
Nonlinear Functional Analysis and Applications

Vol. 25, No. 2 (2020), pp. 215-230

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2020.25.02.02
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2020 Kyungnam University Press

KUPress

GENERALIZED FIXED POINT THEOREMS
IN A b-METRIC SPACE

P. Swapna1 and T. Phaneendra2

1Department of Mathematics
MVSR Engineering College, Rangareddy

Hyderabad-501510, Telangana State, India
e-mail: swapna.pothuguntla@gmail.com

2Department of Mathematics
School of Advanced Sciences, Vellore Institute of Technology

Vellore-632014, Tamil Nadu, India
e-mail: drtp.indra@gmail.com

Abstract. A brief comparison of various contractive conditions in a b-metric space is made,

and two generalized fixed point theorems are established. One for a Nesic type contraction,

and the other involving a generalized class of auxiliary functions. Also, contractive fixed

points in a b-metric space are obtained for some contractive conditions.

1. Introduction

Let X be a nonempty set and d : X ×X → [0,∞) be a mapping satisfying
the conditions:

(m1) d(x, x) = 0 for all x ∈ X,
(m2) d(x, y) = 0 implies that x = y for all x, y ∈ X,
(m3) d(x, y) = d(y, x) for all x, y ∈ X,
(m4) d(x, y) ≤ d(x, z) + d(z, y)] for all x, y, z ∈ X.
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Then the pair (X, d) is called a metric space with metric d. A quasi-metric
space [27] satisfies the conditions (m1), (m2) and (m4), while for a metric-
like space [2] (or dislocated metric space [11]), (m2), (m3) and (m4) hold.
Replacing the triangle inequality (m4) with a generalized one, we have the
following notion of a b-metric space:

Definition 1.1. Let s ≥ 1, X be a nonempty set and ρs : X ×X → [0,∞) be
a mapping satisfying the conditions:

(b1) ρs(x, x) = 0 for all x, y ∈ X,
(b2) ρs(x, y) = 0 implies that x = y for all x, y ∈ X,
(b3) ρs(x, y) = ρs(y, x) for all x, y ∈ X,
(b4) ρs(x, y) ≤ s[ρs(x, z) + ρs(z, y)] for all x, y ∈ X.

Then ρs is called a b-metric on X, and (X, ρs) denotes a b-metric space.

The notion of b-metric space was introduced by Bakthin [5] in 1989. Later,
in 1993, two generalizations of Banach’s contraction mapping theorem were
obtained by Czerwik [8] in b-metric space with s = 2. Every metric space is a
b-metric space with s = 1. A b-metric ρs is not continuous (See [28]), though
a metric d is known to be continuous. A space X, satisfying (b1), (b2) and
(b4) is known as a quasi b-metric space, which was introduced by Shah and
Hussain [26] in 2012. While, Alghamdi et al. [1] introduced a b-metric-like
space (or dislocated b-metric space [11]), as a generalization of b-metric space,
by dropping (b1) in b-metric space. Further, replacing (b4) with the following
stronger form:

(bk) For k = 1, 2, 3, . . . and all x, y1, y2, . . . , yk, y ∈ X,

ρs(x, y) ≤ s[ρs(x, y1) + ρs(y1, y2) + · · ·+ ρs(yk, y)]. (1.1)

Khamsi [12] in 2010, defined a metric-type space (X, ρs, s), with continuity
of ρs, and y1, y2, ..., yk need not be distinct. However, for a fixed k, if each
of y1, y2, ..., yk is distinct from x and y in (1.1), we obtain the recent notion
of a bk(s)-metric space, due to Mitrovic and Radenovic [16]. When k = 1, a
bk(s)-metric space reduces to a b-metric space, and k = 2 gives a rectangular
b-metric space, introduced by George et al [10] in 2015.

Let (X, ρs) be a b-metric space. The family of all b-balls in X, given by

Bρs(x, r) =
{
y ∈ X : ρs(x, y) < r

}
, (1.2)

forms a base topology, called the b-metric topology τ(ρs) on X. A sequence
{xn} ⊂ X is said to be b-convergent with limit p ∈ X, if it converges to p in
τ(ρs). While, {xn} ⊂ X is said to be b-Cauchy, if limn,m→∞ ρs(xn, xm) = 0.
A b-metric space X is said to be b-complete, if every b-Cauchy sequence in X
is b-convergent in it. Also, a b-convergent sequence has a unique limit, and is
necessarily b-Cauchy.
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2. A brief comparison of contraction conditions

In 2013, Kir and Kiziltunc [13] established the following Banach’s and Kan-
nan contraction mapping theorems in a b-metric space, respectively:

Theorem 2.1. Suppose that (X, ρs) is a complete b-metric space with constant
s, and f is a self-map on X satisfying the condition

ρs(fx, fy) ≤ αρs(x, y) for all x, y ∈ X, (2.1)

where 0 ≤ α < 1/s. Then f has a unique fixed point p.

Theorem 2.2. Let (X, ρs) be a complete b-metric space with constant s, and
f : X → X satisfy the condition

ρs(fx, fy) ≤ β[ρs(x, fx) + ρs(y, fy)] for all x, y ∈ X, (2.2)

where 0 ≤ β < 1/2. Then f has a unique fixed point p.

Remark 2.3. If α = 0 and β = 0, with y = fx, (2.1) and (2.2) imply that
ρs(fx, f

2x) = 0 for each x ∈ X. That is, the fixed point of f is not unique
in the sense that each y = fx is a fixed point. Therefore, the contraction
constants in Theorem 2.1 and Theorem 2.2 should be positive.

Given below is a result also proved in [13]:

Theorem 2.4. Suppose that (X, ρs) is a complete b-metric space with constant
s, and f is a self-map on X satisfying the condition

ρs(fx, fy) ≤ γ[ρs(x, fy) + ρs(y, fx)] for all x, y ∈ X, (2.3)

where γ is a real number such that 0 < γs < 1/2. Then f has a unique fixed
point p.

Sarwar and Rahman [17] proved the following theorem:

Theorem 2.5. Let f be a self-map on a complete b-metric space (X, ρs) with
coefficient s ≥ 1 such that

ρs(fx, fy) ≤ aρs(x, y) + bρs(x, fx) + cρs(y, fy) for all x, y ∈ X, (2.4)

where a, b and c are non-negative real numbers, not all being zero, such that
s(a+ b) + c < 1. Then f has a unique fixed point.

Mishra et al. [15] proved the following theorem:

Theorem 2.6. Let f be a self-map on a complete b-metric space (X, ρs) with
coefficient s ≥ 1 such that

ρs(fx, fy) ≤ aρs(x, y) + bρs(x, fx) + cρs(y, fy)

+ eρs(x, fy) + hρs(y, fx) for all x, y ∈ X, (2.5)
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where a, b, c, e and h are non-negative real numbers such that

0 < s(a+ b+ c+ e+ h) < 1/2.

Then f has a unique fixed point.

Remark 2.7. When s = 1, the contraction conditions (2.1), (2.2), (2.3),
(2.4) and (2.5) reduce to Banach, Kannan, Chatterjea, Reich, and Hardy-
Roger’s contractions respectively. However, the constants in Hardy-Roger’s
contraction on metric space are such that 0 < a + b + c + e + h < 1. Also, a
Banach’s contraction is uniformly continuous on X, while Kannan contraction
is discontinuous. Rhoades [24], in his comparative study of various contraction
conditions in metric spaces, established that Banach and Kannan contractions
are independent of each other. Kannan implies Reich, but not the converse
and Chatterjea implies Hardy-Roger’s contraction, but not the converse.

Remark 2.8. With b = c = 0, (2.4) reduces to a Banach’s contraction (2.1).
Hence Theorem 2.1 follows from Theorem 2.5 as a special case. While, writing
a = 0 and c = b in (2.4), we obtain (2.2), but the choice of the contraction
constant is restricted to 0 < b < 1/(s + 1), since s ≥ 1. Thus Theorem 2.2
follows from Theorem 2.5 as a special case with this restriction.

Remark 2.9. Writing b = c = e = h = 0, (2.5) reduces to a Banach contrac-
tion (2.1), under the restricted choice 0 < a < 1/2s. Thus Theorem 2.1 follows
from Theorem 2.6 as a special case under the restriction that 0 < a < 1/2s.
While writing a = e = h = 0 and c = b, (2.5) reduces to (2.2). Hence
Theorem 2.2 follows from Theorem 2.6 as a special case under the restric-
tion 0 < b < 1/4s, where β is replaced with b. While, with a = b = c = 0
and h = e in (2.5), we get (2.3), but the contraction constant is restricted to
0 < e < 1/4s. In other words, Theorem 2.4 follows from Theorem 2.6 under
the restriction 0 < e < 1/4s, where γ is replaced with e.

Definition 2.10. ([6, 7]) Let (X, ρ) be a metric space. A self-map f on X is
said to be a weak contraction, if

ρ(fx, fy) ≤ cρ(x, y) + µρ(x, fy) for all x, y ∈ X (2.6)

where 0 < c < 1 and µ ≥ 0.

In view of symmetry (b2), (2.6) implicitly includes its dual form

ρ(fx, fy) ≤ cρ(x, y) + µρ(y, fx) for all x, y ∈ X. (2.7)

Therefore, in order to check whether f is a weak contraction on X, it is
necessary that both (2.6) and (2.7) hold. When µ = 0, weak contraction
reduces to a Banach’s contraction. However, a Banach’s contraction need not
be a weak contraction [7]. Weak contraction in a b-metric space (X, ρs) is
defined in a similar way as in metric space (X, d), by just replacing the metric
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d with b-metric ρs. It may be noted that a Banach’s contraction is also a weak
contraction in a b-metric space. Further, a Kannan contraction on a metric
space (X, ρ), with the choice

ρ(fx, fy) ≤ k[ρ(x, fx) + ρ(y, fy)] for all x, y ∈ X, (2.8)

is a weak contraction [6], where c = k/(1−k) and µ = 2k/(1−k). However, a
Kannan contraction (2.2) on a b-metric space (X, ρs) will be a weak contraction
[13], only when 0 < βs < 1/2. On the other hand, a Chatterjea contraction
(2.3) on a b-metric space (X, ρs) will also be a weak contraction [13] with
c = γ/(1−γ) and µ = 2γ/(1−γ). For s = 1, (2.3) on a b-metric space (X, ρs)
reduces to a Chatterjea contraction on a metric space (X, ρ) with the choice

ρ(fx, fy) ≤ ν[ρ(x, fy) + ρ(y, fx)] for all x, y ∈ X, 0 < ν < 1/2, (2.9)

which, in accordance with [6], is a weak contraction on X. It may be noted
that Chatterjea contraction (2.3) on a b-metric space (X, ρs) uses the stronger
condition that 0 < sγ < 1/2 than 0 < γ < 1/2.

3. Contractive fixed point

Let f be a self-map on a metric space (X, d) and x0 ∈ X. The orbit
Of (x0) at x0 is the sequence of f -iterates x0, fx0, ..., f

nx0, .... A fixed point
p of f is known to be a contractive fixed point, if every Of (x0) converges to
p. Existence of contractive fixed points in metric spaces was investigated by
Edelstein [9], Leader and Hoyle [14] and Reich [23]. Contractive fixed points
in G-metric spaces were investigated in [3], [19], [20], [21], [22] and [25].

Definition 3.1. Let f be a self-map on a b-metric space (X, ρs) and x0 ∈ X.
A fixed point p of f is said to be a b-contractive fixed point, if for every x0 ∈ X,
the f -orbit Of (x0) = 〈x0, fx0, ..., fnx0, ...〉 converges to p.

Since a convergent sequence in metric space has a unique limit, a contractive
fixed point is also a unique fixed point. However, a unique fixed point need
not be a contractive fixed point in a b-metric space as shown in the following
example:

Example 3.2. Let X = [0, 1] and ρs(x, y) = |x − y|2 for all x, y ∈ X. Then
(X, ρs) is a b-metric space with coefficient s = 2, which is not a metric space.
Define f : X → X by

fx =

{
1/2, x < 1/2

1, x ≥ 1/2·
(3.1)

We see that x = 1 is the unique fixed point of f . But for 0 ≤ x0 < 1/2, the
f -orbit Of (x0) = 〈12 ,

1
2 , ...〉 → 1/2, while for x0 ≥ 1/2, Of (x0) = 〈1, 1, ...〉 → 1.

In other words, 1 is not a contractive fixed point of f .
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Now, we prove that unique fixed point is also a b-contractive fixed point for
certain contraction conditions in a b-metric space.

Theorem 3.3. Let (X, ρs) be a b-metric space with constant s, and p be
a unique fixed point of a Kannan contraction f on X satisfying the condi-
tion (2.2), with an additional condition that 0 < βs < 1/2. Then p is a
b-contractive fixed point.

Proof. Let x0 ∈ X be arbitrary. Writing x = fn−1x0 and y = p in (2.2), then
from (b3), we see that

ρs(f
nx0, p) = ρs(f

nx0, f
np)

≤ β[ρs(f
n−1x0, f

nx0) + ρs(f
n−1p, fnp)]

≤ βs[ρs(fn−1x0, p) + ρs(p, f
nx0)]

or

ρs(f
nx0, p) ≤

(
βs

1−βs

)
ρs(f

n−1x0, p).

Hence, by induction on n, (3.2) gives

ρs(f
nx0, p) ≤

(
βs

1−βs

)n
ρs(x0, p). (3.2)

Hence, it follows from (b3) and (2.2) that

ρs(x0, p) ≤ s[ρs(x0, fx0) + ρs(fx0, fp)] (3.3)

≤ sρs(x0, fx0) + βs[ρs(x0, fx0) + ρs(p, fp)]

= s(1 + β)ρs(x0, fx0).

Substituting (3.3) in (3.2), we get

ρs(f
nx0, p) ≤

(
βs

1−βs

)n
s(1 + β)ρs(x0, fx0) (3.4)

for x0 ∈ X,n = 1, 2, .... Since [βs/(1− βs)]n → 0 as n → ∞, (3.4), implies
that ρs(f

nx0, p) → 0 as n → ∞ for all x0 ∈ X. In other words, p is a
b-contractive fixed point. �

Theorem 3.4. Let (X, ρs) be a b-metric space with constant s, and p be a
unique fixed point of a Chatterjea contraction f on X satisfying the condition
(2.3). Then p is a b-contractive fixed point.

Proof. Let x0 ∈ X be arbitrary. Writing x = fn−1x0 and y = p in (2.3), then
from (b3),

ρs(f
nx0, p) = ρs(f

nx0, f
np)

≤ γ[ρs(f
n−1x0, f

np) + ρs(f
n−1p, fnx0)]
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or

ρs(f
nx0, p) ≤

(
γ

1−γ

)
ρs(f

n−1x0, p).

Hence, by induction on n, (3.5) gives

ρs(f
nx0, p) ≤

(
γ

1−γ

)n
ρs(x0, p). (3.5)

But again, by (b3) followed by (2.3), it follows that

ρs(x0, p) ≤ s[ρs(x0, fx0) + ρs(fx0, fp)]

≤ sρs(x0, fx0) + sγ[ρs(x0, p) + ρs(p, fx0)]

≤
(

s
1−sγ

)
ρs(x0, fx0) +

(
sγ

1−sγ

)
ρs(fx0, p). (3.6)

Now,

ρs(fx0, p) = ρs(fx0, fp)

≤ γ[ρs(x0, fx0) + ρs(fx0, fp)],

that is,

ρs(fx0, p) ≤
(

γ
1−γ

)
ρs(x0, fx0). (3.7)

Substituting (3.6) and (3.7) in (3.5), we get

ρs(f
nx0, p) ≤

(
γ

1−γ

)n [
s

1−sγ + sγ
1−sγ ·

γ
1−γ

]
ρs(x0, fx0) (3.8)

for all x0 ∈ X, n = 1, 2, 3, .... Proceeding the limit as n → ∞ in (3.8), and
using the choice of γ, we get ρs(f

nx0, p) → 0 as n → ∞ for all x0 ∈ X. In
other words, p is a b-contractive fixed point. �

Theorem 3.5. Let (X, ρs) be a b-metric space with constant s, and p be a
unique fixed point of a self-map f on X, satisfying the condition (2.4). Then
p is a b-contractive fixed point.

Proof. Let x0 ∈ X be arbitrary. Writing x = fn−1x0 and y = p in (2.4), then
using (b3), we get

ρs(f
nx0, p) = ρs(ff

n−1x0, fp)

≤ aρs(fn−1x0, p) + bρs(f
n−1x0, ff

n−1x0) + cρs(p, fp)

≤ aρs(fn−1x0, p) + bs[ρs(f
n−1x0, f

n−1p) + ρs(f
n−1p, fnx0)]

≤
(

a
1−bs

)
ρs(f

n−1x0, p).

Hence, by induction on n,

ρs(f
nx0, p) ≤

(
a

1−bs

)n
ρs(x0, p). (3.9)
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Hence, it follows from (b3) and (2.4) that

ρs(x0, p) ≤ s[ρs(x0, fx0) + ρs(fx0, fp)]

≤ sρs(x0, fx0) + s[aρs(x0, p) + bρs(x0, fx0) + cρs(p, fp)]

=
(
(1+b)s
1−as

)
ρs(x0, fx0).

With this, (3.9) becomes

ρs(f
nx0, p) ≤

(
(1+b)s
1−as

)(
a

1−bs

)n
ρs(x0, fx0) (3.10)

for x0 ∈ X, n = 1, 2, 3, .... Proceeding the limit as n→∞ in (3.10), it follows
that ρs(f

nx0, p) → 0 as n → ∞ for all x0 ∈ X. In other words, p is a
b-contractive fixed point. �

4. Generalized fixed point theorems

A self-map f on a b-metric space (X, ρs) is called a Nesic type b-contraction,
if it satisfies the condition:

[1 + µρs(x, y)]ρs(fx, fy) ≤ µ[ρs(x, fx)ρs(y, fy) + ρs(y, fx)ρs(x, fy)]

+ λmax

{
ρs(x, y), ρs(x, fx), ρs(y, fy),

ρs(x, fy) + ρs(y, fx)

2

}
(4.1)

for all x, y ∈ X, where µ ≥ 0 and 0 < λ < 1/s.

Theorem 4.1. Let f be a Nesic type b-contraction on a complete b-metric
space (X, ρs). Then f has a unique fixed point.

Proof. Let x0 ∈ X be arbitrary. Define {xn} ⊂ X by

xn = fxn−1 for n ≥ 1. (4.2)

Now writing x = xn−1 and y = xn in (4.1), we know that

[1 + µρs(xn−1, xn)]ρs(fxn−1, fxn)

≤ µ
[
ρs(xn−1, fxn−1)ρs(xn, fxn) + ρs(xn, fxn−1)ρs(xn−1, fxn)

]
+ λmax

{
ρs(xn−1, xn), ρs(xn−1, fxn−1), ρs(xn−1, fxn−1),

1
2 [ρs(xn−1, fxn) + ρsρs(xn, fxn−1)]}

or

ρs(xn, xn+1) ≤ λmax{ρs(xn−1, xn), 12 [ρs(xn−1, xn) + ρs(xn, xn+1)]}
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so that

ρs(xn, xn+1) ≤ λρs(xn−1, xn) for n ≥ 1.

By induction on n, it follows that

ρs(xn, xn+1) ≤ λnρs(x0, x1) for n ≥ 1. (4.3)

Now for m > n, by the repeated use of (b4), we know that

ρs(xn, xm) ≤ sρs(xn, xn+1) + s2ρs(xn+1, xn+2)

+ · · ·+ sm−nρs(xm−1, xm)

≤ (sλn + s2λn+1 + · · ·+ sm−nλn+(m−n−1)︸ ︷︷ ︸
m−n terms

)ρs(x0, x1)

= sλn(1 + sλ+ · · ·+ (sλ)m−n−1︸ ︷︷ ︸
m−n terms

)ρs(x0, x1)

≤ (sλn)
(
1−(sλ)m−n

1−sλ

)
ρs(x0, x1)

≤
(

s
1−sλ

)
λnρs(x0, x1). (4.4)

Note that s/(1− sλ) is positive and finite, and λ < 1. Therefore, in the limit
as n→∞, we see that ρs(xn, xm)→ 0. Thus

{
xn
}

is a b-Cauchy sequence in
X.

Since X is b-complete, we can find a point p ∈ X such that

lim
n→∞

xn = lim
n→∞

fxn−1 = p. (4.5)

Now, writing x = xn−1 and y = p, the inequality (4.1) gives

[1 + µρs(xn−1, p)]ρs(fxn−1, fp)

≤ µ[ρs(xn−1, fxn−1)ρs(p, fp) + ρs(p, fxn−1)ρs(p, fxn−1)]

+ λmax{ρs(xn−1, p), ρs(xn−1, fxn−1), ρs(p, fp),
1
2 [ρs(xn−1, fp) + ρs(p, fxn−1)]}.

Taking the limit as n→∞ and using (4.5), we get that

[1 + µ.0]ρs(p, fp) ≤ µ[0 · ρs(p, fp) + 0]

+ λmax{0, 0, ρs(p, fp), 12 [ρs(0, fp) + 0]}.

It implies that ρs(p, fp) ≤ λρs(p, fp) or ρs(p, fp) = 0. That is, fp = p.
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To establish the uniqueness of the fixed point, let q 6= p be also a fixed point
of f . Then with x = p and y = q in (4.1),

[1 + µρs(p, q)]ρs(fp, fq)

≤ µ[ρs(p, fp)ρs(q, fq) + ρs(q, fp)ρs(q, fp)]

+ λmax{ρs(p, q), ρs(p, fp), ρs(q, fq), 12 [ρs(p, fq) + ρs(q, fp]}
which on simplifying, yields 0 < ρs(p, q) ≤ λρs(p, q) < ρs(p, q). This is a
contradiction. Hence p = q, and the fixed point is unique. �

Setting µ = 0 in Theorem 4.1, we have the following corollary.

Corollary 4.2. Let (X, ρs) be a complete b-metric space and f : X → X be a
generalized b-contraction such that

ρs(fx, fy) ≤ λmax
{
ρs(x, y), ρs(x, fx), ρs(y, fy), ρs(x,fy)+ρs(y,fx)2

}
, (4.6)

for all x, y ∈ X, where 0 < λ < 1/s. Then f has a unique fixed point, which
is also a b-contractive fixed point.

Proof. For arbitrary x0 ∈ X, let x = fn−1x0 and y = p in (4.6). Then

ρs(f
nx0, p) = ρs(ff

n−1x0, fp)

≤ λmax
{
ρs(f

n−1x0, p), ρs(f
n−1x0, ff

n−1x0), ρs(p, fp),

1
2 [ρs(f

n−1x0, fp) + ρs(p, ff
n−1x0)]}

= λMn, (4.7)

where

Mn = max
{
ρs(f

n−1x0, p), ρs(f
n−1x0, f

nx0)} for n = 1, 2, ....

Suppose that Mn = ρs(f
n−1x0, p). Then (4.7) becomes

ρs(f
nx0, p) ≤ λρs(fn−1x0, p) ≤ λsρs(fn−1x0, p). (4.8)

On the other hand, let Mn = ρs(f
n−1x0, f

nx0). Then by (4.6) and (b3), we
know that

ρs(f
n−1x0, f

nx0) ≤ λmax{ρs(fn−2x0, fn−1x0), ρs(fn−2x0, ffn−2x0),
ρs(f

n−1x0, ff
n−1x0),

1
2 [ρs(f

n−2x0, ff
n−1x0) + ρs(f

n−1x0, ff
n−2x0)]}

≤ λmax{ρs(fn−2x0, fn−1x0), ρs(fn−1x0, fnx0),
s
2 [ρs(f

n−2x0, f
n−1x0) + ρs(f

n−1x0, f
nx0)]}

= λsmax{ρs(fn−2x0, fn−1x0), ρs(fn−1x0, fnx0)}
= λsρs(f

n−2x0, f
n−1x0). (4.9)
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Inserting (4.8) and (4.9) in (4.7), we get

ρs(f
nx0, p) ≤ λsmax{ρs(ρs(fn−1x0, p), ρs(fn−2x0, fn−1x0)}. (4.10)

Hence, by induction on n,

ρs(f
nx0, p) ≤ (λs)n−1 max{ρs(fx0, p), ρs(x0, fx0)} for all n ≥ 1. (4.11)

Taking the limit as n→∞ in this, it follows that ρs(f
nx0, p)→ 0 as n→∞

for all x0 ∈ X. In other words, p is a b-contractive fixed point. �

Remark 4.3. It is not difficult to show that (2.5) implies (4.6). Hence,
Theorem 2.6 follows from Corollary 4.2, and the unique fixed point of self-
map f satisfying (2.5) is a b-contractive fixed point.

Taking s = 1 in Theorem 4.1, we get the following corollary.

Corollary 4.4 (Theorem 1, Nesic [18]). Let (X, d) be a complete metric space
and f : X → X be a Nesic contraction on X such that

[1 + µd(x, y)]d(fx, fy)

≤ µ[d(x, fx)d(y, fy) + d(y, fx)d(x, fy)]

+ λmax
{
d(x, y), d(x, fx), d(y, fy), d(x,fy)+d(y,fx)2

}
(4.12)

for all x, y ∈ X, where µ ≥ 0 and 0 < λ < 1. Then f has a unique fixed point.

5. Generalized class of auxiliary functions

Given α > 0, we consider the following generalized class of auxiliary func-
tions:

Φα = {φ : [0,∞)→ [0,∞) : φ(0) = 0, φ(αt) < t for t > 0}. (5.1)

When α = 1, the class Φα reduces to the class of contractive modulii Ω, whose
members have the choice

ω(0) = 0 and ω(t) < t for t > 0. (5.2)

Theorem 5.1. Suppose that (X, ρs) is a complete b-metric space and f is a
self-map on X satisfying the condition

ρs(fx, fy)≤φ
(

max
{
ρs(x, y), ρs(x, fx), ρs(y, fy), ρs(x, fy), ρs(y, fx)

})
(5.3)

for all x, y ∈ X, where φ ∈ Φ2 is nondecreasing and upper semicontinuous.
Then f has a unique fixed point p.

Proof. Let x0 ∈ X be arbitrary. Define
{
xn
}
⊂ X by

xn = fxn−1 for n ≥ 1. (5.4)
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Writing with x = xn−1 and y = xn in (5.3), we get

ρs(fxn−1, fxn) ≤φ
(

max
{
ρs(xn−1, xn), ρs(xn−1, fxn−1), ρs(xn, fxn),

ρs(xn−1, fxn), ρs(xn, fxn−1)︸ ︷︷ ︸
=0

})
or

ρs(xn, xn+1) ≤ φ
(

max
{
ρs(xn−1, xn), ρs(xn, xn+1), ρs(xn−1, xn+1)

})
≤ φ

(
s [ρs(xn−1, xn) + ρs(xn, xn+1])

)
.

Define

tn = ρs(xn−1, xn) for n ≥ 1. (5.5)

Then the above inequality is written as

tn+1 ≤ φ
(
s[tn + tn+1]

)
for n ≥ 1. (5.6)

If tm < tm+1 for some m ≥ 1, then tm+1 > 0. Since φ is nondecreasing, it
follows from (5.6) that

tm+1 ≤ φ
(
s[tm+1 + tm+1]

)
< tm+1,

which is a contradiction. Thus {tn}∞n=1 is a nonincreasing sequence of nonneg-
ative real numbers, that is

tn ≥ tn+1 for n ≥ 1. (5.7)

and hence it converges to some t ≥ 0. Now using (5.7) in (5.6), we get

tn+1 ≤ φ(2stn) for n ≥ 1.

Taking the limit superior as n → ∞ in this and then using the upper semi-
continuity of φ, we obtain that

t ≤ φ(2st). (5.8)

If t > 0 in (5.8), then the choice of φ implies that t ≤ φ(2st) < t, which is a
contradiction. Therefore, we have

t = 0. (5.9)

We now prove that
{
xn
}

is a b-Cauchy sequence in X. If possible suppose

that
{
xn
}

is not b-Cauchy. Then for some ε > 0, we choose sequences
{
xmk

}
and

{
xnk

}
of positive integers such that for mk > nk > k,

ρs(xmk
, xnk

) ≥ ε for k = 1, 2, 3, .... (5.10)

Suppose that mk is the smallest integer exceeding nk satisfying (5.10). That
is

ρs(xmk
, xnk

) ≥ ε. (5.11)
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Now by (b3), we see that

ε ≤ ρs(xmk
, xnk

) ≤ s[ρs(xmk
, xmk−1) + ρs(xmk−1, xnk

)]. (5.12)

But from (5.9) and (5.11) respectively, we see that

lim
k→∞

ρs(xmk−1, xmk
) = 0 and lim

k→∞
ρs(xmk−1, xmk

) < ε. (5.13)

Using (5.13) in (5.12), we get

ε < lim
k→∞

ρs(xmk
, xnk

) < sε. (5.14)

Also by (b3), we get

ρs(xnk−1, xmk
) ≤ s[ρs(xnk−1, xnk

) + ρs(xnk
, xmk

)].

As k →∞ this and (5.14) give

lim
k→∞

ρs(xnk−1, xmk
) = 2ε. (5.15)

On the other hand, from (5.3) with x = xmk−1, y = xnk−1 and (5.10), we
have

ε ≤ ρs(xmk
, xnk

)

= ρs(fxmk−1, fxnk−1)

≤ φ
(

max
{
ρs(xmk−1, xnk−1), ρs(xmk−1, fxmk−1), ρs(xnk−1, fxnk−1),

ρs(xmk−1, fxnk−1), ρs(xnk−1, fxmk−1)
})

= φ
(

max
{
ρs(xmk−1, xnk−1), ρs(xmk−1, xmk

), ρs(xnk−1, xnk
),

ρs(xmk−1, xnk
), ρs(xnk−1, xmk

)
})
.

Taking the limit as n→∞ in this, and then using upper semicontinuity of φ,
(5.11), (5.13), (5.14) and (5.15), we get

ε ≤ φ
(

max
{
ε, 0, 0, ε, 2ε

})
= φ(2ε) < ε, (5.16)

since φ is nondecreasing. This is a contradiction to the choice of φ. Hence{
xn
}

must be a b-Cauchy sequence in X. Since X is b-complete, there exists

a point p ∈ X such that
{
xn
}

is b-convergent to p. That is

lim
n→∞

xn−1 = lim
n→∞

xn = p. (5.17)
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We now establish that p is a fixed point of f . In fact, writing x = xn−1 and
y = p in (5.10),

ρs(xn, fp) = ρs(fxn−1, fp)

≤ φ
(

max
{
ρs(xn, p), ρs(xn−1, fxn−1), ρs(p, fp),

ρs(xn−1, fp), ρs(p, fxn−1)
})

= φ
(

max
{
ρs(xn, p), ρs(xn−1, xn), ρs(p, fp),

ρs(xn−1, fp), ρs(p, xn)
})
.

Taking the limit as n→∞ in this and then using (5.17), we get

ρs(p, fp) ≤ φ
(

max
{

0, 0, ρs(p, fp), ρs(p, fp), 0
})

= φ(ρs(p, fp)). (5.18)

If p 6= fp, then ρs(p, fp) > 0. Since φ is nondecreasing, (5.18) implies that

0 < ρs(p, fp) ≤ φ(ρs(p, fp)) < ρs(p, fp),

which is a contradiction. Hence p = fp.

To ensure the uniqueness of the fixed point, we suppose that p and q are
fixed points of f with p 6= q. Let x = p and y = q in (5.10). Then

ρs(p, q) = ρs(fp, fq)

≤ φ
(

max
{
ρs(p, q), ρs(p, fp), ρs(q, fq), ρs(p, fq), ρs(q, fp)

})
= φ

(
max

{
ρs(p, q), 0, 0, ρs(p, q), ρs(q, p)

})
= φ

(
ρs(p, q)),

which implies that p = q. �

With an argument, similar to that of Theorem 5.1, the following result can
be established:

Theorem 5.2. Suppose that (X, ρs) is a complete b-metric space and f is a
self-map on X satisfying the condition:

ρs(fx, fy)

≤ φ
(

max
{
ρs(x, fx) + ρs(y, fy), ρs(x, fy) + ρs(y, fx) + ρs(y, fy)

})
(5.19)

for all x, y ∈ X, where φ ∈ Φ2s+1 is nondecreasing and upper semicontinuous.
Then f has a unique fixed point p.

Acknowledgments: The authors would like to express sincere thanks to the
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