Nonlinear Functional Analysis and Applications Vol. 25, No. 2 (2020), pp. 203-213 ISSN: 1229-1595(print), 2466-0973(online)

GENERALIZATION OF FIXED POINT THEOREMS WITH RESPECT TO Ω -DISTANCE

Atena javaheri¹, Shaban Sedghi² and Ho Geun Hyun³

¹Department of Mathematics, Qaemshahr Branch Islamic Azad University, Qaemshahr, Iran e-mail: javaheri.a91gmail.com

²Department of Mathematics, Qaemshahr Branch Islamic Azad University, Qaemshahr, Iran e-mail: sedghi_gh@yahoo.com, sedghi.gh@qaemiaz.ac.ir

³Department of Mathematics Education Kyungnam University, Changwon, 51767, Korea e-mail: hyunhg82850kyungnam.ac.kr

Abstract. In this paper, we introduce the new concept of Ω -distance on an S-metric space and prove a fixed point theorem for a self-map. This is a generalization of well-known results which are proved by Guran [7].

1. INTRODUCTION

It is well known that the Banach contraction principle is a fundamental result in fixed point theory. After this classical result, many authors have extended, generalized and improved this theorem in different ways (see for details, [1], [2], [3], [4]). Also recently, fixed and common fixed point results in different types of spaces have been developed. For example, ultra metric spaces [16], fuzzy metric spaces [8] and uniform spaces [15].

 $^{^0\}mathrm{Received}$ December 20, 2018. Revised October 18, 2019. Accepted December 19, 2019. $^0\mathrm{2010}$ Mathematics Subject Classification: 54E40, 54E35, 54H25.

 $^{^0\}mathrm{Keywords:}\ S\text{-metric contractive mapping, complete }S\text{-metric space, fixed point theorem,}$ $\Omega\text{-distance.}$

⁰Corresponding author: S. Sedghi(sedghi.gh@qaemiau.ac.ir; sedghi_gh@yahoo.com).

In this paper we recall the definitions of S-metric space and give some properties of it (see [5, 10]). After than, we prove a fixed point theorem for single-valued operators in terms of a Ω -distance.

We begin by briefly recalling some basic definitions and results for S-metric spaces that will be needed in the sequel. For more details please see in [6, 9, 11].

Definition 1.1. ([5, 10]) Let X be a (nonempty) set. An S-metric on X is a function $S: X^3 \longrightarrow [0, \infty)$ that satisfies the following conditions: for each $x, y, z, a \in X$,

- (1) $S(x, y, z) \ge 0$,
- (2) S(x, y, z) = 0 if and only if x = y = z,
- (3) $S(x, y, z) \leq S(x, x, a) + S(y, y, a) + S(z, z, a)$, for all $x, y, z, a \in X$.

The pair (X, S) is called an S-metric space.

Immediate examples of such S-metric spaces are:

Example 1.2. ([12, 14])

- (i) Let $X = \mathbb{R}^n$ and $\| \cdot \|$ a norm on X. Then $S(x, y, z) = \| y + z 2x \| + \| y z \|$ is an S-metric on X.
- (ii) Let X be a nonempty set, d be an ordinary metric on X. Then S(x, y, z) = d(x, z) + d(y, z) is an S-metric on X. This S-metric is called the usual S-metric on X.

Definition 1.3. ([13]) Let (X, S) be an S-metric space.

- (1) A sequence $\{x_n\} \subset X$ converges to $x \in X$ if $S(x_n, x_n, x) \to 0$ as $n \to \infty$. That is, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ we have $S(x_n, x_n, x) < \varepsilon$. We write $x_n \to x$ for brevity.
- (2) A sequence $\{x_n\} \subset X$ is Cauchy if $S(x_n, x_n, x_m) \to 0$ as $n, m \to \infty$. That is, for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that for all $n, m \ge n_0$ we have $S(x_n, x_n, x_m) < \varepsilon$.
- (3) The S-metric space (X, S) is complete if every Cauchy sequence is convergent.

Definition 1.4. ([12]) Let (X, S) be an S-metric space. For r > 0 and $x \in X$ we define the open ball $B_s(x, r)$ and closed ball $B_s[x, r]$ with center x and radius r as follows respectively:

$$B_s(x,r) = \{ y \in X : S(y,y,x) < r \}, B_s[x,r] = \{ y \in X : S(y,y,x) \le r \}.$$

Example 1.5. ([12]) Let $X = \mathbb{R}$ and S(x, y, z) = |y + z - 2x| + |y - z| for all $x, y, z \in \mathbb{R}$. Then

$$B_s(1,2) = \{y \in \mathbb{R} : S(y,y,1) < 2\} = \{y \in \mathbb{R} : |y-1| < 1\} \\ = \{y \in \mathbb{R} : 0 < y < 2\} = (0,2).$$

Lemma 1.6. ([13]) Let (X, S) be an S-metric space. If r > 0 and $x \in X$, then the ball $B_s(x, r)$ is open subset of X.

Lemma 1.7. ([12, 13, 14]) In an S-metric space, we have S(x, x, y) = S(y, y, x).

Lemma 1.8. ([14]) Let (X, S) be an S-metric space. If sequence $\{x_n\}$ converges to x, then x is unique.

Lemma 1.9. ([14]) Let (X, S) be an S-metric space. If sequence $\{x_n\}$ is convergent to x, then $\{x_n\}$ is a Cauchy sequence.

Lemma 1.10. ([12, 13, 14]) Let (X, S) be an S-metric space. If there exist sequences $\{x_n\}$ and $\{y_n\}$ such that $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then $\lim_{n\to\infty} S(x_n, x_n, y_n) = S(x, x, y)$.

2. Fixed point theorems in Ω -distance

Now, we introduce the new concept of Ω -distance on an S-metric space.

Definition 2.1. Let (X, S) be an S-metric space. Then a function $\Omega : X \times X \times X \longrightarrow [0, \infty)$ is called an Ω -distance on X if the followings are satisfied:

- (1) $\Omega(x, y, z) \leq \Omega(x, x, a) + \Omega(y, y, a) + \Omega(z, z, a)$ for all $x, y, z, a \in X$,
- (2) for each $x \in X$, $\Omega(x, x, .) : X \longrightarrow [0, \infty)$ is a lower semi-continuous,
- (3) for each $\epsilon > 0$, there is $\delta > 0$ such that $\Omega(x, x, a) \leq \delta$, $\Omega(y, y, a) \leq \delta$ and $\Omega(z, z, a) \leq \delta$ imply $S(x, y, z) \leq \epsilon$.

Let us give some examples of Ω -distance.

Example 2.2. Let (X, S) be an S-metric space. Then we know that the metric S is an Ω -distance. If set $\Omega = S$, then (1) is obvious. For (2), let $\{x_n\}$ be a sequence in X such that $\lim_{n \to \infty} x_n = u$. Then we have

$$S(x, x, x_n) = S(x_n, x_n, x) \le 2S(x_n, x_n, u) + S(x, x, u).$$

Taking $n \to \infty$ of above inequality, we have

$$\lim_{n \to \infty} S(x, x, x_n) \leq S(x, x, u).$$

Similarly,

$$S(x, x, u) = S(u, u, x) \le 2S(u, u, x_n) + S(x, x, x_n)$$

Taking $n \to \infty$ of above inequality, we have

$$S(x, x, u) \leq \lim_{n \to \infty} S(x, x, x_n).$$

That is, $\lim_{n\to\infty} S(x, x, x_n) = S(x, x, u)$. We show (3). Let $\epsilon > 0$ be given and be choose $\delta \leq \frac{\epsilon}{3}$. Then, we have

$$\begin{array}{rcl} S(x,y,z) &\leq & S(x,x,a) + S(y,y,a) + S(z,z,a) \\ &= & \Omega(x,x,a) + \Omega(y,y,a) + \Omega(z,z,a) \\ &\leq & \epsilon. \end{array}$$

Example 2.3. Let $X = \mathbb{R}$ be real number and (X, S) be an S-metric space with S(x, y, z) = |x - z| + |y - z|. Then function $\Omega : X \times X \times X \longrightarrow [0, \infty)$ defined by $\Omega(x, y, z) = |x| + |y|$ for every $x, y, z \in X$ is a Ω -distance on X. The condition (1) is obvious. For (2), let $\{x_n\}$ be a sequence in X such that $\lim_{n \to \infty} x_n = u$. Then we have

$$2|x| = \Omega(x, x, x_n) \le \liminf_{n \to \infty} \Omega(x, x, x_n) = 2|x|.$$

We show (3). Let $\epsilon > 0$ be given, if choose $\delta \leq \frac{\epsilon}{3}$. Then, we have

$$S(x, y, z) = |x - z| + |y - z| \le |x| + |y| + 2|z|$$

$$\le \Omega(x, x, a) + \Omega(y, y, a) + \Omega(z, z, a)$$

$$\le 3\delta$$

$$\le \epsilon.$$

Example 2.4. Let X be a normed linear space with norm $|| \cdot ||$ and (X, S) be an S-metric space with S(x, y, z) = ||x - z|| + ||y - z||. Then function $\Omega : X \times X \times X \longrightarrow [0, \infty)$ defined by $\Omega(x, y, z) = ||x - z||$ for every $x, y, z \in X$ is an Ω -distance on X. The condition (1) is obvious. For (2), let $\{x_n\}$ be a sequence in X such that $\lim_{n \to \infty} x_n = u$. Since $||x - u|| = \lim_{n \to \infty} ||x - x_n||$, we have

$$\Omega(x, x, u) = ||x - u||$$

= $\lim_{n \to \infty} ||x - x_n|| = \lim_{n \to \infty} \Omega(x, x, x_n)$
 $\leq \liminf_{n \to \infty} \Omega(x, x, x_n) = ||x - u||.$

Let $\epsilon > 0$ be given, if choose $\delta \leq \frac{\epsilon}{4}$. Then, we have

$$\begin{array}{lcl} S(x,y,z) &=& ||x-z||+||y-z|| \\ &\leq& ||x-a||+||z-a||+||y-a||+||z-a|| \\ &\leq& \Omega(x,x,a) + \Omega(y,y,a) + 2\Omega(z,z,a) \\ &\leq& 4\delta \\ &\leq& \epsilon. \end{array}$$

Example 2.5. Let $X = [0, \infty)$ and (X, S) be an S-metric space with S(x, y, z) = |x - z| + |x + y - 2z|. Then function $\Omega : X \times X \times X \longrightarrow [0, \infty)$ defined by

 $\Omega(x, y, z) = \max\{x, y\}$ for every $x, y, z \in X$ is an Ω -distance on X. The conditions (1) and (2) are obvious. Let $\epsilon > 0$ be given, if choose $\delta \leq \frac{\epsilon}{6}$. Then, we have

$$\begin{array}{lll} S(x,y,z) &=& |x-z| + |x+y-2z| \\ &\leq& 2|x|+|y|+3|z| = 2x+y+3z \\ &\leq& 2\Omega(x,x,a) + \Omega(y,y,a) + 3\Omega(z,z,a) \\ &\leq& 6\delta \\ &\leq& \epsilon. \end{array}$$

Example 2.6. Let $X = [0, \infty)$ and (X, S) be an S-metric space with S(x, y, z) = |x - z| + |y - z|. Then function $\Omega : X \times X \times X \longrightarrow [0, \infty)$ defined by $\Omega(x, y, z) = \max\{x, y, z\}$ for every $x, y, z \in X$ is an Ω -distance on X. In fact, the condition (1) is obvious. For (2), let $\{x_n\}$ be a sequence in X such that $\lim_{n \to \infty} x_n = u$. Then we have

$$\max\{x, x_n\} = \Omega(x, x, x_n)$$

$$\leq \liminf_{n \to \infty} \Omega(x, x, x_n)$$

$$= \max\{x, u\} = \Omega(x, x, u).$$

Let $\epsilon > 0$ be given, if choose $\delta \leq \frac{\epsilon}{4}$. Then, we have

$$S(x, y, z) = |x - z| + |y - z|$$

$$\leq x + y + 2z$$

$$\leq \Omega(x, x, a) + \Omega(y, y, a) + 2\Omega(z, z, a)$$

$$\leq 4\delta$$

$$\leq \epsilon.$$

Definition 2.7. An Ω -distance of S-metric space (X, S) is called symmetric if $\Omega(x, x, y) = \Omega(y, y, x)$ for all $x, y \in X$.

We can easily show that the Ω -distances in Example 2.4 and Example 2.6 are symmetric.

The following lemma plays an important role to prove fixed point theorems.

Lemma 2.8. Let (X, S) be an S-metric space and let Ω be an Ω -distance on X. Let $\{x_n\}$ and $\{y_n\}$ be sequences in X, let $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be three sequences in $[0, \infty)$ converging to 0. Then, for every $x, y, z \in X$ we have the following statements:

(1) If $\Omega(x, x, x_n) \leq \alpha_n$, $\Omega(y, y, x_n) \leq \beta_n$ and $\Omega(z, z, x_n) \leq \gamma_n$ for any $n \in \mathbb{N}$, then x = y = z. In particular, $\Omega(x, x, x_n) \leq \alpha_n$ and $\Omega(y, y, x_n) \leq \beta_n$, then x = y,

A. Javaheri, S. Sedghi and H. G. Hyun

- (2) If $\Omega(y_n, y_n, x_n) \leq \alpha_n$ and $\Omega(y, y, x_n) \leq \beta_n$ for any $n \in \mathbb{N}$, then $S(y_n, y_n, y) \longrightarrow 0$, that is, $\{y_n\}$ converges to y,
- (3) If $\Omega(y_n, y_n, x_n) \leq \alpha_n$ and $\Omega(y_m, y_m, x_n) \leq \beta_n$ for any $n, m \in \mathbb{N}$ with m > n, then $\{y_n\}$ is a Cauchy sequence,
- (4) If $\Omega(x_n, x_n, a) \leq \alpha_n$ for every $n \in \mathbb{N}$ and $a \in X$, then $\{x_n\}$ is a Cauchy sequence.

Proof. To prove (1), let $\epsilon > 0$ be given. From the definition of Ω -distance, we can choose $n_0 \in \mathbb{N}$ such that $\alpha_n \leq \delta$, $\beta_n \leq \delta$ and $\gamma_n \leq \delta$ for every $n \geq n_0$. Then for any $n \geq n_0$ we have, $\Omega(x, x, x_n) \leq \alpha_n \leq \delta$, $\Omega(y, y, x_n) \leq \beta_n \leq \delta$ and $\Omega(z, z, x_n) \leq \gamma_n \leq \delta$. Hence $S(x, y, z) \leq \epsilon$. This implies that x = y = z.

To prove (2), let $\epsilon > 0$ be given. From the definition of Ω -distance, we can choose $n_0 \in \mathbb{N}$ such that $\alpha_n \leq \delta$ and $\beta_n \leq \delta$ for every $n \geq n_0$. Then for any $n \geq n_0$ we have, $\Omega(y_n, y_n, x_n) \leq \alpha_n \leq \delta$ and $\Omega(y, y, x_n) \leq \beta_n \leq \delta$. Hence $S(y_n, y_n, y_n) \leq \epsilon$. This implies that $\{y_n\}$ converges to y.

In order to prove that the statement (3) holds. Let $\epsilon > 0$ be given. As in the proof of (2), choose $\delta > 0$. Then for any $n, m \ge n_0$,

$$\Omega(y_n, y_n, x_n) \le \alpha_n \le \delta \text{ and } \Omega(y_m, y_m, x_n) \le \beta_n \le \delta.$$

Hence $S(y_n, y_n, y_m) \leq \epsilon$. This implies that $\{y_n\}$ is a Cauchy sequence. As in the proof of (3), we can prove (4). Because, for any $n, m \geq n_0$, we can choose $\delta > 0$ such that

$$\Omega(x_n, x_n, a) \leq \alpha_n \leq \delta \text{ and } \Omega(x_m, x_m, a) \leq \alpha_n \leq \delta.$$

Hence $S(x_n, x_n, x_m) \leq \epsilon$. This implies that $\{x_n\}$ is a Cauchy sequence. \Box

In the first part of the section, we introduce and prove the following fixed point theorem.

Theorem 2.9. Let (X, S) be a complete S-metric space and Ω be a symmetric Ω -distance on X. Let $T: X \longrightarrow X$ be a mapping such that

$$\Omega(Tx, Ty, Tz) \le k \max \left\{ \begin{array}{l} \Omega(x, y, z), \Omega(x, x, Tx), \Omega(y, y, Ty), \Omega(z, z, Tz), \\ \frac{1}{7}(\Omega(x, x, Ty) + \Omega(y, y, Tz) + \Omega(z, z, Tx)) \end{array} \right\}$$

holds for each $x, y, z \in X$ and $0 \le k < 1$. Suppose that if $u \ne Tu$,

$$\inf\{\Omega(Tx, Tx, u) : x \in X\} > 0.$$

Then T has a fixed point. Moreover, if $\Omega(x, x, x) \leq \Omega(x, x, y)$ for every $x, y \in X$, then T has a unique fixed point.

Proof. Let $x_0 \in X$ and $x_{n+1} = Tx_n$ for each $n \in \mathbb{N}$. If there is $n \in \mathbb{N}$ for which $x_{n+1} = x_n$, then x_n is a fixed point of T. In the following, we assume $x_{n+1} \neq x_n$ for each $n \in \mathbb{N}$.

First we shall prove that $\lim_{n\to\infty} \Omega(x_n, x_n, x_{n+1}) = 0$. For $n \in \mathbb{N}$, we have

$$\begin{aligned} \Omega(x_n, x_n, x_{n+1}) &= \Omega(Tx_{n-1}, Tx_{n-1}, Tx_n) \\ &\leq k \max \left\{ \begin{array}{l} \Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_{n-1}, x_{n-1}, Tx_{n-1}), \\ \Omega(x_{n-1}, x_{n-1}, Tx_{n-1}), \Omega(x_n, x_n, Tx_n) \end{array} \right\} \\ &= k \max \left\{ \begin{array}{l} \Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_{n-1}, x_{n-1}, x_n), \\ \Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_n, x_n, x_{n+1}), \\ \frac{1}{7}(\Omega(x_{n-1}, x_{n-1}, Tx_{n-1}) + \Omega(x_{n-1}, x_{n-1}, Tx_n)) \\ + \Omega(x_n, x_n, Tx_{n-1}) \end{array} \right\} \\ &\leq k \max \left\{ \begin{array}{l} \Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_n, x_n, x_{n+1}), \\ \frac{1}{7}(\Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_n, x_n, x_{n+1}), \\ + \Omega(x_n, x_n, Tx_{n-1}) \end{array} \right\} . \end{aligned} \right. \end{aligned}$$

Since Ω is symmetric, by Definition 2.1 we have

$$\Omega(x_n, x_n, x_{n+1}) \leq k \max \left\{ \begin{array}{l} \Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_n, x_n, x_{n+1}), \\ \frac{1}{7}(\Omega(x_{n-1}, x_{n-1}, x_n) + \Omega(x_{n-1}, x_{n-1}, x_{n+1}) + \Omega(x_n, x_n, x_n)) \end{array} \right\} \\ \leq k \max \left\{ \begin{array}{l} \Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_n, x_n, x_{n+1}), \\ \frac{1}{7}(\Omega(x_{n-1}, x_{n-1}, x_n) + 2\Omega(x_{n-1}, x_{n-1}, x_n) \\ + \Omega(x_n, x_n, x_{n+1}) + 3\Omega(x_n, x_n, x_{n+1})) \end{array} \right\}.$$

Now, if

$$\max\{\Omega(x_{n-1}, x_{n-1}, x_n), \Omega(x_n, x_n, x_{n+1})\} = \Omega(x_n, x_n, x_{n+1}),$$

by above inequality, it follows that $\Omega(x_n, x_n, x_{n+1}) < \Omega(x_n, x_n, x_{n+1})$ which is a contradiction. Therefore,

$$\Omega(x_n, x_n, x_{n+1}) \le \Omega(x_{n-1}, x_{n-1}, x_n).$$

Then, we have, for any $n \in \mathbb{N}$,

$$\Omega(x_n, x_n, x_{n+1}) \leq k\Omega(x_{n-1}, x_{n-1}, x_n)$$

$$\leq k^2 \Omega(x_{n-2}, x_{n-2}, x_{n-1})$$

$$\vdots$$

$$\leq k^n \Omega(x_0, x_0, x_1) = \alpha_n.$$
(2.1)

So, if m > n, then

$$\Omega(x_m, x_m, x_{n+1}) = \Omega(x_{n+1}, x_{n+1}, x_m)
\leq 2 \sum_{i=n+1}^{m-2} \Omega(x_i, x_i, x_{i+1}) + \Omega(x_{m-1}, x_{m-1}, x_m)
\leq 2 \sum_{i=n+1}^{m-2} k^i \Omega(x_0, x_0, x_1) + k^{m-1} \Omega(x_0, x_0, x_1)
\leq 2k^{n+1} \Omega(x_0, x_0, x_1) [1 + k + k^2 + \cdots]
\leq \frac{2k^{n+1}}{1-k} \Omega(x_0, x_0, x_1)
= \beta_n.$$
(2.2)

That is, for every $\epsilon > 0$, there is $n_0 \in \mathbb{N}$ such that

$$\Omega(x_n, x_n, x_m) < \epsilon, \ \forall n, m \ge n_0.$$

Thus

$$\liminf_{n \to \infty} \, \Omega(x_n, x_n, x_m) \leq \liminf_{n \to \infty} \, \epsilon = \epsilon, \, \, \forall n, m \geq n_0.$$

Also, by (2.1), (2.2) and by Lemma 2.8, $\{x_n\}$ is a Cauchy sequence. Since (X, S) is complete, $\{x_n\}$ converges to some point $z \in X$. Suppose $z \neq Tz$ and let $n_0 \in \mathbb{N}$ be fixed. Then, since $\{x_n\}$ converges to z and $\Omega(x_n, x_n, z)$ is lower semicontinuous at z in X, we have

$$\Omega(x_n, x_n, z) \leq \liminf_{m \to \infty} \Omega(x_n, x_n, x_m) \leq \epsilon, \ \forall n, m \geq n_0.$$

On the other hand, we have

$$0 < \inf\{\Omega(Tx, Tx, z) : x \in X\} \le \inf\{\Omega(Tx_n, Tx_n, z) : n \ge n_0\}$$

$$\leq \inf\{\liminf_{n \to \infty} \Omega(Tx_n, Tx_n, x_m)\} \le \epsilon,$$

which contradicts the hypotheses. Therefore, z = Tz and hence z is a fixed point of T. We shall deal now with the uniqueness of the fixed point of T. Suppose that there are u and v in X fixed points of the mapping T. By hypotheses, since $\max\{\Omega(v, v, v), \Omega(u, u, u)\} \leq \Omega(v, v, u)$. It follows that

$$\begin{split} \Omega(v,v,u) &= \Omega(Tv,Tv,Tu) \\ &\leq k \max \left\{ \begin{array}{l} \Omega(v,v,u), \Omega(v,v,Tv), \Omega(v,v,Tv), \Omega(u,u,Tu), \\ \frac{1}{7}(\Omega(v,v,Tv) + \Omega(v,v,Tu) + \Omega(u,u,Tv)) \end{array} \right\} \\ &= k \max \left\{ \begin{array}{l} \Omega(v,v,u), \Omega(v,v,v), \Omega(v,v,v), \Omega(u,u,u), \\ \frac{1}{7}(\Omega(v,v,v) + \Omega(v,v,u) + \Omega(u,u,v)) \end{array} \right\} \\ &< \Omega(v,v,u), \end{split}$$

which is possible only for $\Omega(v, v, u) = 0$. Similarly, it can be proved that $\Omega(u, u, v) = 0$. According to the definition of an Ω -distance, S(v, v, u) = 0 this imply that u = v. Hence, T has a unique fixed point.

Example 2.10. Let $X = \{0, 1, 2, \dots\}$ and S(x, y, z) = |x - y| + |x + y - 2z|. Then it is clear that (X, S) is a complete S-metric spaces. Let $\Omega : X^3 \to [0, \infty)$, defined by $\Omega(x, y, z) = \max\{x, y, z\}$ for all $x, y, z \in X$. Then for all $x, y, z \in X$ we have

- (1) $\Omega(x, y, z) \leq \Omega(x, x, a) + \Omega(y, y, a) + \Omega(z, z, a)$ for all $a \in X$,
- (2) for each $x \in X$, $\Omega(x, x, .) : X \longrightarrow [0, \infty)$ is a lower semi-continuous,
- (3) for each $\epsilon > 0$, we can choose $\delta \leq \frac{\epsilon}{6}$ such that $\Omega(x, x, a) \leq \delta$, $\Omega(y, y, a) \leq \delta$ and $\Omega(z, z, a) \leq \delta$ imply

$$\begin{aligned} |x-y|+|x+y-2z| &= S(x,y,z) \\ &\leq 2x+2y+2z \\ &< 2\Omega(x,x,a)+2\Omega(y,y,a)+2\Omega(z,z,a) \\ &< 6\delta \\ &< \epsilon, \end{aligned}$$

(4) $\Omega(x, x, y) \le \Omega(y, y, x).$

If define

$$T(x,y) = \begin{cases} 0 & \text{if } x = 0, \\ \frac{x}{2} & \text{if } x = 2n, \\ \frac{x-1}{2} & \text{if } x = 2n+1 \end{cases}$$

then it is clear that T0 = 0. But in otherwise, that is $Tu \neq u$ for any $u \in X$, we have

$$\inf \{ \Omega(Tx, Tx, u) \mid x \in X \}$$

=
$$\inf \left\{ \begin{array}{ll} \Omega(\frac{x}{2}, \frac{x}{2}, u) = \max\{\frac{x}{2}, u\} & \text{if } x = 2n, \\ \Omega(\frac{x-1}{2}, \frac{x-1}{2}, u) = \max\{\frac{x-1}{2}, u\} & \text{if } x = 2n+1, \end{array} \right\}$$

>
$$u > 0.$$

On the other hand for $k = \frac{1}{2}$, we have three cases: Case 1. If $x, y, z \in X$ are even, then

$$\begin{aligned} \Omega(x,y,z) &= & \Omega(\frac{x}{2},\frac{y}{2},\frac{z}{2}) \\ &= & \frac{1}{2}\max\{x,y,z\} \\ &\leq & k\Omega(x,y,z). \end{aligned}$$

Case 2. If $x, y, z \in X$ are odd, then

$$\begin{split} \Omega(x,y,z) &= & \Omega(\frac{x-1}{2},\frac{y-1}{2},\frac{z-1}{2}) \\ &= & \frac{1}{2}\max\{x,y,z\} - \frac{1}{2} \\ &\leq & \frac{1}{2}\max\{x,y,z\}. \end{split}$$

Case 3. If $x, y \in X$ are even and z is an odd, then

$$\begin{aligned} \Omega(x,y,z) &= & \Omega(\frac{x-1}{2},\frac{y-1}{2},\frac{z}{2}) \\ &= & \max\{\frac{x-1}{2},\frac{y-1}{2},\frac{z}{2}\} \\ &\leq & \frac{1}{2}\max\{x,y,z\}. \end{aligned}$$

These shows that all conditions of Theorem 2.9 for $k = \frac{1}{2}$ are satisfied and so T has a unique fixed point x = 0 in X.

References

- [1] R.P. Agarwal, D. O'Regan and D.R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications, Springer, 2009.
- [2] V. Berinde, Iterative approximation of fixed points, Springer, 2007.
- [3] Lj. B. Ciric, Fixed Point Theory, Contraction mapping principle, Faculty of Mechanical Enginearing, Beograd, 2003.
- [4] A. Granas and J. Dugundji, *Fixed Point Theory*, Springer, 2010.
- [5] A. Javaheri, S. Sedghi and H.G. Hyun, Common fixed point theorems for two mappings S-metric spaces, Nonlinear Funct. Anal. Appl., 24(2) (2019), 417-425.
- [6] J.K. Kim, S. Sedghi and N. Shobkolaei, Common fixed point theorems for the R-weakly commuting mappings in S-metric spaces, J. Comput. Anal. Appl., 19(4) (2015), 751-759.
- [7] L. Guran, Fixed points for singlevalued operators with respect to ω -distance, MPRA Paper No. 26931, posted 23. November 2010.
- [8] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144(3) (2004), 431-439.
- [9] N.Y. Ozgur and N. Tas, Some fixed point theorems on S-metric spaces, Math. Vesnik, 69(1) (2017), 39-52.
- [10] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in Smetric spaces, Mat. Vanik, 64(3) (2012), 258-266.
- [11] S. Sedghi, N. Shobe and T. Dosenovic, Fixed point results in S-metric spaces, Mat. Vanik, 64 (2015), 55-67.
- [12] M.M. Rezaee, M. Shahraki, S. Sedghi and I. Altun, Fixed point theorems for weakly contractive mappings on S-metric spaces and a homotopy result, Applied Mathematics E-Notes, 17 (2017), 58-67.

Extensions of fixed point theorems with respect to $\Omega\text{-distance}$

- [13] S. Sedghi and N.V. Dung, Fixed point teorems on S-metric spaces, Math. vesnik, 66(1) (2014), 113-124.
- [14] S. Sedghi, N. Shobe and T. Dosenovic, Fixed point results in S-metric spaces, Nonlinear Funct. Anal. Appl., 20(1) (2015), 55-67.
- [15] D. Turkoglu, Fixed point theorems on uniform spaces, Indian J. Pure Appl. Math., 34(3) (2003), 453-459.
- [16] A.C.M. Van Roovij, Non-Archimedean functional analysis, Marcel Dekker, New York, 1978.