant depending only on x. Therefore, using this
inequality, x ∈ S0 and (1.4), (1.5), it follows from (2.7) that

ms‖xτ
α,n − xn‖s ≤ 1

α

[
〈Ah(xn)−A(xn) + A(xn)−A(x) + f − fδ, x

n − xτ
α,n〉

+ 〈A(x)− f, x− xτ
α,n〉+ ϕ(x)− ϕ(xτ

α,n)

+ 〈A(x)− f, xn − x〉+ ϕε(xn)− ϕε(x)

+ ϕε(x)− ϕ(x)− ϕε(xτ
α,n) + ϕ(xτ

α,n)
]

+ 〈U s(xn − xn
∗ ), x

n − xτ
α,n〉,

which implies that

ms‖xτ
α,n − xn‖s ≤ hg(‖xn‖) + C̃0γn(x) + δ

α
‖xn − xτ

α,n‖

+
ε

α

(
d(‖xτ

α,n‖) + d(‖x‖))

+
(C0 + ‖Ax− f‖)γn(x)

α
+ 〈U s(xn − xn

∗ ), x
n − xτ

α,n〉.

(2.8)

Hence, without loss of generality, we suppose that xτ
α,n ⇀ x1 ∈ X as h/α,

δ/α, ε/α, γn(x)/α → 0 and n →∞. By (2.4) and the properties of Ah, Pn it
implies that

〈Ah(xτ
α,n)− fδ, x

n − xτ
α,n〉+ α〈U s(xτ

α,n − xn
∗ ), x

n − xτ
α,n〉+ ϕε(xn) ≥ ϕε(xτ

α,n),
∀xn ∈ Xn.

After passing h, δ, ε, α → 0 and n → +∞ in this inequality, we obtain

〈A(x1)− f, x− x1〉+ ϕ(x)− ϕ(x1) ≥ 0, ∀x ∈ X.

Thus, x1 ∈ S0.
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Now, replacing xn in (2.8) by xn
1 = Pnx1 we see that the sequence {xτ

α,n}
converges strongly to x1 and

〈U s(x− x∗), x− x1〉 ≥ 0, ∀x ∈ S0.

Replacing x by tx1 + (1 − t)x, t ∈ (0, 1) in the last inequality, dividing by
(1− t) and letting t to 1, we get

〈U s(x1 − x∗), x− x1〉 ≥ 0, ∀x ∈ S0,

which leads to the following

〈U s(x1 − x∗), x− x∗〉 ≥ 〈U s(x1 − x∗), x1 − x∗〉 = ‖x1 − x∗‖s, ∀x ∈ S0.

Hence, ‖x1 − x∗‖ ≤ ‖x − x∗‖, ∀x ∈ S0. Because of the convexity and the
closedness of S0, and the strictly convexity of X, we conclude that x1 = x0.
The proof is complete. ¤

Set
γn = max{γn(x0), γn(x∗)}.

Now, we consider the convergence rate of {xτ
α,n}.

Theorem 2.4. Assume that
(i) Conditions (i) and (ii) of Theorem 2.1 hold;
(ii) Ah(Xn) are contained in Xn for sufficiently large n and small h.

Then, for α ∼ (h + δ + ε + γn)η1, 0 < η1 < 1,

‖xτ
α,n − x0‖ = O((h + δ + ε + γn)µ2 + γµ3

n ),

µ2 = min
{

1− η1

s
,
η1

2s

}
, µ3 = min

{
1
s
,

ν

s− 1

}
.

Proof. Replacing xn by xn
0 = Pnx0 in (2.8) we obtain

ms‖xτ
α,n − xn

0‖s ≤ hg(‖xn
0‖) + C̃0γn + δ

α
‖xn

0 − xτ
α,n‖

+
ε

α

(
d(‖xτ

α,n‖) + d(‖x0‖)
)

+
(C0 + ‖Ax0 − f‖)γn

α
+ 〈U s(x0 − x∗), xn

0 − xτ
α,n〉

+ 〈U s(xn
0 − xn

∗ )− U s(x0 − x∗), xn
0 − xτ

α,n〉.

(2.9)

It follows from (1.7), (1.8) and condition (i) that

〈U s(xn
0 − xn

∗ )− U s(x0 − x∗), xn
0 − xτ

α,n〉 ≤ C(R̃)2νγν
n‖xn

0 − xτ
α,n‖, (2.10)
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where R̃ > ‖x0 − x∗‖, and

〈U s(x0 − x∗), xn
0 − xτ

α,n〉 = 〈U s(x0 − x∗), xn
0 − x0〉

+ 〈zh, A′h(x0)(x0 − xτ
α,n)〉

≤ ‖x0 − x∗‖s−1γn

+ ‖zh‖(1 + τ̃)‖Ah(x0)−Ah(xτ
α,n)‖.

(2.11)

Now, we estimate the value ‖Ah(xτ
α,n) − Ah(x0)‖. By replacing xn by xn

0 in
(2.4), using the projective property of Pn, we get

〈Ah(xτ
α,n)−Ah(xn

0 ) + Ah(xn
0 )−Ah(x0) + Ah(x0)−A(x0) + A(x0)− f + f

− fδ, x
n
0 − xτ

α,n〉+ α〈U s(xτ
α,n − xn

∗ ), x
n
0 − xτ

α,n〉+ ϕε(xn
0 )− ϕε(xτ

α,n) ≥ 0,

which leads to the following

〈Ah(xτ
α,n)−Ah(xn

0 ), xτ
α,n − xn

0 〉 ≤ 〈Ah(xn
0 )−Ah(x0)

+ Ah(x0)−A(x0) + f − fδ, x
n
0 − xτ

α,n〉
+ α〈U s(xτ

α,n − xn
∗ ), x

n
0 − xτ

α,n〉
+ 〈A(x0)− f, xn

0 − x0 + x0 − xτ
α,n〉

+ ϕε(xn
0 )− ϕε(xτ

α,n).

Using the inverse-strongly monotone property of Ah, (1.4) and (1.5) we have

mA‖Ah(xτ
α,n)−Ah(xn

0 )‖2 ≤
[
C̃1γn + hg(‖x0‖) + δ + α‖xτ

α,n − xn
∗‖s−1

]

× ‖xn
0 − xτ

α,n‖+ (C0 + ‖A(x0)− f‖)γn

+ ε
(
d(‖xτ

α,n‖) + d(‖x0‖)
)
,

where C̃1 is a positive constant depending only on x0. Thus,

‖Ah(xτ
α,n)−Ah(xn

0 )‖ = O(
√

h + δ + ε + α + γn).

Moreover, since

‖Ah(xτ
α,n)−Ah(x0)‖ ≤ ‖Ah(xτ

α,n)−Ah(xn
0 )‖+ ‖Ah(xn

0 )−Ah(x0)‖,

it follows readily that

‖Ah(xτ
α,n)−Ah(x0)‖ ≤ O(

√
h + δ + ε + α + γn) + C̃1γn.
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Combining (2.10), (2.11) and the last inequality, it follows from (2.9) that

ms‖xτ
α,n − xn

0‖s ≤
[
δ + hg(‖xn

0‖) + C̃0γn

α
+ C(R̃)2νγν

n

]
‖xn

0 − xτ
α,n‖

+ R̃s−1γn +
ε

α
(d(‖xτ

α,n‖) + d(‖x0‖))

+
(C0 + ‖Ax0 − f‖)γn

α

+ ‖zh‖(1 + τ̃)
[
O

(√
h + δ + ε + α + γn

)
+ C̃1γn

]
.

(2.12)

If α is chosen such that α ∼ (h+ δ + ε+ γn)η1 , then from (2.12) we obtain the
inequality

‖xτ
α,n − xn

0‖s ≤C1

[
(h + δ + ε + γn)1−η1 + γν

n

]
‖xn

0 − xτ
α,n‖+ C2γn

+ C3(h + δ + ε + γn)1−η1 + C4(h + δ + ε + γn)η1/2,

Ci, i = 1, 2, 3, 4 are positive constants. Thus,

‖xτ
α,n − xn

0‖ = O
(
(h + δ + ε + γn)µ2 + γµ3

n

)
.

Hence,
‖xτ

α,n − x0‖ = O
(
(h + δ + ε + γn)µ2 + γµ3

n

)
,

which completes the proof. ¤

3. Numerical examples

We now apply the obtained results from the previous sections to solve the
following optimization problem:

min
x∈X

{F (x) + ϕ(x)} (3.1)

where F is Gâteaux differentiable with the Gâteaux derivative A, ϕ is a weakly
lower semicontinuous and proper convex functional on X. So x0 is a solution
of Problem (3.1) if and only if x0 is a solution of Problem (1.1) (see [5]).

We consider the case when X is a real Hilbert space and F (x) =
1
2
〈Ax, x〉,

with A being a self-adjoint linear bounded operator on X such that 〈Ax, x〉 ≥
0, ∀x ∈ X. ϕ is a nonsmooth function and is approximated by a sequence of
smooth functions ϕε. So the method (1.3) in this case can be written in the
form

Ah(xτ
α) + α(xτ

α − x∗) + ϕ′ε(x
τ
α) = fδ. (3.2)

The computational results here are obtained by using MATLAB. We shall
give an example.

Consider the case where H = L2[0, 1], with
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• A : L2[0, 1] → L2[0, 1] is defined by (Ax)(t) =
∫ 1
0 k(t, s)x(s)ds, where

k(t, s) =





(1− s)2st2

2
− (1− s)2t3(1 + 2s)

6
+

+
(t− s)3

6
, if t ≥ s,

s2(1− s)(1− t)2

2
+

s2(1− t)3(2s− 3)
6

+

+
(s− t)3

6
, if t < s,

are kernel functionals defined on the square {0 ≤ t, s ≤ 1}.

(Ahx)(t) =
∫ 1

0
kh(t, s)x(s)ds,

is an approximation of A, where kh(t, s) = k(t, s) + hts, h → +0. So, Ah

is an inverse-strongly monotone operator and Fréchet differentiable with the
Fréchet derivative Ah.

• The function ϕ : L2[0, 1] → R ∪ {+∞} is defined by ϕ(x) = ψ
(1
2
〈Ax, x〉),

with ψ : R→ R is chosen as follows

ψ(t) =
{

0 , t ≤ a0,
c(t− a0) , t > a0, c, a0 > 0.

The function ϕε(x) = ψε

(1
2
〈Ax, x〉) is an approximation of ϕ(x) with

ψε(t) =





0 , t ≤ a0,
c(t− a0)2

2ε
, a0 < t ≤ a0 + ε

c(t− a0 − ε

2
) , t > a0 + ε.

Obviously, ϕ′ε(x) = ψ′ε
(1
2
〈Ax, x〉)Ax is an monotone operator from L2[0, 1] to

L2[0, 1].

• fδ(t) = δ, t ∈ [0, 1] is an approximation of f = θ ∈ L2[0, 1].
We compute the regularized solutions xτ

α,n by approximating L2[0, 1] by
the sequence of linear spaces Hn which is a set of all linear combinations of
{φ1, φ2, ..., φn} defined on uniform grid of n + 1 points in [0, 1]:

φj(t) =
{

1 , t ∈ (tj−1, tj ],
0 , t /∈ (tj−1, tj ].
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Hence Pnx(t) =
n∑

j=1
x(tj)φj(t), with ‖Pn‖ = 1 and ‖(I − Pn)x0‖ = O(n−1),

∀x ∈ L2[0, 1] (see [13]). Then, the finite-dimensional regularized equation (3.2)
is of the form

Bh1 x̃ + ϕ
′n
iε (x̃) = fn

δ , (3.3)

where

Bh1 =




h1kh(t1, t1) + α h1kh(t1, t2) ... h1kh(t1, tn)
h1kh(t2, t1) h1kh(t2, t2) + α ... h1kh(t2, tn)

... ... ... ...
h1kh(tn, t1) h1kh(tn, t2) ... h1kh(tn, tn) + α




and ϕ
′n
ε (x̃) = (ϕ′ε(x̃1), ..., ϕ′ε(x̃n))T , fn

δ = (δ, ..., δ)T , x̃ = (x̃1, ..., x̃n)T , x̃j ∼
x(tj), j = 1, ..., n, h1 =

1
n

. Applying Theorem 2.4 for α ∼ (h + δ + ε + γn)η1 ,

0 < η1 < 1, we should obtain the convergence rates rτ
α,n = ‖xτ

α,n−x0‖. Taking
account of the iterative method in [14] for finding approximation solutions, we

get the tables of computational results with c =
1
4
, a0 =

10−3

3
, δ = h = ε =

1
n

.

n α rτ
α,n

40 0.085499 0.050812
80 0.053861 0.029435
100 0.046416 0.024636
500 0.015874 0.007128

Table 2.1: η1 =
2
3

n α rτ
α,n

40 0.15811 0.043055
80 0.1118 0.0252
100 0.1 0.021186
500 0.044721 0.006395

Table 2.2: η1 =
1
2

Remarks. From Table 2.1 and 2.2 we can see that:

1. For sufficiently small h, δ, ε, the approximate solutions xτ
α,n are closed

to the exact solution of the original problem;
2. The convergence rate of regularized solutions depends on the choice of

values of α depending on h, δ, ε.
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