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Abstract. The purpose of this paper is to study newly proposed finite-step iteration scheme
in a convex metric space and establish some strong convergence theorems for two finite
families of total asymptotically nonexpansive mappings. Also, we give some applications of
our result. The results presented in this paper extend and generalize several results from the

current existing literature.

1. INTRODUCTION AND PRELIMINARIES

Most of the problems in various disciplines of science are nonlinear in nature,
whereas fixed point theory explored in the setting of Banach spaces mainly
depends on the linear structure of the underlying space. One of the nonlinear
framework for fixed point theory is a metric space embedded with a convex
structure.

Definition 1.1. ([40]) Let (X, d) be a metric space. A mapping W: X x
X x [0,1] — X is said to be a convex structure on X if for each (x,y,\) €
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X x X x[0,1] and v € X,
d(u, W(z,y,\)) < Md(u,x) + (1 — N)d(u, y).

A metric space X together with the convex structure W is called a convez
metric space, which is denoted by (X, d, W).

Definition 1.2. ([40]) Let X be a convex metric space. A nonempty subset F'
of X is said to be convex if W(z,y,\) € F whenever (z,y,\) € F x F x [0, 1].

Takahashi [40] has shown that open sphere B(z,7) = {y € X : d(y,z) < r}
and closed sphere Blz,r] = {y € X : d(y,z) < r} are convex. Some examples
of convex metric spaces are normed spaces and their convex subsets, Hadamard
manifolds and CAT(0) spaces. But there are many examples of convex metric
spaces which are not embedded in any normed space (see [40]).

Example 1.3. Let (X, ||.||) be a normed space. If the mapping W: X x X x
I — X is defined by W (z,y,\) = Az + (1 —N)y for each z,y € X, X € I, then
it is a convex structure on X.

Definition 1.4. A mapping 7: X — X is called:
(1) nonexpansive if
d(Tz,Ty) < d(z,y), Vz,y € X.
(2) asymptotically nonexpansive [15] if there exists a sequence u,, € [0, 00)
with lim,,_ .~ u, = 0 such that
d(T"z, T"y) < (1 + up)d(z,y), Yo,y € X,¥n €N,

where N is the set of positive integers.
(3) asymptotically nonexpansive in the intermediate sense [5] if it is con-
tinuous and the following inequality holds:
limsup sup (d(T”x,T"y) - d(x,y)) <0.
n—oo zyek
(4) generalized asymptotically nonexpansive mappings [17] if there exist
sequences {ry}, {sn} in [0, 00) with lim,_,c 7, = 0 = lim,, ;o Sy, such
that

d(T"z, T"y) < (1 4+ rp)d(z,y) + Sn, Va,y € X, Vn €N,

where N is the set of positive integers.

In 2006, Albert et al. [3] introduced the concept of total asymptotically
nonexpansive mappings as the generalization of a few classes of mappings
including above defined (1) nonexpansive mappings, (2) asymptotically non-
expansive mappings, (3) asymptotically nonexpansive mappings in the inter-
mediate sense and (4) generalized asymptotically nonexpansive mappings.
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Definition 1.5. A mapping T: X — X is said to be total asymptotically
nonexpansive if there exist non-negative real sequences {k,} and {v,} with

kn, — 0 and v, — 0 as n — oo and a strictly increasing continuous function
Y: [0,00) = [0,00) with ¥(0) = 0 such that

d(T"z, T"y) < d(z,y) + kntp(d(z,y)) + v
for all x,y € X and n € N.

In particular, if y € F(T) = {x € X : T(z) = x}, then the mapping T is
called total asymptotically quasi-nonexpansive.

Remark 1.6. From the above definition, it is clear that each asymptotically
nonexpansive mapping is a total asymptotically nonexpansive with v, = 0,
kn = uy, for alln > 1, 9(t) =t, t > 0.

Example 1.7. ([28]) We can easily check the following statements:

(i) Let X =R, K =[0,00) and T: K — K be defined by T'(z) = sin =.
Then T is a total asymptotically nonexpansive mapping.

(i) Let X = R, K = [-1, 1] and T: K — K be defined by T(z) =
Az sin (2), where A € (0,1). Then T is a total asymptotically nonex-
pansive mapping.

(iii) Let K = {z = (z1,22,...,%pn,...)|x1 < 0,2; € R;i > 2} be a

nonempty subset of X = ¢? with the norm |.|| defined as ||z| =
Sy a? if Tt K — K is defined as T'(z) = (0,4%2,0,0,0,...).

(2
Then T is an asymptotically nonexpansive mapping.

(iv) Let X =R and K =10,2]. Let T: K — K be a mapping defined by
1, if x € [0, 1],
% Va—a2, ifzell,2].
Then T is a total asymptotically nonexpansive mapping with F(7T") =

{1}. However, T is not a Lipschitzian and hence it is not an asymp-
totically nonexpansive mapping.

T(x) =

Definition 1.8. A mapping T: X — X is called semi-compact if for any
bounded sequence {x,} in K with d(zy,,Tz,) — 0 as n — oo, there is a
convergent subsequence of {x,,}.

Convergence results for the mappings in (1)-(4) in the setting of uniformly
convex Banach spaces and CAT(0) spaces via different iterative schemes have
been obtained by a number of researchers (e.g., [6, 13, 20, 21, 22, 24, 31, 29,
30, 32, 39, 43] and the references therein).
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To know the importance of different iterative algorithms for the approx-
imation of total asymptotically nonexpansive mappings in uniformly convex
Banach spaces, CAT(0) spaces and hyperbolic spaces, we refer the interested
reader to [1, 2, 7, 12, 14, 16, 23, 25, 28, 33, 34, 35, 36, 37, 42, 44].

Modified Mann Iteration([38]): In 1991, Schu [38] considered the fol-
lowing modified Mann iteration process:

r1=x € K,
. (L1)

Tnt1 = (1 —ap)xy + apnT" 2y, n > 1,
where {a,,} is a real sequence in (0, 1).

Modified Ishikawa Iteration([41]): In 1994, Tan and Xu [41] studied the
modified Ishikawa iteration process which is a generalization of the Ishikawa
iteration process:

r1=w €K,
Tnt1 = (1 — apn)zn + anT"yn, (1.2)
Yo = (1= Ba)an + BT, 1 > 1,

where {a, } and {3, } are real sequences in (0, 1). This iteration scheme reduces
to the modified Mann iteration process when 3, = 0 for all n > 1.

Modified Noor Iteration([43]): In 2002, Xu and Noor [43] introduced a
three-step iteration scheme as follows:

1=z €K,
Tnt1 = (1 —ap)xn + Ty,
Yn = (1 = Bn)xn + BpT" 2n,
zn =1 —Y)xn + T " xpn, n > 1,
where {a,, }, {8} and {v,} are real sequences in [0, 1].
In 2008, Khan et al. [19] generalized the iterative processes (1.1)-(1.3) to the

following iterative process for a finite family of mappings {7; : i = 1,2,...,r}.
Let z1 € K and the iterative sequence {z,} is defined as follows:

Tn+1 = (]- - O‘rn)l‘n + O‘ran;ny(r—l)nv

Yr—1)n = (1 - a(r—l)n)xn + a(r—l)nT;l—ly(T—2)n7

Yon = (]— - a2n)xn + a2nT2ny1na
Yin = (]— - aln)xn + alnTlnyOna n=>1,

where yg,, = x,, for all n and a4, € [0,1],n > 1 and i € {1,2,...,r}.
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Recently, Chen and Guo [8] introduced and studied a new finite-step iter-
ation scheme for two finite families of asymptotically nonexpansive mappings
as follows:

.’,Ifgbo) = Tn,
o) = DT + (1 — )50,
o2 = T 1 (1 - o)

25D = DT D) 4 (1 D),
209 = TR 4 (1= o) S,

Tptl = xglN), Vn>1,

where {aq(f)} C [0,1] foralli € {1,2,..., N} and they proved weak convergence
theorem for iteration scheme (1.5).

We need the following lemma to prove our main results.

Lemma 1.9. ([19]) Let {pn}, {qn}, {rn} be three sequences of nonnegative
real numbers satisfying the following conditions:

D o
pn+1§(1+%1)pn+7an7 n >0, ZQn<007 Zrn<oo-
n=0 n=0

Then

(i) im0 pp exists.
(ii) In addition, if liminf,, . pp, = 0, then lim, o pyp = 0.

The purpose of this paper is to introduce the iterative process (1.5) in convex
metric spaces and establish its strong convergence to a unique common fixed
point of two finite families of total asymptotically nonexpansive mappings.
The results presented in this paper extend and generalize some previous works
from the current existing literature in the setting of convex metric spaces.

2. MAIN RESULTS

First we introduce the iterative process (1.5) in convex metric spaces as
follows:
Let K be a convex subset of a convex metric space (X,d) and zp € K.

Suppose that {ag)} C [0,1]) for all n = 1,2,3,... and i € {1,2,...,N}. Let
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{S;,T; : i =1,2,...,N} be two finite families of self-mappings of K. We
translate (1.5) as follows:

(1 =z € K,
A =,
(

nl) = W(Tlnxn? S?:Cnv (1))7
22 = w(TpaV, 83, of?),

:U7(1N_1) = W(T]\lf—lx%N_z)v Sly\Lf—lxm O‘%N_l)%
‘/L"EIN) = W(T}\?}x%N—l)v S]T\fom a?(’LN))’
[ Tnt1 = xT(IN), Vn>1.

Remark 2.1. (1) If W(z,y,A\) = (1 =X x4+ Ay for all (z,y,A) € X x
X x [0, 1], then the iterative process (2.1) reduces to (1.5).

(2) It is easy to verify that Lemma 1.9(ii) holds under the hypothesis
lim sup,, ,~o pn = 0 as well. Therefore, the condition (ii) in Lemma 1.9
can be reformulated as follows:

(ii)” If liminf,, oo pp, = 0 or limsup,,_, ., pn = 0, then lim,_,~ p, = 0.

Now, we prove some lemmas to prove our strong convergence results. As-
sume that N = {1,2,3,...,N}.

Lemma 2.2. Let K be a nonempty, closed and convex subset of a convex
complete metric space (X,d,W). For each i € N, let T;: K — K be a
({k% 3, {vi, }, {¥}})-total asymptotically nonezpansive mapping with limy, oo ki
=0 (md hmnHOOV m = 0, and a strictly increasing function 1 : [0, +00) —
[0, +00) satisfying 1} (0) =0 and let S;: K — K be a ({k: o3 Avny }s {}) -total
asymptotically nonexpansive mapping with limg, .o ky,, = 0 and limy,_,oo V),

0, and a strictly increasing function % [0, +00) — [0, +oo) satisfying 1% (0 )
0. Assume that

F = ﬂ F(S T;) # 0,
and for each i € N, the followzng conditions hold:
(1) D00 Kkl < 400, Yoo ki, < 400, 300 vk < 400,

and Y00 Vi, < +0o0.
(ii) There exist constants IKC; > 0 and K > 0 such that

i) < Kiry, b(r) < Kir, Y7 > 0.
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Let {x,,} be the sequence defined by (2.1), where {ag)} C [0,1] for alli € N.

Then

(i) limy,—00 d(2n, q) for all g € F exists.

(ii) limy—oo d(xn, F') exists, where d(z, F) = inf{d(z,z) : z € F}.

Proof. (i) Let ky, = max;jen{k’,,, k%, }, vn = maxjen{v v, }, ¥ = maxien

{4, ¢4} and K = max;en{K;,K;}. By conditions (i) and (ii), we have
Yol kn < 400, Y07 vy < 400, YP(r) < Kr for any r > 0. For every
q € F and any n > 1, it follows from (2.1) that

[VARVAN

IN IN

IN

IA A

IN

IN

d(W (T{" T, ST Tn, O‘g))a q)

o V(T wn, q) + (1 — alD)d(STn, q)

oD [d(@n, q) + ko, 01 (d(wn, 9)) + v, ]
+(1 = o) [d(zn, q) + kL, ¥3(d(2n, q)) + v, ]
oM [d(xn, q) + kntp(d(2n, q)) + vn]

(1—a Nd(n, q) + kntp(d(xn, q)) + Vi)
[ ( Tn, Q)
( o\N[d(2n, Q) + knKid(2n, ) + va]

aV[d(zn, q) + knKd(zn, q) + vn]

(1—a ) (Tn, @) + EnKd(n, q) + vn)

o D[(1 4 knK)d (2, q) + vn)

+(1 — a1 + knK)d (20, ) + vn)
(1+ knK)d(xn, q) + Vn.

[d
[
+ k Kld($n, ) + I/n]
[
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, we obtain

d(W (T3 1(1)752%% (2 ))7Q)
aPd(Tyal),q) + (1 - al?)d(Syan, q)
aP[d(=), q) + k2 w3 d(l), q) + 17,
+(1 = o) [d(n, q) + k2,03 (d(2n, q)) + v, ]

oD [d(z(, ) + kntp(d(2), q)) + vn]
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—~

3

Q
IS

~
S0
~— N~

2

+
_
|
2.

QA
e
E 3

[d(z

)

3

+
—~
—
|
Q
s
~—

(2.2)



238

IN

IN

Q

IN

G. S. Saluja and J. K. Kim

aP[d(z(), q) + knKd(z(), q) + vn]

(1 — a®)[d(zn, q) + knKd(zn, q) + vn]

a@[(1+ knK)d(zV, q) + v

(1 — a1 + knK)d(2n, q) + vn]

D1+ kO [ + kpK)d (2, q) + vn] + Py,

(1 — a1 + knK)d(2n, q) + vn)

oD (1 + kK)2d(20, @) + D[ + k) vy + 1]

+(1 — oA + kpK)d (2, q) + (1 — aPuy,
oD (1 + k,K)2d(20, @) + vn] + aP[(1 + knK) vy

+vp] + (1 = a1 + koK) 2d(20, @) + (1 — &Py

(14 knJO)2d(2n, @) + [1 4+ (1 + EnK)]vs

_l’_

_|_

_l’_

Similarly, we can prove that

daP.q) < (1+kK)?d(zn,q) + [1+ (1 + k,K)

+(1 4 k. K) v,

2
= (14 kaK)Pd(n, q) + D> (1 + kn) v,
7=0

Continuing the above process, we get that

d(x

(N)

n

) Q) - d(xn-i-la q)

N-1
< (14 k)N d(an, g +21+m

Z .

< [+ kald(zn, ) + Y (1+ knK) 1
Jj=
< [14 Rikn|d(zy, q) + Rovp,

O

(2.3)

(2.4)

(2.5)

where b)) = (MK + G)VK)%kn, + - + R)K)NEY L, and it follows from
condition (i) that there exist positive constants R; and Rg such that bnN < Ry,
S Mo (1 + BnK)? < Ry for each n > 1. By Lemma 1.9, the inequality (2.5)
implies that lim,, o d(zy, q) exists for each ¢ € F.

(ii) Taking infimum over all ¢ € F' in equation (2.5), we have that

d($n+1,F) < [1+R1kn]d(xn,F)+R2Vn.

(2.6)
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Since Y 7 1 kp, < oo and Y o7 v, < o0, it follows from Lemma 1.9 that
lim,, 00 d(zy, F') exists. This completes the proof. O

Theorem 2.3. Let K be a nonempty, closed and convexr subset of a con-
vex complete melric space (X,d,W). For eachi € N, let T;: K — K be a
({kn, o Avn, b, {1 }) -total asymptotically nonexpansive mapping with limy, oo
/’4:2Zl =0 and lim,_, l/fZl =0, and a strictly increasing function i : [0, +00) —
[0, +00) satisfying ¥}(0) = 0 and let S;: K — K be a ({k, }, {v}, }, {5})-total
asymptotically nonexpansive mapping with lim, .o k:f22 =0 and lim, 00 V%Z
= 0, and a strictly increasing function ¥%: [0,+00) — [0,+00) satisfying
P5(0) = 0. Assume that

N

F o= () F(S) N F(T;) #9),

i=1

and for each i € N, the following conditions hold:
(i) ZZO:I kfn < +OO; ZZO:I k%g < —I-OO, ZZO:I Vill < +OO; and
S v < +oo.

n=1 “na
(ii) There exist constants KC; > 0 and K} > 0 such that
WYi(r) < Kir, Y5(r) < Kir, Vr > 0.

Let {x,,} be the sequence defined by (2.1), where {oh(f)} C [0,1] for alli € N.
Then {x,} converges strongly to some q € F if and only if

liminf d(z,, F') =0,

n—oo
where d(z, F) = inf{d(z, z) : z € F'}.
Proof. If {x,,} converges strongly to g € F, then lim,, o d(zy,q) = 0. Since
0 <d(xn, F) <d(xn,q), we have liminf, _,~ d(x,, F) = 0.

Conversely, suppose that liminf,, . d(zy, F)) = 0. It follows from Lemma
2.2 that limy, oo d(xp, F) exists. Now liminf, o d(z,, F) = 0 reveals that
lim;, o0 d(zp, F') = 0 by Remark 2.1(2).

Next, we show that {x,} is a Cauchy sequence. By inequality (2.5) in the
proof of Lemma 2.2, we know that

d(Tny1,q9) < [1+ Rikpld(zn, q) + Ravp.

On account of 32°° | k,, < +00, 3.°° | 1, < 400, set R Zn=1kn = R, Since
lim,, 00 d(zp, F') = 0, for any given £ > 0, there exists a positive integer ny
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such that

9
2R Ro

e [e.9]
d(xn,, F) < Rt D and Z Uy < (2.7)

(Re+1 -
n=ng

The first inequality in (2.7) implies that there exists gy € F such that d(xy,, ) <
m. Hence, for any n > ng and m > 1, we have

Ao tms Tng) < d(Tngsms Q) + ATny, o)
n0+m—1 .
< |PrXim Ry 1}d($no,qo) +Ra {V"(H-m—l

Ry Zn0+m71 k]

Rl k j=ng+m-—2

+Vng+m—2€ motm=l 4y 4tm—3€

no +m—1 k}

N VnoeRl Zj:no-H .7}

(R* + 1)d(f13n0, qo) + R*RQ Z 125

n=ng

(3 g
— 4 R.Rs.
2R+ 1) IR T,

= e (2.8)

IN

< (R«+1).

This implies that {x,,} is a Cauchy sequence in X. Since K is a closed subset of
a convex metric space X, it is complete. We can assume that lim,, .., 2, = 2,
and z € K. Suppose that liminf, o d(z,, F) = 0. Then, we have from
Lemma 1.9(ii) and Remark 2.1(2) that lim,,_,~ d(zy, F') = 0. Moreover, since
the set of common fixed points of two families of mappings is closed, so is
F, thus z € F and so lim,_,~ d(zy, F)) = 0. This shows that {z,} strongly
converges to some g € F. This completes the proof. O

Theorem 2.4. Let K be a nonempty, closed and convex subset of a con-
vex complete metric space (X,d,W). For each i € N, let T;: K — K be a
({kn, b Avn, 1> {1 }) -total asymptotically nonexpansive mapping with lim, oo
ky, = 0 andlim, o v, = 0, and a strictly increasing function 1] : [0, +00) —
[0, +-00) satisfying 11(0) = 0 and let S;: K — K be a ({k;,, },{v;, }, {¥5})-total
asymptotically nonexpansive mapping with limy, oo ky,, = 0 and limy, o0 vy,
= 0, and a strictly increasing function ¥%: [0,400) — [0,400) satisfying
P5(0) = 0. Assume that

N

F:=(\F(S:)NF(T) #0,

i=1

and for each i € N, the following conditions hold:
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: oo (o) (o]
(1) Zn lk;b’l,l <+OO, Zn 1k;lq,2 < +007 ZTL 1 nl < +OO and

Yoy VfLQ < 4o00.

(ii) There exist constants K; > 0 and K > 0 such that
Vi(r) < Kir, 3(r) < Kir, ¥r > 0.
Assume that limy,_, o d(xp, Sizy) =0 = limn_>Oo d(xp, Tizy,) for alli € N'. Let

{zn} be the sequence defined by (2.1), where {a )} C [0,1] for alli € N'. Then
{zn} converges strongly to a point in F'.

Proof. By hypothesis, lim,, oo d(2y, Sizy) = 0 = limy,_ o0 d(2y, Tizy,) for all
i € N. Since K is compact so there exists a subsequence {z,,} of {z,}
such that z,, — ¢ (say) in K as n; — oo. Continuity of S; and T; gives
Sitn, — Si¢’ and Tz, — T;q" as ny — oo for all i € V. Then by hypothesis
of the theorem, we have

d(Sid,q') =0=d(Tid,q)
for all ¢ € . This ylelds g eF = ﬂ F(S;) N F(T;) so that {z,} converges
strongly to ¢/ in F' = ﬂz 1 F(S )N (T) But by Lemma 2.2, lim,, 00 d(xy, q)

exists for all ¢ € F = NN, F(S;) N F(T;), therefore {x,} must converges
strongly to ¢ € F =X, F(S;) N F(T;). This completes the proof. O

3. APPLICATIONS

As an application of Theorem 2.3, we establish some strong convergence
results as follows.

Theorem 3.1. Let K be a nonempty, closed and convexr subset of a con-
vex complete metric space (X,d, W). For each i € N, let T;: K — K be a
({kn, s Avn, 1> {1 }) -total asymptotically nonexpansive mapping with lim, oo

kfn =0 and lim,,_ Vm 0, and a strictly increasing functwn Yt [0, +00) —
[0, +00) satisfying 1i(0) = 0 and let S;: K — K be a ({k: b v {wih)- total
asymptotically nonexpansive mapping with limy, oo ky,, 0 and lim,_,oo v},

0, and a strictly increasing function 1% : [0, +00) — [0, —l—oo) satisfying 15 (0 )
0. Assume that

F—ﬂF (T;) # 0,

and for each i € N, the followmg conditions hold:
(1) Yopzy by < 400, 3only Ky, < Hoo, 307 v, < oo,
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and Y00 v, < +00.

(ii) There exist constants KK > 0 and K’ > 0 such that
i(r) < Kir, ¥(r) < Kir, Vr >0,

Assume that limy,_, oo d(zp, Sizy) = 0 = limy, 00 d(azn, Tixy) for alli € N. Let

{zn} be the sequence defined by (2.1), where {an } € [0,1] for alli e N. If
there exists a T; or S;, i € N, which is semi-compact. Then the sequence {x,}
converges to a point in F'.

Proof. Without loss of generality, we can assume that 7T} is semi-compact.
From Lemma 2.2, we know that the sequence {zy} is bounded and by hypoth-
esis of the theorem

lim d(z,, S;z,) =0 and li_)rn d(xp, Tixn) =0

n—o0

for all « € N. Since T} is semi-compact and lim, o d(2y, Tix,) = 0, there
exists a subsequence {x,,} of {z,} such that z,;, — p* € K. Thus

d(p*,Tip*) = lim d(xnjvTixnj) =0
j—00

and
d(p*, Sip*) = lim d(zy,, Sizn,) =0

j—00
for all i« € A. This implies that p* € F = ﬂfil F(S;) N F(T;) and so
liminf d(z,, F') < liminf d(z,;, F') < lim d(z,,;,p*) = 0.
j—o0 j—o0

n—oo
It follows from Theorem 2.3 that {z,,} converges strongly to a point in F.
This completes the proof. O

Theorem 3.2. Let K be a nonempty, closed and convexr subset of a con-
vex complete melric space (X,d,W). For eachi € N, let T;: K — K be a
({kn, b Avn, 1> {1 }) -total asymptotically nonexpansive mapping with limy, oo

kfn =0 and lim,_, Vi =0, and a strictly increasing functz’on Yt [0, +00) —
[0, +00) satisfying 1% (0 ) =0andletS;: K — K bea ({k S AvE, L {vs))- total
asymptotically nonexpansive mapping with limy, . ky,, = 0 and limy,_,oo U},

0, and a strictly increasing function % : [0, +00) — [0, —|—oo) satisfying 15 (0 )
0. Assume that

F_ﬂF T;) # 0,

and for each i € N, the followmg conditions hold:
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(1) oy by < 400, 20ty Ky < 400, 2002 vy, < 00,
and Y o0 v, < +00.

(ii) There exist constants K > 0 and K' > 0 such that
Yi(r) < Ky b(r) < Klr, Yo > 0.

Let {x,} be the sequence defined by (2.1), where {ag)} C [0,1] for all
ieN.
Assume that limy, oo d(Zy, Tp+1) = 0; if the sequence {z,} in K satisfies
limy, 00 d(2n, 2nt1) = 0, then liminf, o d(zn, F) = 0. Then {x,} converges
to a unique point in F.

Proof. By hypothesis, we have that liminf, ,~ d(z,, F) = 0. Therefore, we
obtain from Theorem 2.3 that the sequence {z,} converges to a unique point
in F'. This completes the proof. 0

For our next result, we need the following definition.

Definition 3.3. ([8]) A family {7; : i =1,2,...,m} of m self-mappings of K
with FF = (2, F(T;) # 0 is said to satisfy condition (B) on K if there is a
nondecreasing function f: [0,00) — [0,00) with f(0) =0 and f(r) > 0 for all
r € (0,00) such that

max {||z — Tpz|} > f(d(z, F))

1<i<m
for all z € K.

Theorem 3.4. Let K be a nonempty, closed and convex subset of a con-
vex complete metric space (X,d,W). For each i € N, let T;: K — K be a
({kf“}, {Z/fll}, {1 })-total asymptotically nonexpansive mapping with lim,,
ky, = 0 andlim,_,o v, = 0, and a strictly increasing function 1] : [0, +o0) —
[0, +-00) satisfying 11(0) = 0 and let S;: K — K be a ({k;,,},{v;, }, {45 })-total
asymptotically nonexpansive mapping with limy, o ky,, = 0 and limy, o0 vy, =
0, and a strictly increasing function 14 : [0, +00) — [0, +00) satisfying 15(0) =
0. Assume that

N
F:=(\F(S:)NF(T) #0,

and for each i € N, the following conditions hold:
(i) 2211 kfn < +OO, Z’SLOZI k%z < +OO; Z;L.O:I V’fl,l < +OO;

and Y00 Vi < +oo.
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(ii) There exist constants K > 0 and K' > 0 such that
Pi(r) < Kir, ¥5(r) < Kir, Y7 > 0.

Assume that limy, o d(2p, Sixy) = 0 = limy, o0 d(xy, Tizy) for alli € N'. Let
{zn} be the sequence defined by (2.1), where {aﬁf)} C [0,1] for alli € N. If
the family {S1,So,...,Sn,T1,T5, ..., Tn} satisfies condition (B). Then {z,}
converges strongly to a point in F.

Proof. By hypothesis of the Theorem, we have lim,,_,o d(zy,, S;z,) = 0, lim, o0
d(zp, Tizy) = 0 for all i € N, and so maxy<;<n{d(zn, Sitn), d(xn, Tizyn)} — 0
as n — oo. It follows from condition (B) that

i f(d(z,, F)) = 0.

By Lemma 2.2(ii), we know that lim, .. d(xy,, F') exists. Since f: [0,00) —
[0, 00) is a nondecreasing function with f(0) = 0 and so lim,,_,o d(zp, F') = 0.
Thus, liminf,_, d(zp, F') = 0 = limsup,,_,., d(zp, F'). By Theorem 2.3, {z,}
converges strongly to a point in F'. This completes the proof. O

Now, we give an example in support of our result: take two mappings
Th=Ty=---=Ty=Tand 51 =5y =--- =Sy =5 as follows:

Example 3.5. Let X = R be the real line with the usual metric d(z,y) =
|z —y| and K = [—1,1]. For each z € K, define two mappings T, S: K — K
by

—2sing, if z €[0,1],
T(x) =
2sing, if x € [-1,0).
and
£, ifx#0,
S(x) =
0, ifxz=0.

Then T and S both are asymptotically nonexpansive mapping with constant
sequence {k,} = {1} for all n > 1 and are uniformly L-Lipschtzian mappings
with L = sup,,~{kn} and hence are total asymptotically nonexpansive map-
ping by remark 1.6. Also F(T) = {0} is the unique fixed point of T" and
F(S) = {0} is the unique fixed point of S, that is, F' = F(S)N F(T) = {0} is

the unique common fixed point of S and T'.

Example 3.6. Let X = R be the real line with the usual metric d(z,y) =
|z —y| and K = [0,2]. For each x € K, define two mappings T, S: K — K by

1, if 2 € [0,1],

V2Z—z, ifzell,2.

T(x) =
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and
1, if 2 € [0,1],
S(z) =
L Va—a2 ifzell,2].

Then both T and S are total asymptotically nonexpansive and uniformly
continuous mappings. Also F(T) = {1} is the unique fixed point of 7" and
F(S) = {1} is the unique fixed point of S, that is, F' = F(S)NF(T) = {1} is
the unique common fixed point of S and T'.

4. CONCLUDING REMARKS

In this paper, we introduce a new finite-step iteration scheme for two fi-
nite families of total asymptotically nonexpansive mappings in convex metric
spaces and establish some strong convergence results. Also, we give some ap-
plications of our result in the setting of convex metric spaces. Our results
extend and generalize the corresponding results of [4, 6, 8, 9, 10, 11, 18, 26,
27, 31, 41, 43] to the case of more general class of mappings, iteration schemes
and spaces.
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