
Nonlinear Functional Analysis and Applications
Vol. 25, No. 2 (2020), pp. 231-247

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2020.25.02.03
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2020 Kyungnam University Press

KUPress

CONVERGENCE ANALYSIS FOR TOTAL
ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN
CONVEX METRIC SPACES WITH APPLICATIONS

G. S. Saluja1 and Jong Kyu Kim2

1Department of Mathematics
Govt. Kaktiya P. G. College, Jagdalpur - 494001 Chhattisgarh, India

e-mail: saluja1963@gmail.com

2Department Mathematics Education, Kyungnam University
Changwon, Gyeongnam, 51767, Korea

e-mail: jongkyuk@kyungnam.ac.kr

Abstract. The purpose of this paper is to study newly proposed finite-step iteration scheme

in a convex metric space and establish some strong convergence theorems for two finite

families of total asymptotically nonexpansive mappings. Also, we give some applications of

our result. The results presented in this paper extend and generalize several results from the

current existing literature.

1. Introduction and Preliminaries

Most of the problems in various disciplines of science are nonlinear in nature,
whereas fixed point theory explored in the setting of Banach spaces mainly
depends on the linear structure of the underlying space. One of the nonlinear
framework for fixed point theory is a metric space embedded with a convex
structure.

Definition 1.1. ([40]) Let (X, d) be a metric space. A mapping W : X ×
X × [0, 1] → X is said to be a convex structure on X if for each (x, y, λ) ∈
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X ×X × [0, 1] and u ∈ X,

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

A metric space X together with the convex structure W is called a convex
metric space, which is denoted by (X, d,W ).

Definition 1.2. ([40]) Let X be a convex metric space. A nonempty subset F
of X is said to be convex if W (x, y, λ) ∈ F whenever (x, y, λ) ∈ F ×F × [0, 1].

Takahashi [40] has shown that open sphere B(x, r) = {y ∈ X : d(y, x) < r}
and closed sphere B[x, r] = {y ∈ X : d(y, x) ≤ r} are convex. Some examples
of convex metric spaces are normed spaces and their convex subsets, Hadamard
manifolds and CAT(0) spaces. But there are many examples of convex metric
spaces which are not embedded in any normed space (see [40]).

Example 1.3. Let (X, ‖.‖) be a normed space. If the mapping W : X ×X ×
I → X is defined by W (x, y, λ) = λx+ (1−λ)y for each x, y ∈ X, λ ∈ I, then
it is a convex structure on X.

Definition 1.4. A mapping T : X → X is called:

(1) nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ X.
(2) asymptotically nonexpansive [15] if there exists a sequence un ∈ [0,∞)

with limn→∞ un = 0 such that

d(Tnx, Tny) ≤ (1 + un)d(x, y), ∀x, y ∈ X,∀n ∈ N,
where N is the set of positive integers.

(3) asymptotically nonexpansive in the intermediate sense [5] if it is con-
tinuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈K

(
d(Tnx, Tny)− d(x, y)

)
≤ 0.

(4) generalized asymptotically nonexpansive mappings [17] if there exist
sequences {rn}, {sn} in [0,∞) with limn→∞ rn = 0 = limn→∞ sn such
that

d(Tnx, Tny) ≤ (1 + rn)d(x, y) + sn, ∀x, y ∈ X, ∀n ∈ N,
where N is the set of positive integers.

In 2006, Albert et al. [3] introduced the concept of total asymptotically
nonexpansive mappings as the generalization of a few classes of mappings
including above defined (1) nonexpansive mappings, (2) asymptotically non-
expansive mappings, (3) asymptotically nonexpansive mappings in the inter-
mediate sense and (4) generalized asymptotically nonexpansive mappings.
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Definition 1.5. A mapping T : X → X is said to be total asymptotically
nonexpansive if there exist non-negative real sequences {kn} and {νn} with
kn → 0 and νn → 0 as n → ∞ and a strictly increasing continuous function
ψ : [0,∞)→ [0,∞) with ψ(0) = 0 such that

d(Tnx, Tny) ≤ d(x, y) + knψ(d(x, y)) + νn

for all x, y ∈ X and n ∈ N.

In particular, if y ∈ F (T ) = {x ∈ X : T (x) = x}, then the mapping T is
called total asymptotically quasi-nonexpansive.

Remark 1.6. From the above definition, it is clear that each asymptotically
nonexpansive mapping is a total asymptotically nonexpansive with νn = 0,
kn = un for all n ≥ 1, ψ(t) = t, t ≥ 0.

Example 1.7. ([28]) We can easily check the following statements:

(i) Let X = R, K = [0,∞) and T : K → K be defined by T (x) = sin x.
Then T is a total asymptotically nonexpansive mapping.

(ii) Let X = R, K = [− 1
π ,

1
π ] and T : K → K be defined by T (x) =

λx sin ( 1x), where λ ∈ (0, 1). Then T is a total asymptotically nonex-
pansive mapping.

(iii) Let K = {x := (x1, x2, . . . , xn, . . . )|x1 ≤ 0, xi ∈ R, i ≥ 2} be a
nonempty subset of X = `2 with the norm ‖.‖ defined as ‖x‖ =√∑∞

i=1 x
2
i , if T : K → K is defined as T (x) = (0, 4x2, 0, 0, 0, . . . ).

Then T is an asymptotically nonexpansive mapping.
(iv) Let X = R and K = [0, 2]. Let T : K → K be a mapping defined by

T (x) =


1, if x ∈ [0, 1],

1√
3

√
4− x2, if x ∈ [1, 2].

Then T is a total asymptotically nonexpansive mapping with F (T ) =
{1}. However, T is not a Lipschitzian and hence it is not an asymp-
totically nonexpansive mapping.

Definition 1.8. A mapping T : X → X is called semi-compact if for any
bounded sequence {xn} in K with d(xn, Txn) → 0 as n → ∞, there is a
convergent subsequence of {xn}.

Convergence results for the mappings in (1)-(4) in the setting of uniformly
convex Banach spaces and CAT(0) spaces via different iterative schemes have
been obtained by a number of researchers (e.g., [6, 13, 20, 21, 22, 24, 31, 29,
30, 32, 39, 43] and the references therein).
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To know the importance of different iterative algorithms for the approx-
imation of total asymptotically nonexpansive mappings in uniformly convex
Banach spaces, CAT(0) spaces and hyperbolic spaces, we refer the interested
reader to [1, 2, 7, 12, 14, 16, 23, 25, 28, 33, 34, 35, 36, 37, 42, 44].

Modified Mann Iteration([38]): In 1991, Schu [38] considered the fol-
lowing modified Mann iteration process:{

x1 = x ∈ K,
xn+1 = (1− αn)xn + αnT

nxn, n ≥ 1,
(1.1)

where {αn} is a real sequence in (0, 1).

Modified Ishikawa Iteration([41]): In 1994, Tan and Xu [41] studied the
modified Ishikawa iteration process which is a generalization of the Ishikawa
iteration process: 

x1 = x ∈ K,
xn+1 = (1− αn)xn + αnT

nyn,

yn = (1− βn)xn + βnT
nxn, n ≥ 1,

(1.2)

where {αn} and {βn} are real sequences in (0, 1). This iteration scheme reduces
to the modified Mann iteration process when βn = 0 for all n ≥ 1.

Modified Noor Iteration([43]): In 2002, Xu and Noor [43] introduced a
three-step iteration scheme as follows:

x1 = x ∈ K,
xn+1 = (1− αn)xn + αnT

nyn,

yn = (1− βn)xn + βnT
nzn,

zn = (1− γn)xn + γnT
nxn, n ≥ 1,

(1.3)

where {αn}, {βn} and {γn} are real sequences in [0, 1].

In 2008, Khan et al. [19] generalized the iterative processes (1.1)-(1.3) to the
following iterative process for a finite family of mappings {Ti : i = 1, 2, . . . , r}.

Let x1 ∈ K and the iterative sequence {xn} is defined as follows:

xn+1 = (1− αrn)xn + αrnT
n
r y(r−1)n,

y(r−1)n = (1− α(r−1)n)xn + α(r−1)nT
n
r−1y(r−2)n,

...

y2n = (1− α2n)xn + α2nT
n
2 y1n,

y1n = (1− α1n)xn + α1nT
n
1 y0n, n ≥ 1,

(1.4)

where y0n = xn for all n and αin ∈ [0, 1], n ≥ 1 and i ∈ {1, 2, . . . , r}.
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Recently, Chen and Guo [8] introduced and studied a new finite-step iter-
ation scheme for two finite families of asymptotically nonexpansive mappings
as follows:

x1 = x ∈ K,

x(0)n = xn,

x(1)n = α(1)
n Tn1 x

(0)
n + (1− α(1)

n )Sn1 xn,

x(2)n = α(2)
n Tn2 x

(1)
n + (1− α(2)

n )Sn2 xn,

...

x(N−1)n = α(N−1)
n TnN−1x

(N−2)
n + (1− α(N−1)

n )SnN−1xn,

x(N)
n = α(N)

n TnNx
(N−1)
n + (1− α(N)

n )SnNxn,

xn+1 = x(N)
n , ∀ n ≥ 1,

(1.5)

where {α(i)
n } ⊂ [0, 1] for all i ∈ {1, 2, . . . , N} and they proved weak convergence

theorem for iteration scheme (1.5).

We need the following lemma to prove our main results.

Lemma 1.9. ([19]) Let {pn}, {qn}, {rn} be three sequences of nonnegative
real numbers satisfying the following conditions:

pn+1 ≤ (1 + qn)pn + rn, n ≥ 0,

∞∑
n=0

qn <∞,
∞∑
n=0

rn <∞.

Then

(i) limn→∞ pn exists.
(ii) In addition, if lim infn→∞ pn = 0, then limn→∞ pn = 0.

The purpose of this paper is to introduce the iterative process (1.5) in convex
metric spaces and establish its strong convergence to a unique common fixed
point of two finite families of total asymptotically nonexpansive mappings.
The results presented in this paper extend and generalize some previous works
from the current existing literature in the setting of convex metric spaces.

2. Main results

First we introduce the iterative process (1.5) in convex metric spaces as
follows:

Let K be a convex subset of a convex metric space (X, d) and x0 ∈ K.

Suppose that {α(i)
n } ⊂ [0, 1] for all n = 1, 2, 3, . . . and i ∈ {1, 2, . . . , N}. Let
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{Si, Ti : i = 1, 2, . . . , N} be two finite families of self-mappings of K. We
translate (1.5) as follows:

x1 = x ∈ K,

x(0)n = xn,

x(1)n = W (Tn1 xn, S
n
1 xn, α

(1)
n ),

x(2)n = W (Tn2 x
(1)
n , Sn2 xn, α

(2)
n ),

...

x(N−1)n = W (TnN−1x
(N−2)
n , SnN−1xn, α

(N−1)
n ),

x(N)
n = W (TnNx

(N−1)
n , SnNxn, α

(N)
n ),

xn+1 = x(N)
n , ∀ n ≥ 1.

(2.1)

Remark 2.1. (1) If W (x, y, λ) = (1 − λ)x + λ y for all (x, y, λ) ∈ X ×
X × [0, 1], then the iterative process (2.1) reduces to (1.5).

(2) It is easy to verify that Lemma 1.9(ii) holds under the hypothesis
lim supn→∞ pn = 0 as well. Therefore, the condition (ii) in Lemma 1.9
can be reformulated as follows:
(ii)’ If lim infn→∞ pn = 0 or lim supn→∞ pn = 0, then limn→∞ pn = 0.

Now, we prove some lemmas to prove our strong convergence results. As-
sume that N = {1, 2, 3, . . . , N}.

Lemma 2.2. Let K be a nonempty, closed and convex subset of a convex
complete metric space (X, d,W ). For each i ∈ N , let Ti : K → K be a
({kin1

}, {νin1
}, {ψi1})-total asymptotically nonexpansive mapping with limn→∞ k

i
n1

= 0 and limn→∞ ν
i
n1

= 0, and a strictly increasing function ψi1 : [0,+∞) →
[0,+∞) satisfying ψi1(0) = 0 and let Si : K → K be a ({kin2

}, {νin2
}, {ψi2})-total

asymptotically nonexpansive mapping with limn→∞ k
i
n2

= 0 and limn→∞ ν
i
n2

=

0, and a strictly increasing function ψi2 : [0,+∞)→ [0,+∞) satisfying ψi2(0) =
0. Assume that

F :=

N⋂
i=1

F (Si) ∩ F (Ti) 6= ∅,

and for each i ∈ N , the following conditions hold:

(i)
∑∞

n=1 k
i
n1
< +∞,

∑∞
n=1 k

i
n2
< +∞,

∑∞
n=1 ν

i
n1
< +∞,

and
∑∞

n=1 ν
i
n2
< +∞.

(ii) There exist constants Ki > 0 and K′i > 0 such that

ψi1(r) ≤ Kir, ψi2(r) ≤ K′ir, ∀ r > 0.
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Let {xn} be the sequence defined by (2.1), where {α(i)
n } ⊂ [0, 1] for all i ∈ N .

Then

(i) limn→∞ d(xn, q) for all q ∈ F exists.
(ii) limn→∞ d(xn, F ) exists, where d(x, F ) = inf{d(x, z) : z ∈ F}.

Proof. (i) Let kn = maxi∈N {kin1
, kin2
}, νn = maxi∈N {νin1

, νin2
}, ψ = maxi∈N

{ψi1, ψi2} and K = maxi∈N {Ki,K′i}. By conditions (i) and (ii), we have∑∞
n=1 kn < +∞,

∑∞
n=1 νn < +∞, ψ(r) ≤ Kr for any r > 0. For every

q ∈ F and any n ≥ 1, it follows from (2.1) that

d(x(1)n , q) = d(W (Tn1 xn, S
n
1 xn, α

(1)
n ), q)

≤ α(1)
n d(Tn1 xn, q) + (1− α(1)

n )d(Sn1 xn, q)

≤ α(1)
n [d(xn, q) + k1n1

ψ1
1(d(xn, q)) + ν1n1

]

+(1− α(1)
n )[d(xn, q) + k1n2

ψ1
2(d(xn, q)) + ν1n2

]

≤ α(1)
n [d(xn, q) + knψ(d(xn, q)) + νn]

+(1− α(1)
n )[d(xn, q) + knψ(d(xn, q)) + νn]

≤ α(1)
n [d(xn, q) + knK1d(xn, q) + νn]

+(1− α(1)
n )[d(xn, q) + knK′1d(xn, q) + νn]

≤ α(1)
n [d(xn, q) + knKd(xn, q) + νn]

+(1− α(1)
n )[d(xn, q) + knKd(xn, q) + νn]

= α(1)
n [(1 + knK)d(xn, q) + νn]

+(1− α(1)
n )[(1 + knK)d(xn, q) + νn]

= (1 + knK)d(xn, q) + νn. (2.2)

Again using (2.1)-(2.2), we obtain

d(x(2)n , q) = d(W (Tn2 x
(1)
n , Sn2 xn, α

(2)
n ), q)

≤ α(2)
n d(Tn2 x

(1)
n , q) + (1− α(2)

n )d(Sn2 xn, q)

≤ α(2)
n [d(x(1)n , q) + k2n1

ψ2
1(d(x(1)n , q)) + ν2n1

]

+(1− α(2)
n )[d(xn, q) + k2n2

ψ2
2(d(xn, q)) + ν2n2

]

≤ α(2)
n [d(x(1)n , q) + knψ(d(x(1)n , q)) + νn]

+(1− α(2)
n )[d(xn, q) + knψ(d(xn, q)) + νn]

≤ α(2)
n [d(x(1)n , q) + knK2d(x(1)n , q) + νn]

+(1− α(2)
n )[d(xn, q) + knK′2d(xn, q) + νn]
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≤ α(2)
n [d(x(1)n , q) + knKd(x(1)n , q) + νn]

+(1− α(2)
n )[d(xn, q) + knKd(xn, q) + νn]

= α(2)
n [(1 + knK)d(x(1)n , q) + νn]

+(1− α(2)
n )[(1 + knK)d(xn, q) + νn]

≤ α(2)
n (1 + knK)[(1 + knK)d(xn, q) + νn] + α(2)

n νn

+(1− α(2)
n )[(1 + knK)d(xn, q) + νn]

= α(2)
n (1 + knK)2d(xn, q) + α(2)

n [(1 + knK)νn + νn]

+(1− α(2)
n )(1 + knK)d(xn, q) + (1− α(2)

n )νn

≤ α(2)
n (1 + knK)2d(xn, q) + νn] + α(2)

n [(1 + knK)νn

+νn] + (1− α(2)
n )(1 + knK)2d(xn, q) + (1− α(2)

n )νn

= (1 + knK)2d(xn, q) + [1 + (1 + knK)]νn. (2.3)

Similarly, we can prove that

d(x(3)n , q) ≤ (1 + knK)3d(xn, q) + [1 + (1 + knK)

+(1 + knK)2]νn

= (1 + knK)3d(xn, q) +
2∑
j=0

(1 + knK)jνn. (2.4)

Continuing the above process, we get that

d(x(N)
n , q) = d(xn+1, q)

≤ (1 + knK)Nd(xn, q) +
N−1∑
j=0

(1 + knK)jνn

≤ [1 + bNn kn]d(xn, q) +

N−1∑
j=0

(1 + knK)jνn

≤ [1 +R1kn]d(xn, q) +R2νn, (2.5)

where bNn = (N1 )K + (N2 )(K)2kn + · · · + (NN )(K)NkN−1n , and it follows from
condition (i) that there exist positive constants R1 and R2 such that bNn ≤ R1,∑N−1

j=0 (1 + knK)j ≤ R2 for each n ≥ 1. By Lemma 1.9, the inequality (2.5)

implies that limn→∞ d(xn, q) exists for each q ∈ F .

(ii) Taking infimum over all q ∈ F in equation (2.5), we have that

d(xn+1, F ) ≤ [1 +R1kn]d(xn, F ) +R2νn. (2.6)
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Since
∑∞

n=1 kn < ∞ and
∑∞

n=1 νn < ∞, it follows from Lemma 1.9 that
limn→∞ d(xn, F ) exists. This completes the proof. �

Theorem 2.3. Let K be a nonempty, closed and convex subset of a con-
vex complete metric space (X, d,W ). For each i ∈ N , let Ti : K → K be a
({kin1

}, {νin1
}, {ψi1})-total asymptotically nonexpansive mapping with limn→∞

kin1
= 0 and limn→∞ ν

i
n1

= 0, and a strictly increasing function ψi1 : [0,+∞)→
[0,+∞) satisfying ψi1(0) = 0 and let Si : K → K be a ({kin2

}, {νin2
}, {ψi2})-total

asymptotically nonexpansive mapping with limn→∞ k
i
n2

= 0 and limn→∞ ν
i
n2

= 0, and a strictly increasing function ψi2 : [0,+∞) → [0,+∞) satisfying
ψi2(0) = 0. Assume that

F :=
N⋂
i=1

F (Si) ∩ F (Ti) 6= ∅,

and for each i ∈ N , the following conditions hold:

(i)
∑∞

n=1 k
i
n1
< +∞,

∑∞
n=1 k

i
n2
< +∞,

∑∞
n=1 ν

i
n1
< +∞, and∑∞

n=1 ν
i
n2
< +∞.

(ii) There exist constants Ki > 0 and K′i > 0 such that

ψi1(r) ≤ Kir, ψi2(r) ≤ K′ir, ∀ r > 0.

Let {xn} be the sequence defined by (2.1), where {α(i)
n } ⊂ [0, 1] for all i ∈ N .

Then {xn} converges strongly to some q ∈ F if and only if

lim inf
n→∞

d(xn, F ) = 0,

where d(x, F ) = inf{d(x, z) : z ∈ F}.

Proof. If {xn} converges strongly to q ∈ F , then limn→∞ d(xn, q) = 0. Since
0 ≤ d(xn, F ) ≤ d(xn, q), we have lim infn→∞ d(xn, F ) = 0.

Conversely, suppose that lim infn→∞ d(xn, F ) = 0. It follows from Lemma
2.2 that limn→∞ d(xn, F ) exists. Now lim infn→∞ d(xn, F ) = 0 reveals that
limn→∞ d(xn, F ) = 0 by Remark 2.1(2).

Next, we show that {xn} is a Cauchy sequence. By inequality (2.5) in the
proof of Lemma 2.2, we know that

d(xn+1, q) ≤ [1 +R1kn]d(xn, q) +R2νn.

On account of
∑∞

n=1 kn < +∞,
∑∞

n=1 νn < +∞, set eR1
∑∞

n=1 kn = R∗. Since
limn→∞ d(xn, F ) = 0, for any given ε > 0, there exists a positive integer n0
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such that

d(xn0 , F ) <
ε

4(R∗ + 1)
and

∞∑
n=n0

νn <
ε

2R∗R2
. (2.7)

The first inequality in (2.7) implies that there exists q0 ∈ F such that d(xn0 , q0) <
ε

2(R∗+1) . Hence, for any n ≥ n0 and m ≥ 1, we have

d(xn0+m, xn0) ≤ d(xn0+m, q0) + d(xn0 , q0)

≤
[
e
R1

∑n0+m−1
j=n0

kj + 1
]
d(xn0 , q0) +R2

[
νn0+m−1

+νn0+m−2e
R1kn0+m−1 + νn0+m−3e

R1
∑n0+m−1

j=n0+m−2 kj

+ · · ·+ νn0e
R1

∑n0+m−1
j=n0+1 kj

]
≤ (R∗ + 1)d(xn0 , q0) +R∗R2

∞∑
n=n0

νn

< (R∗ + 1).
ε

2(R∗ + 1)
+R∗R2.

ε

2R∗R2

= ε. (2.8)

This implies that {xn} is a Cauchy sequence in X. Since K is a closed subset of
a convex metric space X, it is complete. We can assume that limn→∞ xn = z,
and z ∈ K. Suppose that lim infn→∞ d(xn, F ) = 0. Then, we have from
Lemma 1.9(ii) and Remark 2.1(2) that limn→∞ d(xn, F ) = 0. Moreover, since
the set of common fixed points of two families of mappings is closed, so is
F , thus z ∈ F and so limn→∞ d(xn, F ) = 0. This shows that {xn} strongly
converges to some q ∈ F . This completes the proof. �

Theorem 2.4. Let K be a nonempty, closed and convex subset of a con-
vex complete metric space (X, d,W ). For each i ∈ N , let Ti : K → K be a
({kin1

}, {νin1
}, {ψi1})-total asymptotically nonexpansive mapping with limn→∞

kin1
= 0 and limn→∞ ν

i
n1

= 0, and a strictly increasing function ψi1 : [0,+∞)→
[0,+∞) satisfying ψi1(0) = 0 and let Si : K → K be a ({kin2

}, {νin2
}, {ψi2})-total

asymptotically nonexpansive mapping with limn→∞ k
i
n2

= 0 and limn→∞ ν
i
n2

= 0, and a strictly increasing function ψi2 : [0,+∞) → [0,+∞) satisfying
ψi2(0) = 0. Assume that

F :=

N⋂
i=1

F (Si) ∩ F (Ti) 6= ∅,

and for each i ∈ N , the following conditions hold:
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(i)
∑∞

n=1 k
i
n1
< +∞,

∑∞
n=1 k

i
n2
< +∞,

∑∞
n=1 ν

i
n1
< +∞, and∑∞

n=1 ν
i
n2
< +∞.

(ii) There exist constants Ki > 0 and K′i > 0 such that

ψi1(r) ≤ Kir, ψi2(r) ≤ K′ir, ∀ r > 0.

Assume that limn→∞ d(xn, Sixn) = 0 = limn→∞ d(xn, Tixn) for all i ∈ N . Let

{xn} be the sequence defined by (2.1), where {α(i)
n } ⊂ [0, 1] for all i ∈ N . Then

{xn} converges strongly to a point in F .

Proof. By hypothesis, limn→∞ d(xn, Sixn) = 0 = limn→∞ d(xn, Tixn) for all
i ∈ N . Since K is compact so there exists a subsequence {xnk

} of {xn}
such that xnk

→ q′ (say) in K as nk → ∞. Continuity of Si and Ti gives
Sixnk

→ Siq
′ and Tixnk

→ Tiq
′ as nk →∞ for all i ∈ N . Then by hypothesis

of the theorem, we have

d(Siq
′, q′) = 0 = d(Tiq

′, q′)

for all i ∈ N . This yields q′ ∈ F =
⋂N
i=1 F (Si)∩F (Ti) so that {xn} converges

strongly to q′ in F =
⋂N
i=1 F (Si)∩F (Ti). But by Lemma 2.2, limn→∞ d(xn, q)

exists for all q ∈ F =
⋂N
i=1 F (Si) ∩ F (Ti), therefore {xn} must converges

strongly to q′ ∈ F =
⋂N
i=1 F (Si) ∩ F (Ti). This completes the proof. �

3. Applications

As an application of Theorem 2.3, we establish some strong convergence
results as follows.

Theorem 3.1. Let K be a nonempty, closed and convex subset of a con-
vex complete metric space (X, d,W ). For each i ∈ N , let Ti : K → K be a
({kin1

}, {νin1
}, {ψi1})-total asymptotically nonexpansive mapping with limn→∞

kin1
= 0 and limn→∞ ν

i
n1

= 0, and a strictly increasing function ψi1 : [0,+∞)→
[0,+∞) satisfying ψi1(0) = 0 and let Si : K → K be a ({kin2

}, {νin2
}, {ψi2})-total

asymptotically nonexpansive mapping with limn→∞ k
i
n2

= 0 and limn→∞ ν
i
n2

=

0, and a strictly increasing function ψi2 : [0,+∞)→ [0,+∞) satisfying ψi2(0) =
0. Assume that

F :=

N⋂
i=1

F (Si) ∩ F (Ti) 6= ∅,

and for each i ∈ N , the following conditions hold:

(i)
∑∞

n=1 k
i
n1
< +∞,

∑∞
n=1 k

i
n2
< +∞,

∑∞
n=1 ν

i
n1
< +∞,
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and
∑∞

n=1 ν
i
n2
< +∞.

(ii) There exist constants K > 0 and K′ > 0 such that

ψi1(r) ≤ Kir, ψi2(r) ≤ K′ir, ∀ r > 0.

Assume that limn→∞ d(xn, Sixn) = 0 = limn→∞ d(xn, Tixn) for all i ∈ N . Let

{xn} be the sequence defined by (2.1), where {α(i)
n } ⊂ [0, 1] for all i ∈ N . If

there exists a Ti or Si, i ∈ N , which is semi-compact. Then the sequence {xn}
converges to a point in F .

Proof. Without loss of generality, we can assume that T1 is semi-compact.
From Lemma 2.2, we know that the sequence {xn} is bounded and by hypoth-
esis of the theorem

lim
n→∞

d(xn, Sixn) = 0 and lim
n→∞

d(xn, Tixn) = 0

for all i ∈ N . Since T1 is semi-compact and limn→∞ d(xn, T1xn) = 0, there
exists a subsequence {xnj} of {xn} such that xnj → p∗ ∈ K. Thus

d(p∗, Tip
∗) = lim

j→∞
d(xnj , Tixnj ) = 0

and

d(p∗, Sip
∗) = lim

j→∞
d(xnj , Sixnj ) = 0

for all i ∈ N . This implies that p∗ ∈ F =
⋂N
i=1 F (Si) ∩ F (Ti) and so

lim inf
n→∞

d(xn, F ) ≤ lim inf
j→∞

d(xnj , F ) ≤ lim
j→∞

d(xnj , p
∗) = 0.

It follows from Theorem 2.3 that {xn} converges strongly to a point in F .
This completes the proof. �

Theorem 3.2. Let K be a nonempty, closed and convex subset of a con-
vex complete metric space (X, d,W ). For each i ∈ N , let Ti : K → K be a
({kin1

}, {νin1
}, {ψi1})-total asymptotically nonexpansive mapping with limn→∞

kin1
= 0 and limn→∞ ν

i
n1

= 0, and a strictly increasing function ψi1 : [0,+∞)→
[0,+∞) satisfying ψi1(0) = 0 and let Si : K → K be a ({kin2

}, {νin2
}, {ψi2})-total

asymptotically nonexpansive mapping with limn→∞ k
i
n2

= 0 and limn→∞ ν
i
n2

=

0, and a strictly increasing function ψi2 : [0,+∞)→ [0,+∞) satisfying ψi2(0) =
0. Assume that

F :=
N⋂
i=1

F (Si) ∩ F (Ti) 6= ∅,

and for each i ∈ N , the following conditions hold:
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(i)
∑∞

n=1 k
i
n1
< +∞,

∑∞
n=1 k

i
n2
< +∞,

∑∞
n=1 ν

i
n1
< +∞,

and
∑∞

n=1 ν
i
n2
< +∞.

(ii) There exist constants K > 0 and K′ > 0 such that

ψi1(r) ≤ Kir, ψi2(r) ≤ K′ir, ∀ r > 0.

Let {xn} be the sequence defined by (2.1), where {α(i)
n } ⊂ [0, 1] for all

i ∈ N .

Assume that limn→∞ d(xn, xn+1) = 0; if the sequence {zn} in K satisfies
limn→∞ d(zn, zn+1) = 0, then lim infn→∞ d(zn, F ) = 0. Then {xn} converges
to a unique point in F .

Proof. By hypothesis, we have that lim infn→∞ d(xn, F ) = 0. Therefore, we
obtain from Theorem 2.3 that the sequence {xn} converges to a unique point
in F . This completes the proof. �

For our next result, we need the following definition.

Definition 3.3. ([8]) A family {Ti : i = 1, 2, . . . ,m} of m self-mappings of K
with F =

⋂m
i=1 F (Ti) 6= ∅ is said to satisfy condition (B) on K if there is a

nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞) such that

max
1≤i≤m

{‖x− Tix‖} ≥ f(d(x, F ))

for all x ∈ K.

Theorem 3.4. Let K be a nonempty, closed and convex subset of a con-
vex complete metric space (X, d,W ). For each i ∈ N , let Ti : K → K be a
({kin1

}, {νin1
}, {ψi1})-total asymptotically nonexpansive mapping with limn→∞

kin1
= 0 and limn→∞ ν

i
n1

= 0, and a strictly increasing function ψi1 : [0,+∞)→
[0,+∞) satisfying ψi1(0) = 0 and let Si : K → K be a ({kin2

}, {νin2
}, {ψi2})-total

asymptotically nonexpansive mapping with limn→∞ k
i
n2

= 0 and limn→∞ ν
i
n2

=

0, and a strictly increasing function ψi2 : [0,+∞)→ [0,+∞) satisfying ψi2(0) =
0. Assume that

F :=

N⋂
i=1

F (Si) ∩ F (Ti) 6= ∅,

and for each i ∈ N , the following conditions hold:

(i)
∑∞

n=1 k
i
n1
< +∞,

∑∞
n=1 k

i
n2
< +∞,

∑∞
n=1 ν

i
n1
< +∞,

and
∑∞

n=1 ν
i
n2
< +∞.
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(ii) There exist constants K > 0 and K′ > 0 such that

ψi1(r) ≤ Kir, ψi2(r) ≤ K′ir, ∀ r > 0.

Assume that limn→∞ d(xn, Sixn) = 0 = limn→∞ d(xn, Tixn) for all i ∈ N . Let

{xn} be the sequence defined by (2.1), where {α(i)
n } ⊂ [0, 1] for all i ∈ N . If

the family {S1, S2, . . . , SN , T1, T2, . . . , TN} satisfies condition (B). Then {xn}
converges strongly to a point in F .

Proof. By hypothesis of the Theorem, we have limn→∞ d(xn, Sixn) = 0, limn→∞
d(xn, Tixn) = 0 for all i ∈ N , and so max1≤i≤N{d(xn, Sixn), d(xn, Tixn)} → 0
as n→∞. It follows from condition (B) that

lim
n→∞

f(d(xn, F )) = 0.

By Lemma 2.2(ii), we know that limn→∞ d(xn, F ) exists. Since f : [0,∞) →
[0,∞) is a nondecreasing function with f(0) = 0 and so limn→∞ d(xn, F ) = 0.
Thus, lim infn→∞ d(xn, F ) = 0 = lim supn→∞ d(xn, F ). By Theorem 2.3, {xn}
converges strongly to a point in F . This completes the proof. �

Now, we give an example in support of our result: take two mappings
T1 = T2 = · · · = TN = T and S1 = S2 = · · · = SN = S as follows:

Example 3.5. Let X = R be the real line with the usual metric d(x, y) =
|x− y| and K = [−1, 1]. For each x ∈ K, define two mappings T, S : K → K
by

T (x) =

 −2 sinx2 , if x ∈ [0, 1],

2 sinx2 , if x ∈ [−1, 0).

and

S(x) =


x
2 , if x 6= 0,

0, if x = 0.

Then T and S both are asymptotically nonexpansive mapping with constant
sequence {kn} = {1} for all n ≥ 1 and are uniformly L-Lipschtzian mappings
with L = supn≥1{kn} and hence are total asymptotically nonexpansive map-
ping by remark 1.6. Also F (T ) = {0} is the unique fixed point of T and
F (S) = {0} is the unique fixed point of S, that is, F = F (S) ∩ F (T ) = {0} is
the unique common fixed point of S and T .

Example 3.6. Let X = R be the real line with the usual metric d(x, y) =
|x− y| and K = [0, 2]. For each x ∈ K, define two mappings T, S : K → K by

T (x) =


1, if x ∈ [0, 1],

√
2− x, if x ∈ [1, 2].
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and

S(x) =


1, if x ∈ [0, 1],

1√
3

√
4− x2, if x ∈ [1, 2].

Then both T and S are total asymptotically nonexpansive and uniformly
continuous mappings. Also F (T ) = {1} is the unique fixed point of T and
F (S) = {1} is the unique fixed point of S, that is, F = F (S) ∩ F (T ) = {1} is
the unique common fixed point of S and T .

4. Concluding remarks

In this paper, we introduce a new finite-step iteration scheme for two fi-
nite families of total asymptotically nonexpansive mappings in convex metric
spaces and establish some strong convergence results. Also, we give some ap-
plications of our result in the setting of convex metric spaces. Our results
extend and generalize the corresponding results of [4, 6, 8, 9, 10, 11, 18, 26,
27, 31, 41, 43] to the case of more general class of mappings, iteration schemes
and spaces.
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Program through the National Research Foundation(NRF) Grant funded by
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