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Abstract. In this paper, we introduce the new concept of Ω-distance on an S-metric space

and prove a fixed point theorem for a self-map. This is a generalization of well-known results

which are proved by Guran [7].

1. Introduction

It is well known that the Banach contraction principle is a fundamental
result in fixed point theory. After this classical result, many authors have
extended, generalized and improved this theorem in different ways (see for
details, [1], [2], [3], [4]). Also recently, fixed and common fixed point results
in different types of spaces have been developed. For example, ultra metric
spaces [16], fuzzy metric spaces [8] and uniform spaces [15].
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In this paper we recall the definitions of S-metric space and give some
properties of it (see [5, 10]). After than, we prove a fixed point theorem for
single-valued operators in terms of a Ω-distance.

We begin by briefly recalling some basic definitions and results for S-metric
spaces that will be needed in the sequel. For more details please see in [6, 9, 11].

Definition 1.1. ([5, 10]) Let X be a (nonempty) set. An S-metric on X is
a function S : X3 −→ [0,∞) that satisfies the following conditions: for each
x, y, z, a ∈ X,

(1) S(x, y, z) ≥ 0,
(2) S(x, y, z) = 0 if and only if x = y = z,
(3) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a), for all x, y, z, a ∈ X.

The pair (X,S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

Example 1.2. ([12, 14])

(i) Let X = Rn and ‖ . ‖ a norm on X. Then S(x, y, z) =‖ y + z − 2x ‖
+ ‖ y − z ‖ is an S-metric on X.

(ii) Let X be a nonempty set, d be an ordinary metric on X. Then
S(x, y, z) = d(x, z) + d(y, z) is an S-metric on X. This S-metric is
called the usual S-metric on X.

Definition 1.3. ([13]) Let (X,S) be an S-metric space.

(1) A sequence {xn} ⊂ X converges to x ∈ X if S(xn, xn, x) → 0 as
n → ∞. That is, for each ε > 0, there exists n0 ∈ N such that for all
n ≥ n0 we have S(xn, xn, x) < ε. We write xn → x for brevity.

(2) A sequence {xn} ⊂ X is Cauchy if S(xn, xn, xm) → 0 as n,m → ∞.
That is, for each ε > 0, there exists n0 ∈ N such that for all n,m ≥ n0
we have S(xn, xn, xm) < ε.

(3) The S-metric space (X,S) is complete if every Cauchy sequence is
convergent.

Definition 1.4. ([12]) Let (X,S) be an S-metric space. For r > 0 and x ∈ X
we define the open ball Bs(x, r) and closed ball Bs[x, r] with center x and
radius r as follows respectively:

Bs(x, r) = {y ∈ X : S(y, y, x) < r},
Bs[x, r] = {y ∈ X : S(y, y, x) ≤ r}.

Example 1.5. ([12]) Let X = R and S(x, y, z) = |y + z − 2x|+ |y − z| for all
x, y, z ∈ R. Then

Bs(1, 2) = {y ∈ R : S(y, y, 1) < 2} = {y ∈ R : |y − 1| < 1}
= {y ∈ R : 0 < y < 2} = (0, 2).
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Lemma 1.6. ([13]) Let (X,S) be an S-metric space. If r > 0 and x ∈ X,
then the ball Bs(x, r) is open subset of X.

Lemma 1.7. ([12, 13, 14]) In an S-metric space, we have S(x, x, y) = S(y, y, x).

Lemma 1.8. ([14]) Let (X,S) be an S-metric space. If sequence {xn} con-
verges to x, then x is unique.

Lemma 1.9. ([14]) Let (X,S) be an S-metric space. If sequence {xn} is
convergent to x, then {xn} is a Cauchy sequence.

Lemma 1.10. ([12, 13, 14]) Let (X,S) be an S-metric space. If there exist
sequences {xn} and {yn} such that limn→∞ xn = x and limn→∞ yn = y, then
limn→∞ S(xn, xn, yn) = S(x, x, y).

2. Fixed point theorems in Ω-distance

Now, we introduce the new concept of Ω-distance on an S-metric space.

Definition 2.1. Let (X,S) be an S-metric space. Then a function Ω : X ×
X ×X −→ [0,∞) is called an Ω-distance on X if the followings are satisfied:

(1) Ω(x, y, z) ≤ Ω(x, x, a) + Ω(y, y, a) + Ω(z, z, a) for all x, y, z, a ∈ X,
(2) for each x ∈ X, Ω(x, x, .) : X −→ [0,∞) is a lower semi-continuous,
(3) for each ε > 0, there is δ > 0 such that Ω(x, x, a) ≤ δ, Ω(y, y, a) ≤ δ

and Ω(z, z, a) ≤ δ imply S(x, y, z) ≤ ε.

Let us give some examples of Ω-distance.

Example 2.2. Let (X,S) be an S-metric space. Then we know that the
metric S is an Ω-distance. If set Ω = S, then (1) is obvious. For (2), let {xn}
be a sequence in X such that lim

n→∞
xn = u. Then we have

S(x, x, xn) = S(xn, xn, x) ≤ 2S(xn, xn, u) + S(x, x, u).

Taking n→∞ of above inequality, we have

lim
n→∞

S(x, x, xn) ≤ S(x, x, u).

Similarly,

S(x, x, u) = S(u, u, x) ≤ 2S(u, u, xn) + S(x, x, xn).

Taking n→∞ of above inequality, we have

S(x, x, u) ≤ lim
n→∞

S(x, x, xn).
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That is, lim
n→∞

S(x, x, xn) = S(x, x, u). We show (3). Let ε > 0 be given and be

choose δ ≤ ε
3 . Then, we have

S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a)

= Ω(x, x, a) + Ω(y, y, a) + Ω(z, z, a)

≤ ε.

Example 2.3. Let X = R be real number and (X,S) be an S-metric space
with S(x, y, z) = |x − z| + |y − z|. Then function Ω : X ×X ×X −→ [0,∞)
defined by Ω(x, y, z) = |x| + |y| for every x, y, z ∈ X is a Ω-distance on X.
The condition (1) is obvious. For (2), let {xn} be a sequence in X such that
lim
n→∞

xn = u. Then we have

2|x| = Ω(x, x, xn) ≤ lim inf
n→∞

Ω(x, x, xn) = 2|x|.

We show (3). Let ε > 0 be given, if choose δ ≤ ε
3 . Then, we have

S(x, y, z) = |x− z|+ |y − z| ≤ |x|+ |y|+ 2|z|
≤ Ω(x, x, a) + Ω(y, y, a) + Ω(z, z, a)

≤ 3δ

≤ ε.

Example 2.4. Let X be a normed linear space with norm || · || and (X,S)
be an S-metric space with S(x, y, z) = ||x − z|| + ||y − z||. Then function
Ω : X×X×X −→ [0,∞) defined by Ω(x, y, z) = ||x−z|| for every x, y, z ∈ X
is an Ω-distance on X. The condition (1) is obvious. For (2), let {xn} be a
sequence in X such that lim

n→∞
xn = u. Since ||x−u|| = lim

n→∞
||x−xn||, we have

Ω(x, x, u) = ||x− u||
= lim

n→∞
||x− xn|| = lim

n→∞
Ω(x, x, xn)

≤ lim inf
n→∞

Ω(x, x, xn) = ||x− u||.

Let ε > 0 be given, if choose δ ≤ ε
4 . Then, we have

S(x, y, z) = ||x− z||+ ||y − z||
≤ ||x− a||+ ||z − a||+ ||y − a||+ ||z − a||
≤ Ω(x, x, a) + Ω(y, y, a) + 2Ω(z, z, a)

≤ 4δ

≤ ε.

Example 2.5. LetX = [0,∞) and (X,S) be an S-metric space with S(x, y, z) =
|x − z| + |x + y − 2z|. Then function Ω : X × X × X −→ [0,∞) defined by
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Ω(x, y, z) = max{x, y} for every x, y, z ∈ X is an Ω-distance on X. The con-
ditions (1) and (2) are obvious. Let ε > 0 be given, if choose δ ≤ ε

6 . Then, we
have

S(x, y, z) = |x− z|+ |x+ y − 2z|
≤ 2|x|+ |y|+ 3|z| = 2x+ y + 3z

≤ 2Ω(x, x, a) + Ω(y, y, a) + 3Ω(z, z, a)

≤ 6δ

≤ ε.

Example 2.6. Let X = [0,∞) and (X,S) be an S-metric space with S(x, y, z)
= |x − z| + |y − z|. Then function Ω : X × X × X −→ [0,∞) defined by
Ω(x, y, z) = max{x, y, z} for every x, y, z ∈ X is an Ω-distance on X. In fact,
the condition (1) is obvious. For (2), let {xn} be a sequence in X such that
lim
n→∞

xn = u. Then we have

max{x, xn} = Ω(x, x, xn)

≤ lim inf
n→∞

Ω(x, x, xn)

= max{x, u} = Ω(x, x, u).

Let ε > 0 be given, if choose δ ≤ ε
4 . Then, we have

S(x, y, z) = |x− z|+ |y − z|
≤ x+ y + 2z

≤ Ω(x, x, a) + Ω(y, y, a) + 2Ω(z, z, a)

≤ 4δ

≤ ε.

Definition 2.7. An Ω-distance of S-metric space (X,S) is called symmetric
if Ω(x, x, y) = Ω(y, y, x) for all x, y ∈ X.

We can easily show that the Ω-distances in Example 2.4 and Example 2.6
are symmetric.

The following lemma plays an important role to prove fixed point theorems.

Lemma 2.8. Let (X,S) be an S-metric space and let Ω be an Ω-distance on
X. Let {xn} and {yn} be sequences in X, let {αn}, {βn} and {γn} be three
sequences in [0,∞) converging to 0. Then, for every x, y, z ∈ X we have the
following statements:

(1) If Ω(x, x, xn) ≤ αn, Ω(y, y, xn) ≤ βn and Ω(z, z, xn) ≤ γn for any n ∈
N, then x = y = z. In particular, Ω(x, x, xn) ≤ αn and Ω(y, y, xn) ≤
βn , then x = y,
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(2) If Ω(yn, yn, xn) ≤ αn and Ω(y, y, xn) ≤ βn for any n ∈ N, then
S(yn, yn, y) −→ 0, that is, {yn} converges to y,

(3) If Ω(yn, yn, xn) ≤ αn and Ω(ym, ym, xn) ≤ βn for any n,m ∈ N with
m > n, then {yn} is a Cauchy sequence,

(4) If Ω(xn, xn, a) ≤ αn for every n ∈ N and a ∈ X, then {xn} is a Cauchy
sequence.

Proof. To prove (1), let ε > 0 be given. From the definition of Ω-distance, we
can choose n0 ∈ N such that αn ≤ δ, βn ≤ δ and γn ≤ δ for every n ≥ n0.
Then for any n ≥ n0 we have, Ω(x, x, xn) ≤ αn ≤ δ, Ω(y, y, xn) ≤ βn ≤ δ and
Ω(z, z, xn) ≤ γn ≤ δ. Hence S(x, y, z) ≤ ε. This implies that x = y = z.

To prove (2), let ε > 0 be given. From the definition of Ω-distance, we can
choose n0 ∈ N such that αn ≤ δ and βn ≤ δ for every n ≥ n0. Then for any
n ≥ n0 we have, Ω(yn, yn, xn) ≤ αn ≤ δ and Ω(y, y, xn) ≤ βn ≤ δ. Hence
S(yn, yn, y) ≤ ε. This implies that {yn} converges to y.

In order to prove that the statement (3) holds. Let ε > 0 be given. As in
the proof of (2), choose δ > 0. Then for any n,m ≥ n0,

Ω(yn, yn, xn) ≤ αn ≤ δ and Ω(ym, ym, xn) ≤ βn ≤ δ.

Hence S(yn, yn, ym) ≤ ε. This implies that {yn} is a Cauchy sequence. As in
the proof of (3), we can prove (4). Because, for any n,m ≥ n0, we can choose
δ > 0 such that

Ω(xn, xn, a) ≤ αn ≤ δ and Ω(xm, xm, a) ≤ αn ≤ δ.

Hence S(xn, xn, xm) ≤ ε. This implies that {xn} is a Cauchy sequence. �

In the first part of the section, we introduce and prove the following fixed
point theorem.

Theorem 2.9. Let (X,S) be a complete S-metric space and Ω be a symmetric
Ω-distance on X. Let T : X −→ X be a mapping such that

Ω(Tx, Ty, Tz) ≤ kmax

{
Ω(x, y, z),Ω(x, x, Tx),Ω(y, y, Ty),Ω(z, z, Tz),
1
7(Ω(x, x, Ty) + Ω(y, y, Tz) + Ω(z, z, Tx))

}
holds for each x, y, z ∈ X and 0 ≤ k < 1. Suppose that if u 6= Tu,

inf{Ω(Tx, Tx, u) : x ∈ X} > 0.

Then T has a fixed point. Moreover, if Ω(x, x, x) ≤ Ω(x, x, y) for every x, y ∈
X, then T has a unique fixed point.

Proof. Let x0 ∈ X and xn+1 = Txn for each n ∈ N. If there is n ∈ N for
which xn+1 = xn, then xn is a fixed point of T . In the following, we assume
xn+1 6= xn for each n ∈ N.
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First we shall prove that lim
n→∞

Ω(xn, xn, xn+1) = 0. For n ∈ N, we have

Ω(xn, xn, xn+1)

= Ω(Txn−1, Txn−1, Txn)

≤ kmax

{
Ω(xn−1, xn−1, xn),Ω(xn−1, xn−1, Txn−1),
Ω(xn−1, xn−1, Txn−1),Ω(xn, xn, Txn)

}

= kmax


Ω(xn−1, xn−1, xn),Ω(xn−1, xn−1, xn),
Ω(xn−1, xn−1, xn),Ω(xn, xn, xn+1),
1
7(Ω(xn−1, xn−1, Txn−1) + Ω(xn−1, xn−1, Txn)
+Ω(xn, xn, Txn−1))


≤ kmax


Ω(xn−1, xn−1, xn),Ω(xn, xn, xn+1),
1
7(Ω(xn−1, xn−1, xn) + Ω(xn−1, xn−1, xn+1)
+Ω(xn, xn, xn))

 .

Since Ω is symmetric, by Definition 2.1 we have

Ω(xn, xn, xn+1)

≤ kmax

{
Ω(xn−1, xn−1, xn),Ω(xn, xn, xn+1),
1
7(Ω(xn−1, xn−1, xn) + Ω(xn−1, xn−1, xn+1) + Ω(xn, xn, xn))

}

≤ kmax


Ω(xn−1, xn−1, xn),Ω(xn, xn, xn+1),
1
7(Ω(xn−1, xn−1, xn) + 2Ω(xn−1, xn−1, xn)
+Ω(xn, xn, xn+1) + 3Ω(xn, xn, xn+1))

 .

Now, if

max{Ω(xn−1, xn−1, xn),Ω(xn, xn, xn+1)} = Ω(xn, xn, xn+1),

by above inequality, it follows that Ω(xn, xn, xn+1) < Ω(xn, xn, xn+1) which is
a contradiction. Therefore,

Ω(xn, xn, xn+1) ≤ Ω(xn−1, xn−1, xn).

Then, we have, for any n ∈ N,

Ω(xn, xn, xn+1) ≤ kΩ(xn−1, xn−1, xn)

≤ k2Ω(xn−2, xn−2, xn−1)

...

≤ knΩ(x0, x0, x1) = αn. (2.1)



210 A. Javaheri, S. Sedghi and H. G. Hyun

So, if m > n, then

Ω(xm, xm, xn+1) = Ω(xn+1, xn+1, xm)

≤ 2
m−2∑
i=n+1

Ω(xi, xi, xi+1) + Ω(xm−1, xm−1, xm)

≤ 2
m−2∑
i=n+1

ki Ω(x0, x0, x1) + km−1 Ω(x0, x0, x1)

≤ 2kn+1 Ω(x0, x0, x1)[1 + k + k2 + · · · ]

≤ 2kn+1

1− k
Ω(x0, x0, x1)

= βn. (2.2)

That is, for every ε > 0, there is n0 ∈ N such that

Ω(xn, xn, xm) < ε, ∀n,m ≥ n0.

Thus

lim inf
n→∞

Ω(xn, xn, xm) ≤ lim inf
n→∞

ε = ε, ∀n,m ≥ n0.

Also, by (2.1), (2.2) and by Lemma 2.8, {xn} is a Cauchy sequence. Since
(X,S) is complete, {xn} converges to some point z ∈ X. Suppose z 6= Tz and
let n0 ∈ N be fixed. Then, since {xn} converges to z and Ω(xn, xn, z) is lower
semicontinuous at z in X, we have

Ω(xn, xn, z) ≤ lim inf
m→∞

Ω(xn, xn, xm) ≤ ε, ∀n,m ≥ n0.

On the other hand, we have

0 < inf{Ω(Tx, Tx, z) : x ∈ X} ≤ inf{Ω(Txn, Txn, z) : n ≥ n0}
≤ inf{lim inf

n→∞
Ω(Txn, Txn, xm} ≤ ε,

which contradicts the hypotheses. Therefore, z = Tz and hence z is a fixed
point of T . We shall deal now with the uniqueness of the fixed point of T.
Suppose that there are u and v in X fixed points of the mapping T . By
hypotheses, since max{Ω(v, v, v),Ω(u, u, u)} ≤ Ω(v, v, u). It follows that

Ω(v, v, u) = Ω(Tv, Tv, Tu)

≤ kmax

{
Ω(v, v, u),Ω(v, v, Tv),Ω(v, v, Tv),Ω(u, u, Tu),
1
7(Ω(v, v, Tv) + Ω(v, v, Tu) + Ω(u, u, Tv))

}
= kmax

{
Ω(v, v, u),Ω(v, v, v),Ω(v, v, v),Ω(u, u, u),
1
7(Ω(v, v, v) + Ω(v, v, u) + Ω(u, u, v))

}
< Ω(v, v, u),



Extensions of fixed point theorems with respect to Ω-distance 211

which is possible only for Ω(v, v, u) = 0. Similarly, it can be proved that
Ω(u, u, v) = 0. According to the definition of an Ω-distance, S(v, v, u) = 0
this imply that u = v. Hence, T has a unique fixed point. �

Example 2.10. Let X = {0, 1, 2, · · · } and S(x, y, z) = |x− y|+ |x+ y − 2z|.
Then it is clear that (X,S) is a complete S-metric spaces. Let Ω : X3 → [0,∞),
defined by Ω(x, y, z) = max{x, y, z} for all x, y, z ∈ X. Then for all x, y, z ∈ X
we have

(1) Ω(x, y, z) ≤ Ω(x, x, a) + Ω(y, y, a) + Ω(z, z, a) for all a ∈ X,
(2) for each x ∈ X, Ω(x, x, .) : X −→ [0,∞) is a lower semi-continuous,
(3) for each ε > 0, we can choose δ ≤ ε

6 such that Ω(x, x, a) ≤ δ,
Ω(y, y, a) ≤ δ and Ω(z, z, a) ≤ δ imply

|x− y|+ |x+ y − 2z| = S(x, y, z)

≤ 2x+ 2y + 2z

< 2Ω(x, x, a) + 2Ω(y, y, a) + 2Ω(z, z, a)

< 6δ

< ε,

(4) Ω(x, x, y) ≤ Ω(y, y, x).

If define

T (x, y) =


0 if x = 0,
x
2 if x = 2n,

x−1
2 if x = 2n+ 1,

then it is clear that T0 = 0. But in otherwise, that is Tu 6= u for any u ∈ X,
we have

inf{Ω(Tx, Tx, u) | x ∈ X}

= inf

{
Ω(x2 ,

x
2 , u) = max{x2 , u} if x = 2n,

Ω(x−12 , x−12 , u) = max{x−12 , u} if x = 2n+ 1,

}
≥ u > 0.

On the other hand for k = 1
2 , we have three cases:

Case 1. If x, y, z ∈ X are even, then

Ω(x, y, z) = Ω(
x

2
,
y

2
,
z

2
)

=
1

2
max{x, y, z}

≤ kΩ(x, y, z).
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Case 2. If x, y, z ∈ X are odd, then

Ω(x, y, z) = Ω(
x− 1

2
,
y − 1

2
,
z − 1

2
)

=
1

2
max{x, y, z} − 1

2

≤ 1

2
max{x, y, z}.

Case 3. If x, y ∈ X are even and z is an odd, then

Ω(x, y, z) = Ω(
x− 1

2
,
y − 1

2
,
z

2
)

= max{x− 1

2
,
y − 1

2
,
z

2
}

≤ 1

2
max{x, y, z}.

These shows that all conditions of Theorem 2.9 for k = 1
2 are satisfied and so

T has a unique fixed point x = 0 in X.
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