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Abstract. In this paper, we study the convergence rates for an operator method of regu-
larization to solve ill-posed mixed variational inequalities involving monotone operators in
Banach spaces, in case perturbative operators are inverse-strongly monotone. Our results
are presented in the form of combination of finite-dimensional approximations of spaces. An

illustrative numerical result is given.

1. INTRODUCTION

Variational inequality problems appear in many fields of applied mathe-
matics such as convex programming, nonlinear equations, equilibrium models
in economics, technics (see [2], [9]). These problems are studied in finite-
dimensional spaces as well as infinite-dimensional spaces.

In this paper, they are considered in a real reflexive Banach space X having
a property that weak and norm convergence of any sequence in X imply its
strong convergence, and the dual space X* of X is strictly convex. For the sake
of simplicity, the norms of X and X* are denoted by the symbol ||-||. We write
(x*, x) instead of z*(z) for * € X* and x € X. Then, the mixed variational
inequality problem can be formulated as follows: for a given f € X*, find an
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element zg € X such that
(A(zo) — fyx — x0) + p(x) — p(x09) >0, Ve X. (1.1)

where A is a hemi-continuous and monotone operator from X into X*, and
() is a weakly lower semicontinuous and proper convex functional on X.
We will suppose that Problem (1.1) has at least one solution. For existence
theorems, we refer the reader to [5]. Many problems can be seen as special
cases of the problem (1.1). When ¢ is the indicator function of a closed convex
set K in X, that is

0, if zeK,
400, otherwise,

pla) = Ik (x) = {

then the problem (1.1) is equivalent to that of finding xg € K such that
(A(xo) — f,x —x0) >0, VzeK.

When K is the whole space X, this variational inequality is of the form of oper-
ator equation A(zg) = f. When A is the Gateaux derivative of a finite-valued
convex function F' defined on X, Problem (1.1) becomes the nondifferentiable
convex optimization problem (see [5]):

min{F(z) + ()}, (1.2)

Some methods have been proposed for solving Problem (1.1), for example, the
proximal point method (see [12]), and the auxiliary subproblem principle (see
[8]). However, the problem (1.1) is in general ill-posed, as its solutions do
not depend continuously on the data (A4, f, ¢), we have use stable methods for
solving it. A widely used and efficient method is the regularization method
introduced by Liskoves using the perturbative mixed variational inequality
(see [10]):

(Ap(zd) +aUs(zf, — @) — f5, 0 — L) + @e(x) — pe(z) 20, Vo€ X,
(1.3)

where « is a regularization parameter, U® is a generalized duality mapping of
X, i.e., U® is a mapping from X onto X* satisfying

(U3 (), 2) = [l2]|*, U*(@)] = l|l=*7, s > 2,

(Ap, fs5, <) are approximations of (A, f,¢), 7 = (h,d,¢) and z, is in X which
plays the role of a criterion of selection. By the choice of x, we can obtain
approximate solutions.

In this paper, we use the inequality (1.3) with the following conditions posed
on the perturbations: Ay : X — X™ is the hemi-continuous monotone operator
and (Ay, fs) are approximations for (A, f) in the sense that

[An(z) — A(2)]| < hg(llzl]), b — 0, |lfs = fll <0, 6 =0, (1.4)
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where ¢(t) is a nonnegative function satisfying the condition g(t) < go +
git", n=s—1, go,91 > 0, @ are functionals defined on X having the same
properties as ¢, and

|p(2) = we(@)] < ed(|lz]]), &—0,

1.5
0e(@) — 0e(y)| < Collz — yll, Va,y € X, (1.5)

for some positive constant Cp and d(t) has the same properties as g(t).

The existence and uniqueness of solutions ], for every o > 0 are shown in
[10]. The regularized solutions z, converges to zo € Sy, where Sy is the set of
solutions of (1.1) which is assumed to be nonempty with z,-minimum norm
solution, i.e.

[x0 — @4|| = min [z — 2.,
€Sy

if (h+ 9 +¢€)/a,a — 0. The parameter choice and the convergence rate for
the regularized solution z], are considered in [4] under conditions of inverse-
strongly monotonicity for A. The question arises as to what happens if A are
inverse-strongly monotones, too.

Our main purpose of this paper is to solve problem (1.2) in Banach space X
for inverse-strongly monotonicity perturbations, i.e. Aj possesses the following

property
(An(2) = Ap(y), & —y) = mallAn(z) — An(W)]?, Va,y € X. (1.6)

Then, we present these results combined with finite-dimensional approxima-
tions of the space. Finally, an illustrative example is given.
Assume that the dual mapping U? satisfies the following conditions

(U*(2) = U°(y),z —y) 2 ms|lz—yl|*, ms >0, (1.7)
[U°(z) = U ()| < CR)|lz —yl”, O<wv <1, (1.8)

where C'(R), R > 0, is a positive increasing function on R = max{||z||, |ly||}.
It is well-known that when X = L?[a, b] is a Hilbert space, then U® = I, s = 2,
ms = 1, v = 1 and C(R) = 1, where I denotes the identity operator in the
setting space (see [1]).

Finally, we use the symbols — and — to denote the weak convergence and
convergence in norm, respectively, and the notation a ~ b means that a = O(b)
and b = O(a).

2. MAIN RESULT

Theorem 2.1. If for h,d,e > 0 conditions (1.4), (1.5) hold and



470 Nguyen Thi Thu Thuy

(i) Ay, is an inverse-strongly monotone operator from X into X*, Fréchet
differentiable at some neighborhood of xo € Sy and satisfies that

1An(x) = An(xo) — A (z0) (2 — z0)|| < 7| An(x) — An(xo)ll; (2.1)
(ii) there exists elements zj, such that {z} is bounded, and
A (z0)* 2n, = U (x0 — 24);

Then, if a is chosen such that a ~ (h+d+¢)", 0 <n <1, we have

1—
127 5.0 — Zoll = O((h+ 6 +e)™), 1 = min{ non }

s ' 2s
Proof. 1t follows from (1.1), (1.3) that
(An(zg) — An(wo), x5 — xo) + a(U (24 — x) — U%(x0 — 4), 2 — o)
< (U (zo — ), w0 — 2q) + (An(20) — A(xo), m0 — 24) (2.2)
+{f = f5, w0 = 25) + @=(x0) = p(0) + p(25) = pe(25)-

Using the monotone property of A, and (1.4), (1.5), (1.7), the inequality (2.2)
becomes

[ = 2ol <(U*(x0 — ), 20 — 24)

hg(||zol|) + 0 -
i Pzl 0y, o (2.3

n g[d(onH) +d([lzz])]-

Hence, the boundedness of the sequence {z7, } follows from (2.3) and the prop-
erties of ¢g(¢),d(t) and a. On the other hand, basing on (2.2), the property of
U? and the inverse-strongly monotone property of A, we get

AR (z7) — An(zo)|* SmAl{[hg(Hﬂfoll) + 68+ allzo — @] llzo — 27|

+ eld([|zoll) + d(lx?.}ll)]}-

Hence,
|An(x]) — Ap(zo)|| = OWh + 6+ £+ a).
Further, by virtue of conditions (i), (ii) and the last inequality we obtain
(U*(x0 — @), 0 — 2) = (20, Ap(w0) (w0 — 27,))
< lzall(7 + D[ An(2g) — An(zo) |l
<|lzn[(T +1)O(Vh + 6 + ¢ + ).
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Consequently, (2.3) has the form

HxT xOHS < hg(H:L'OH)_l_(S
B «

o= 2o — 24l

+lzll(7+ DO(Vh+d+e+a)+ g[d(Hwoll) + d([Jzg])]-

When « is chosen such that a ~ (h+ 0 +¢)", 0 < n < 1, then from the last
inequality we have

|27 5.0) — Zoll” = O((h + 6 + )~ ")[lzo — 2], g, 5.0l
+O((h+8+e)"?) +O((h+ 6 +¢)'7).

Therefore,
1%8(,56) — ol = O((h + 6 +€)").

Remarks.

1. Note that condition (2.1) was proposed in [7] for studying convergence
analysis of the Landweber iteration method for a class of nonlinear op-
erator. The use of this condition to estimate the convergence rates of
the regularized solutions of ill-posed variational inequalities was con-
sidered in [3].

2. In the works [6, 11] the given conditions are required for exact oper-
ator A, when studying nonlinear ill-posed problems. Therefore, they
contain some negative aspects in solving ill-posed problems, when:

(i) the exact operator A is not always known priori;

(ii) the exact operator A is well-know, but it is not differentiable
and;

(iii) the well-know approximated operators Ay, are not differentiable.
In all those cases, we can also approximate them by differentiable
operators (see example).

Now we consider the question of finite-dimensional approximations. Let X,
be a sequence of finite-dimensional subspaces of X: X,, C X,+1, Vn and P,
a linear projection from X onto X, such that P,x — x, Vx € X as n — oo.
Assume that P, is uniformly bounded on X. Without loss of generality, we
suppose that || P,|| = 1 (see [15]). Then the inequality

(AR (a,) + QU™ (T, — 22) — [ 2" — 27, )

a,n

2.4
+ Spf(xn) - 805('1’;771) 2 07 vxn € Xn7 ( )

where
§ = PiAuPy, U™ = PIUP,, o™ = P, f} = Pifs
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and P, is the conjugate of P,, has an unique solution z7, ,, for every fixed
a>0,7>0and n.

We are now in a position to prove the following result.

converges the solutions x, of (1.8), as

Theorem 2.2. The sequence xy, ,

n — 00.
Proof. 1t follows from (1.7) and (2.4) that

amyl2,, — Paal|* < a{U*(a],, — a7) — U*(Pua, — a2, — Patl)

< (An(@hn) = 15 Prl, — 4 n) + 0e(Prg) — @e(24,,)
+ U (Pl — 37), Pay, — Th )
Using the monotonicity of A, and the projective property of P,, the last
inequality has the form

O‘msnl"gm — Poag||” < (Ap(Pozy) — A(Pozy,) + A(Ppzy,)
— fo, Pal, — T3, )

an
+oe(Pu]) - e(e0) 29
+ a(UP(Ppy, — @), Patgy, — T3, )
We invoke (1.4), (1.5) and (2.5) to deduce that
oyt — Puzll* < (hg(IIPaztl) + | A(PazT) | + 1 f5]) + Co)
% |[Pac, — 27, (2.6)
+ a(U* (Ppxy, — 23), Prtcl, — 4, )-

Obviously, the inequality (2.6) gives the boundedness of the sequence z7, ,,.
Without loss of generality, we suppose that z7, — 7/, € X asn — oco. It
follows from (2.4) that

(AR (24.n) + U (20, — %) =[5, Paw — 20, 0) + pe(Pat) — @e(2,0) 2 0,

Vo € X.

In this inequality, by letting n — oo and using properties of Ay, ¢, P, and
the weak convergence of the sequence {:cgn}, we get

(Ap(Z]) + U (2], — x4) — f5,2 — Th) + pe(x) — @ (Z]) >0, Vae X.

Since the problem (1.3) has a unique solution, so z7, = z7, and all the sequences
{2}, ,} converge weakly to z7,. It follows from (2.6) that the sequence {z7,,,}
converges strongly to z], as n — oo. O

Now we set
(z) = (I = Pzl = e X.
The convergence of z7, ,, to z¢ is determined by the following theorem.
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Theorem 2.3. Ifh/a,d/a,e/a and v (z) /o — 0 as o« — 0 and n — oo, then
the sequence {7, ,} converges to xg € Sp.

Proof. For x € Sy, 2" = P,z. In the same way as in the proof of Theorem 2.2,
we have
1
ms|[za,n — 2" < —1(An(2") — A@@") + A(z") — A(z) + A(z) — f
(2.7)
+f = fo,a" =l ) + (@) = pe(2h ) | + (U (2" — 25), 2" — 2, ).

On the other hand, we invoke the monotonicity of A to deduce that
IA@") = A@)]| < Coyal),

where Cj is a positive constant depending only on z. Therefore, using this
inequality, z € Sp and (1.4), (1.5), it follows from (2.7) that

8

Mol — "I < T [(An@") — A" + AG") — Al@) + f — fo,a" — )
(A

(A

1’) - LT x;,n> + 90(‘73) - (p(x;,n)

+ (A(z) - f
+ (A( fyz" —x) + p(2"™) — ()

x) —

+ e () — o(x) — @e(2g,,) + 0(27.,)
+(U (" — ), 2" — a7, ),

which implies that

e g Mol + )+,
CE e

L (Got IIAxa— fD)m ()

+ (U* (2™ — al),a™ — x],,)-

a,n

mSHx;,n |$TL _x;,nH

_l’_

Qlm

—~

Hence, without loss of generality, we suppose that z7, — z1 € X as h/a,

d/a, e/a, yp(x)/a — 0 and n — co. By (2.4) and the properties of Ay, P, it

implies that

(Ap(xdn) = f5,8" — 24 ) + U (28, — 27), 2" — 24,0) + 0 (") = e(24,,),
Va't e X",

After passing h,d,e,a — 0 and n — +o0o in this inequality, we obtain

(A(x1) — frx —x1) + p(x) — (x1) >0, Ve X.
Thus, 1 € Sp.
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Now, replacing z" in (2.8) by 27 = P,r1 we see that the sequence {z7, ,}
converges strongly to x; and
(U(x —x4),x —x1) >0, VreS.

Replacing = by tzq + (1 — t)x, t € (0,1) in the last inequality, dividing by
(1 —t) and letting ¢ to 1, we get

(Us(x1 —x4),x —x1) >0, Vx €S,

which leads to the following

(Us(z1 — 24), @ — xs) > (U (21 — T4), 1 — T4) = |21 — 24]|%, YV € Sp.
Hence, ||z1 — z«|| < [z — z4||, Vo € Sp. Because of the convexity and the
closedness of Sy, and the strictly convexity of X, we conclude that z; = xg.
The proof is complete. O

Set
Y = maz{yn(zo), Yn(z«)}-

Now, we consider the convergence rate of {z,,,}.
Theorem 2.4. Assume that

(i) Conditions (i) and (ii) of Theorem 2.1 hold;

(ii) Ap(X,) are contained in X, for sufficiently large n and small h.
Then, for o ~ (h+d+e+ )", 0 <m <1,

[2an — ol = O((h + 6 + € + )" +75?),
. 1—m m . 1 v
p2 = 1M1 v o (> M3 = TN —, .
S 2s s ' s—1

Proof. Replacing " by xj = P,z in (2.8) we obtain
hg(ll= 1) + Coyn + 6
zg]|” < : —|

mSHxa,n - o Ty — xa,n”
€ T
+ —(d(|lz5,1) + dllolD))
(Co + [[Azo — fl)n (2.9)

+
(]

+ <US(:C0 - $*), $g - xz,n>
+ (U (g — i) = U (w0 — 24), 25 — o)
It follows from (1.7), (1.8) and condition (i) that

(US(ay — al) = U(w0 — 21), 2 — 20.5) < C(R)2" Yy llag —al,ll,  (210)
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where R > ||zg — ]|, and

(U (w0 — @), 25 — g ) = (U (w0 — @), G — o)
+ (21, Aj, (z0) (0 — 27, ,,))
< lwo — zl|*m
+ [[2nll(1 + 7)[|An(z0) — An(zd,pn) |-

(2.11)

Now, we estimate the value ||Ap(z7,,,) — An(2o)||. By replacing 2" by zf in
(2.4), using the projective property of P,, we get
(An(zd,n) — An(zg) + An(g) — An(xo) + Anlzo) — Alzo) + A(zo) — f + f
— f5:20 = T n) + (U (g, — 23), 25 — 25) + e(2) — @=(24,0) = 0,

which leads to the following

(An(2gn) — An(z6), 28m — 25) < (An(zg) — An(2o)
+ Ap(z0) — A(z0) + f — f5,70 — $Zn>
+ O‘<U5($g,n - l’f), l‘g - x;,n>
+ (A(zo) — fr20 — 2o + 20 — T4 )

+ @e(() — ‘Pe(wg,n)'

Using the inverse-strongly monotone property of Ay, (1.4) and (1.5) we have

mal An(ad, ) — An(@g)|* < [51% +hg(llzoll) + 6 + allag , — 2%[*~
X lzg — x4l + (Co + [|A(z0) = fl)wm
+e(d(l27 1) + d(llzol))),

where 51 is a positive constant depending only on xg. Thus,

1R (27 0) = An(@f)ll = O(Vh + 0 + e+ a + 7).
Moreover, since
[An(26.) — An(@o)|| < [[An(2g,) — An(@o) || + [[An(z5) — An(zo)]],

it follows readily that

1A (25.0) = An(z0)l| < O(Vh 46 + &+ a+7m) + Crya.
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Combining (2.10), (2.11) and the last inequality, it follows from (2.9) that
0 + hy(ll=g 1) + Comm
a

Mg, — 5 < +O(R)2 7 |ll2f — 2l

HS— € T
+ Ry + - [d(llzanll) + d({lzol)

Co + [l Azo — f])n
(0%

+ 2l +F)[O(Vh+ 3+ e+ a+m) + Ciym).

If o is chosen such that « ~ (h+ 0 +&+,)™, then from (2.12) we obtain the
inequality

(2.12)
4

2., — 201° <C1{(h+ 0 +e+7)" "™ + 45 | l2g — 2 |l + Covm

+Cs(h+6+c+m) M+ Ca(h+ 6+ + )"/,

C;,1=1,2,3,4 are positive constants. Thus,
2], — 2]l = O((h+ 6 + € 4+ )" +942).
Hence,
128, = zoll = O((h+ 8+ + )" +94°),
which completes the proof. O

3. NUMERICAL EXAMPLES

We now apply the obtained results from the previous sections to solve the
following optimization problem:

min{F () + ¢(z)} (3.1)

where F' is Gateaux differentiable with the Gateaux derivative A, ¢ is a weakly
lower semicontinuous and proper convex functional on X. So z¢ is a solution
of Problem (3.1) if and only if x( is a solution of Problem (1.1) (see [5]).

1
We consider the case when X is a real Hilbert space and F(z) = i(Aac, x),

with A being a self-adjoint linear bounded operator on X such that (Az,x) >
0, Vz € X. ¢ is a nonsmooth function and is approximated by a sequence of
smooth functions .. So the method (1.3) in this case can be written in the
form

Ap(zg) + oy — z4) + oL(27) = o (3.2)

The computational results here are obtained by using MATLAB. We shall
give an example.
Consider the case where H = L?[0, 1], with
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e A:L?[0,1] — L?[0,1] is defined by (Az)( fo s)ds, where

(1 —s)2st? s 5)2253(1 + 25)+

2 6
(t—s)° ,
+ 5 if t>s
BlS) =9 209062 20 -1P@2s—3)

2 * 6 -

—$)3
(s—1) it t<s

are kernel functionals defined on the square {0 <t,s < 1}.

1
(Apa)(t) = /0 kn(t, $)z(s)ds,

is an approximation of A, where ky(t,s) = k(t,s) + hts, h — +0. So, Ay
is an inverse-strongly monotone operator and Fréchet differentiable with the
Fréchet derivative Ay,.

1
e The function ¢ : L?[0,1] — R U {+o0} is defined by ¢(x) = w(i(Aw,:@),

with ¢ : R — R is chosen as follows

_ 0 ) t§a07
w(t)_{ c(t—ag) , t>ap, c,ap > 0.

1
The function p.(x) = w€(§<Aa:, x)) is an approximation of ¢(x) with

0 s tSao,
c(t — ap)?
wa(t): T s a0<t§a0+€
€
c(t—a0—§) , t>ag+e.

Obviously, ¢L(z) = 1/)6( (Az,z)) Az is an monotone operator from L?[0,1] to
L?[0,1].

e f5(t) =0, t € [0,1] is an approximation of f = 0 € L?[0,1].

We compute the regularized solutions ], ,, by approximating L?[0,1] by
the sequence of linear spaces H,, which is a set of all linear combinations of
{1, P2, ..., ¢} defined on uniform grid of n + 1 points in [0, 1]:

1 , tE(tjfl,tj],

¢j(t):{0 , té (i1, tl.
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Hence P,x(t) = Y x(t;)¢;(t), with ||P,|| = 1 and ||[(I — P,)2°|| = O(n™1),
j=1

Va € L?[0,1] (see [13]). Then, the finite-dimensional regularized equation (3.2)
is of the form

B, &+ @0(&) = f3, (3.3)
where
hikp(ti,t1) o hikp(ti,t2) .. hokp(ti,tn)
B, = | Mmkeltzty)  hika(tet) +o o hakn(te,tn)
1
hlkh(tnytl) hlkh(tn7t2) hlkh(tnvtn) +a

and ¢ (Z) = (902(?51),---1, PL@a))’, £ = (6,07, & = (T1, . Tn)T, T ~
x(tj), 7 =1,...,n, hy = —. Applying Theorem 2.4 for a ~ (h+ 6 4+ ¢ + v,)",
n

0 < < 1, we should obtain the convergence rates 7, ,, = |27, ,, —z"||. Taking
account of the iterative method in [14] for finding approximation solutions, we
1073 1

,0=h=ec=—.

get the tables of computational results with ¢ = T ag 3
n

—
n « Tom

40 | 0.085499 | 0.050812
80 | 0.053861 | 0.029435
100 | 0.046416 | 0.024636
500 | 0.015874 | 0.007128

2
Table 2.1: m = 3

—
n « T

40 | 0.15811 | 0.043055
80 | 0.1118 0.0252

100 0.1 0.021186
500 | 0.044721 | 0.006395

1
Table 2.2: n; = 3

Remarks. From Table 2.1 and 2.2 we can see that:

1. For sufficiently small h, d, e, the approximate solutions z7, ,, are closed
to the exact solution of the original problem:;

2. The convergence rate of regularized solutions depends on the choice of
values of o depending on h, J, €.
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