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Abstract. In this paper, we introduce the new concept of 2-distance on an S-metric space
and prove a fixed point theorem for a self-map. This is a generalization of well-known results

which are proved by Guran [7].

1. INTRODUCTION

It is well known that the Banach contraction principle is a fundamental
result in fixed point theory. After this classical result, many authors have
extended, generalized and improved this theorem in different ways (see for
details, [1], [2], [3], [4]). Also recently, fixed and common fixed point results
in different types of spaces have been developed. For example, ultra metric
spaces [16], fuzzy metric spaces [8] and uniform spaces [15].
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In this paper we recall the definitions of S-metric space and give some
properties of it (see [5, 10]). After than, we prove a fixed point theorem for
single-valued operators in terms of a (2-distance.

We begin by briefly recalling some basic definitions and results for S-metric
spaces that will be needed in the sequel. For more details please see in [6, 9, 11].

Definition 1.1. ([5, 10]) Let X be a (nonempty) set. An S-metric on X is
a function S : X3 — [0, 00) that satisfies the following conditions: for each
z,y,2,a € X,

(1) S(z,y,2) =0,

(2) S(z,y,2) =0if and only if x =y = z,

(3) S(z,y,2) < S(z,z,a) + S(y,y,a) + S(z,z,a), for all z,y,z,a € X.
The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

Example 1.2. ([12, 14])

(i) Let X =R"™ and || . || a norm on X. Then S(x,y,2) =| y+ 2z — 2z ||
+ || y — z || is an S-metric on X.

(ii) Let X be a nonempty set, d be an ordinary metric on X. Then
S(z,y,z) = d(x,z) + d(y, z) is an S-metric on X. This S-metric is
called the usual S-metric on X.

Definition 1.3. ([13]) Let (X, S) be an S-metric space.

(1) A sequence {z,} C X converges to x € X if S(zp,xn,z) — 0 as
n — oo. That is, for each € > 0, there exists ng € N such that for all
n > ng we have S(x,, z,, ) < e. We write x,, — z for brevity.

(2) A sequence {x,} C X is Cauchy if S(xn,Zn, xm) — 0 as n,m — oo.
That is, for each € > 0, there exists ng € N such that for all n,m > ng
we have S(xp, Tpn, Tm) < €.

(3) The S-metric space (X,S) is complete if every Cauchy sequence is
convergent.

Definition 1.4. ([12]) Let (X, .S) be an S-metric space. For r > 0 and z € X
we define the open ball Bg(z,r) and closed ball Bs[z,r] with center x and
radius r as follows respectively:

Bs(z,r) = {yeX:S(yy,x) <r},

By[z,r] = {yeX:S(y,yz)<r}
Example 1.5. ([12]) Let X =R and S(z,y,2) = |y + z — 2z| + |y — 2| for all
z,y,z € R. Then

Bs(1,2) = {yeR:Sy,y,1)<2}={yeR:|y—1 <1}
= {yeR:0<y<2}=(0,2).
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Lemma 1.6. ([13]) Let (X,S) be an S-metric space. If r > 0 and x € X,
then the ball Bs(x,r) is open subset of X.

Lemma 1.7. ([12, 13, 14]) In an S-metric space, we have S(x,z,y) = S(y,y, ).

Lemma 1.8. ([14]) Let (X,S) be an S-metric space. If sequence {x,} con-
verges to x, then x is unique.

Lemma 1.9. ([14]) Let (X,S) be an S-metric space. If sequence {xy} is
convergent to x, then {x,} is a Cauchy sequence.

Lemma 1.10. ([12, 13, 14]) Let (X,S) be an S-metric space. If there exist
sequences {xn} and {y,} such that lim, oo x,, = x and lim,_—o0 yn = Yy, then
limy, 00 S(xny Tn, yn) = S(l’, z, y)-

2. FIXED POINT THEOREMS IN {2-DISTANCE

Now, we introduce the new concept of 2-distance on an S-metric space.

Definition 2.1. Let (X, S) be an S-metric space. Then a function © : X x
X x X — [0,00) is called an Q-distance on X if the followings are satisfied:

(1) Qz,y,2) < Qz,z,a) + Qy,y,a) + Qz, z,a) for all x,y,z,a € X,

(2) for each x € X, Q(z,x,.) : X — [0, 00) is a lower semi-continuous,

(3) for each € > 0, there is § > 0 such that Q(z,x,a) < 9§, Q(y,y,a) <4
and Q(z,z,a) < 0 imply S(z,y,2) <e.

Let us give some examples of Q-distance.

Example 2.2. Let (X,S) be an S-metric space. Then we know that the
metric S is an -distance. If set Q = S, then (1) is obvious. For (2), let {z,}
be a sequence in X such that li_>m T, = u. Then we have

n—oo

S(z,z,xn) = S(p, Tn,x) < 25(xp, zn,u) + S(z, 2, 0).
Taking n — oo of above inequality, we have

lim S(z,x,2,) < S(z,z,u).

n—o0

Similarly,
S(x,z,u) = S(u,u,z) < 2S(u,u,zy,) + S(x,x,x,).
Taking n — oo of above inequality, we have

S(z,z,u) < lim S(z,z, x,).

n—o0
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That is, lim S(x,z,zy,) = S(z,x,u). We show (3). Let € > 0 be given and be
n—oo

choose § < §. Then, we have

S(x,y,2) < S(z,r,a)+S(y,y,a) + 5(2,2,a)
= Qz,z,a)+Qy,y,a) + 2z, z,a)
< e

Example 2.3. Let X = R be real number and (X,S) be an S-metric space
with S(x,y,2) = |x — 2| + |y — z|. Then function 2 : X x X x X — [0, 00)
defined by Q(z,y,2) = |z| + |y| for every z,y,z € X is a Q-distance on X.
The condition (1) is obvious. For (2), let {z,} be a sequence in X such that

lim x,, = u. Then we have
n—oo

2|z| = Qz, z, zy) < liminfQ(z, x, z,) = 2|z|.

n—o0

We show (3). Let € > 0 be given, if choose § < §. Then, we have

S(eyr2) = fo—2l+ly— 2l <lal + ly] + 2

< Qz,z,a) + Qy,y,a) + Qz, 2,a)

< 30

< e
Example 2.4. Let X be a normed linear space with norm || - || and (X, .S)
be an S-metric space with S(z,y,2) = ||z — 2|| + ||y — z||. Then function

Q: X xXxX —[0,00) defined by Q(x,y, z) = ||x — z|| for every x,y,z € X
is an Q-distance on X. The condition (1) is obvious. For (2), let {z,} be a

sequence in X such that lim x, = u. Since ||z —u|| = lim ||z — x,||, we have
n—oo n—oo
Q(.T,LU,U) = HIL’—UH
= lim ||z — z,|| = lim Q(z, z, z,)
< liminfQ(z, x, ) = ||z — ul|.
n—oo

Let € > 0 be given, if choose § < §. Then, we have

S(@y,2) = llz =zl +ly =

2 al| + ||z = all + |ly - all + || - al
Qa,w,a) + Ay, y, a) + 20(z, 2, a)

46

€.

VAN VANRVANN VAN

Example 2.5. Let X = [0,00) and (X, S) be an S-metric space with S(x,y, z) =
|z — z| + |r + y — 22|. Then function 2 : X x X x X — [0,00) defined by
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Q(z,y,z) = max{x,y} for every z,y,z € X is an -distance on X. The con-
ditions (1) and (2) are obvious. Let € > 0 be given, if choose 6 < §&. Then, we
have

S(z,y,2) |z — 2| + |+ y — 22|

2z + ly| + 3|z] =2z +y + 3=
2Q(x,xz,a) + Uy, y,a) + 3Q(z, 2z, a)
64

€.

VAN VANR VARSI VAN

Example 2.6. Let X = [0,00) and (X, S) be an S-metric space with S(x, y, 2)
= |z — z| + |y — z|. Then function Q : X x X x X — [0,00) defined by
Q(x,y, z) = max{x,y, z} for every z,y,z € X is an Q-distance on X. In fact,
the condition (1) is obvious. For (2), let {z,} be a sequence in X such that

lim x,, = u. Then we have
n—oo

max{z,x,} = Q(z,z,x,)

< lini)ian(:U,x,:z:n)
= max{z,u} = Qz,z,u).

Let € > 0 be given, if choose § < . Then, we have

S(@,y,2) = |v—2z[+y— 2|
< z4y+2z
< Qz,z,a) + Qy,y,a) + 2Q(z, z,a)
< 46
< e

Definition 2.7. An Q-distance of S-metric space (X, 5) is called symmetric
if Qz,z,y) =Qy,y,z) for all z,y € X.

We can easily show that the -distances in Example 2.4 and Example 2.6
are symmetric.
The following lemma plays an important role to prove fixed point theorems.

Lemma 2.8. Let (X,S) be an S-metric space and let Q0 be an Q-distance on
X. Let {xn} and {y,} be sequences in X, let {an}, {Bn} and {y,} be three
sequences in [0,00) converging to 0. Then, for every x,y,z € X we have the
following statements:
(1) If Uz, z,2n) < o, Uy, y,2n) < B and Uz, z,2,) < vy, for any n €
N, then © = y = z. In particular, Q(z,z,x,) < o and Qy,y, z,) <
Brn , then x =y,
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(2) If QYn,Yn,xn) < apn and QUy,y,z,) < By for any n € N, then
S(Yn, Yn,y) —> 0, that is, {yn} converges to vy,

(3) If QYns Yn, xn) < an and UYm, Ym, Tn) < Bn for any n,m € N with
m > n, then {y,} is a Cauchy sequence,

(4) If Qxn, zn,a) < oy, for everyn € N and a € X, then {x,} is a Cauchy
sequence.

Proof. To prove (1), let € > 0 be given. From the definition of 2-distance, we
can choose ng € N such that o, < 9, 8, < 6 and v, < § for every n > ng.
Then for any n > ny we have, Q(z,z,2,) < ap, <6, Qy,y, 2n) < B < d and
Q(z,z,2n) < v < d. Hence S(z,y,2) < e. This implies that z =y = z.

To prove (2), let € > 0 be given. From the definition of Q-distance, we can
choose ng € N such that a,, < § and 3, < 6 for every n > ng. Then for any
n > ng we have, Qyn, Yn, Tn) < an < 6 and Qy,y,z,) < B, < §. Hence
S(Yn, Yn,y) < €. This implies that {y,} converges to y.

In order to prove that the statement (3) holds. Let € > 0 be given. As in
the proof of (2), choose § > 0. Then for any n,m > ny,

Q(ynaynaxn) <o, <9d and Q(ymyymwrn) < Bn <.

Hence S(Yn, Yn, Ym) < €. This implies that {y,} is a Cauchy sequence. As in
the proof of (3), we can prove (4). Because, for any n, m > ng, we can choose
0 > 0 such that

Qzp, xn,a) < ap <5 and QUzp, Tm,a) < a, < 0.
Hence S(zy,, n, Tm) < €. This implies that {z,} is a Cauchy sequence. O

In the first part of the section, we introduce and prove the following fixed
point theorem.

Theorem 2.9. Let (X,S) be a complete S-metric space and Q be a symmetric
Q-distance on X. Let T : X — X be a mapping such that

Q(x? y? Z)? Q(x7 'CC? T:C), Q(y? y7 Ty)? Q(’Z? Z? Tz)?
<
UTe, Ty, Tz) < k max{ Lz, 2, Ty) + Qy,y, T=) + Az, 2, Te))

holds for each z,y,z € X and 0 < k < 1. Suppose that if u # Tu,
inf{Q(Tx,Tz,u) :x € X} > 0.

Then T has a fized point. Moreover, if Q(x,z,x) < Q(x,x,y) for every x,y €
X, then T has a unique fized point.

Proof. Let g € X and z,41 = Tx, for each n € N. If there is n € N for
which z,4+1 = z,, then x,, is a fixed point of T. In the following, we assume
Tp+1 7 Ty for each n € N.
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First we shall prove that lim Q(z,, 2y, zn4+1) = 0. For n € N, we have
n—0o0
Q(xn,xnal'n-l-l)
= Q(Tfpn—laTxn—lyTxn)
U1, Tn-1,Zn), UTpn-1,Tn-1,TTn_1)
<kma n y N s N/ n N 9 n 9
- X{ Uzn—1,2n-1,TTn-1), Uwp, Ty, TTn)
Q(.’L’n_l,.Iin_l,wn),Q(.’Bn_l,l’n_l,lﬁn),
QUxp—1,Tn-1,2n), UZTn, Tn, Tni1)
:k a n )N M) ny+nyn b
tax %(Q(l'nfl»xnflaTxnfl) + Q(xnflaxnflaTl'n)
+Q(xp, Tpy, TTp—1))
Q(xnflaxnflal‘n)ag(xn?mnaanrl)?
< kmax %(Q(%n_1,$n_1, xn) + Q(mn—la xn—hxn-i-l)
+QU(zn, Tn, T0))

Since €2 is symmetric, by Definition 2.1 we have

Q(xmxml'n—f—l)

Q(xnflaxnflaxn)79($n7xnaxn+l)7
<
- Fmax { (Q(xn—h Tn—1, :Z:n) + Q(xn—la Tn—1, xn-l—l) + Q(:Iin7 Tn, xn))

==

Q(mn—la Tn—1, -%'n), Q(xna Tn, xn—f—l)v
< kmax %(Q(xnflvxnflyxn) + 29(337171,.%”,1,15”)
+Q($na Tn, xn—i—l) + 39(3571’ Tn, xn—i—l))
Now, if

maX{Q<xn—17 Tp—1,Tn), UTn, Tn, xn—l—l)} = Q(xna T, Tntl),

by above inequality, it follows that Q(xy,, pn, Znt1) < Q(zp, Tn, Tp+1) which is
a contradiction. Therefore,

Q(.%'n, Tn, xn—i—l) < Q($n—17 Tn—1, xn)-

Then, we have, for any n € N,

Q($n,$n,$n+1) < kQ(l‘nflaxnflaxn)
< kQQ(JL'anyl'an»xnfl)
< k‘nQ(l'o,:Co,.’L'l) = Qip,. (2.1)
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So, if m > n, then

Q($m7xm,$n+1) = Q(xn+17$n+17$m)
m—2
< 2 Z Wi, i, Tir1) + QUTm—1, Tm—1,Tm)
i=n—+1

< 2 Z K Q(l’o,l‘o,xl) +km_1 Q(:L’o,xo,.%j)

i=n+1
< 2" Q(xo, o, 1) [1 4+ K 4+ K2+ -]
o1
< 75 Uao,z0,21)
= b (2.2)

That is, for every € > 0, there is ng € N such that
U xp, Ty, Tm) < €, Vn,m > ng.

Thus

liminf Q(zp, T, Tm) < liminf € = €, Vn,m > ny.
n—oo n—o0

Also, by (2.1), (2.2) and by Lemma 2.8, {x,} is a Cauchy sequence. Since
(X, S) is complete, {x,} converges to some point z € X. Suppose z # Tz and
let ng € N be fixed. Then, since {z,} converges to z and Q(z, Ty, 2) is lower
semicontinuous at z in X, we have

Qxp, Tn, z) < liminf Q(z,, z,, zm) <€, Yn,m > ng.
m—0o0

On the other hand, we have

0 <inf{Q(Tz,Tx,z):z € X} inf{QTxz,, Try, z) :n>ng}

inf{liminf Q(Txp, Txn, Tm} < ¢,

n—oo

<
<

which contradicts the hypotheses. Therefore, 2 = Tz and hence z is a fixed
point of T. We shall deal now with the uniqueness of the fixed point of T.
Suppose that there are uw and v in X fixed points of the mapping T. By
hypotheses, since max{Q(v,v,v), Uu,u,u)} < Q(v,v,u). It follows that
Qv,v,u) = QTv,Tv,Tu)
Q(v,v,u), Qv,v,Tv), Qv,v, Tv), Wu,u, Tu),

<

- kmax{ (v,v,Tv) + Q(v,v, Tu) + Q(u, u, Tv))

= kmax{

(©

(v,v,u), Qv,v,v), v, v,v), Uu, u,u),

o |
< Qv,v,u),

EN(E {Q N

(vvv)+ (vvu)—i—Q(uuv))
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which is possible only for Q(v,v,u) = 0. Similarly, it can be proved that
Q(u,u,v) = 0. According to the definition of an Q-distance, S(v,v,u) = 0
this imply that u = v. Hence, T has a unique fixed point. O

Example 2.10. Let X ={0,1,2,---} and S(z,y,2) = |z —y| + |z + y — 2z|.
Then it is clear that (X, S) is a complete S-metric spaces. Let Q2 : X3 — [0, c0),
defined by Q(z,y, z) = max{z,y, z} for all x,y,z € X. Then for all z,y,z € X
we have

(1) Qz,y,2) < QUz,z,a0) + Uy, y,a) + Q(z, 2,a) for all a € X,

(2) for each x € X, Q(z,z,.) : X — [0, 00) is a lower semi-continuous,

(3) for each ¢ > 0, we can choose § < § such that Q(z,2,a) < 4,
Qy,y,a) <6 and Q(z,z,a) < § imply

lz—yl+lz+y—22 = S(z,y,2)

< 2z+4+2y+2z

< 29z, x,a) + 2Qy,y,a) + 2Q(z, z,a)
< 6d

< €

(4) Az, z,y) <y, y, ).
If define
0 if =0,
T(z,y) = 5 if x = 2n,
2=l if £ =2n+1,

then it is clear that 70 = 0. But in otherwise, that is Tu # u for any u € X,
we have

5, u) = max{ 5=, u}  ifx=2n+1,

B I Fer

On the other hand for k& = %, we have three cases:
Case 1. If x,y,z € X are even, then

Uw,y,2) = Q22

2272

)

1
5 rnax{a:, Y, Z}

kQ(x,y, 2).

IN
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Case 2. If z,y,z € X are odd, then

—1 —1 —1
z,y,2) = Q- L=

)

2 7 2 7 2
= %max{w,y,z}—%
< %max{x,y,z}.

Case 3. If x,y € X are even and z is an odd, then
Or.z) = oS )

z—1 y—1 2

= max{— ’yT’ﬁ}

1
< 5 max{zx,y, z}.

These shows that all conditions of Theorem 2.9 for k = % are satisfied and so
T has a unique fixed point z =0 in X.
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