PROPERTIES OF MEROMORPHIC FUNCTIONS DEFINED BY A CONVOLUTION OPERATOR

Seon Hye An ${ }^{1}$ and Nak Eun Cho ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, Pukyong National University Busan 48513, Korea
e-mail: ansonhye@gmail.com
${ }^{2}$ Department of Applied Mathematics, Pukyong National University Busan 48513, Korea
e-mail: necho@pknu.ac.kr

Abstract. Let Σ denote the class of functions of the form

$$
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n}
$$

which are analytic in the annulus $\mathbb{D}=\{z \in \mathbb{C}: 0<|z|<1\}$. In this paper, we introduce a convolution operator for functions f belonging to the class Σ and we obtain some mapping properties and argument estimates for meromorphic functions associated with this convolution operator.

1. Introduction

Let $\mathcal{H}=\mathcal{H}(\mathbb{U})$ denote the class of analytic functions in the open unit disk

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

For $n \in \mathbb{N}=\{1,2, \cdots\}$ and $a \in \mathbb{C}$, let

$$
\mathcal{H}[a, n]=\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots\right\}
$$

[^0]Let f and F be members of \mathcal{H}. The function f is said to be subordinate to F if there exists a function w analytic in \mathbb{U}, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U}),
$$

such that

$$
f(z)=F(w(z)) \quad(z \in \mathbb{U}) .
$$

In such a case, we write

$$
f \prec F \quad \text { or } \quad f(z) \prec F(z) .
$$

If the function F is univalent in \mathbb{U}, then we have (cf. [9])

$$
f \prec F \quad \Longleftrightarrow \quad f(0)=F(0) \quad \text { and } \quad f(\mathbb{U}) \subset F(\mathbb{U}) .
$$

Let Σ denote the class of functions of the form [3]:

$$
f(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n} z^{n},
$$

which are analytic in the annulus $\mathbb{D}=\mathbb{U} \backslash\{0\}$ with a simple pole at origin with residue one there. For functions

$$
f_{j}(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n, j} z^{n} \quad(j=1,2 ; z \in \mathbb{D})
$$

in the class Σ, we define the convolution of f_{1} and $f_{2}[1]$ by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z}+\sum_{n=0}^{\infty} a_{n, 1} a_{n, 2} z^{n} \quad(z \in \mathbb{D}) . \tag{1.1}
\end{equation*}
$$

Making use of the convolution given by (1.1), we now define the following convolution operator D^{α} by

$$
\begin{equation*}
D^{\alpha} f(z)=\frac{1}{z(1-z)^{\alpha+1}} * f(z) \quad(\alpha>-1 ; f \in \Sigma ; z \in \mathbb{D}) . \tag{1.2}
\end{equation*}
$$

It follows from (1.2) that

$$
\begin{equation*}
z\left(D^{\alpha} f(z)\right)^{\prime}=(\alpha+1) D^{\alpha+1} f(z)-(\alpha+2) D^{\alpha} f(z) \tag{1.3}
\end{equation*}
$$

For $\alpha=n \in \mathbb{N}$, the operator D^{α} is introduced and studied by Ganigi and Uralegaddi [4] (see, also [14, 15]). Also, the operator D^{α} is closely related to Ruscheweyh derivative [11] for analytic functions defined in \mathbb{U}, which was extended by Goel and Sohi [5]. In the present paper, we shall derive certain interesting properties of the convolution operator D^{α} defined by (1.2).

2. Main results

To prove our results, we need the following lemmas.
Lemma 2.1. ([7]) Let h be analytic and convex in \mathbb{U} with $h(0)=a, \gamma \neq 0$, $\operatorname{Re}\{\gamma\} \geq 0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma} \prec h(z),
$$

then

$$
p(z) \prec q(z) \prec h(z),
$$

where

$$
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{(\gamma / n)-1}
$$

and q is the best dominant.
Lemma 2.2. ([8]) Let Ω be a set in the complex plane \mathbb{C} and let b be a complex number with $\operatorname{Re}\{b\}>0$. Suppose that the function

$$
\psi: \mathbb{C}^{2} \times \mathbb{U} \rightarrow \mathbb{C}
$$

satisfies the condition:

$$
\psi(i x, y ; z) \notin \Omega
$$

for all real $x, y \geq-|b-i x|^{2} /(2 \operatorname{Re}\{b\})$ and all $z \in \mathbb{U}$. If the function p is analytic in \mathbb{U} with $p(0)=b$ and if

$$
\psi\left(p(z), z p^{\prime}(z) ; z\right) \in \Omega,
$$

then

$$
\operatorname{Re}\{p(z)\}>0 \quad(z \in \mathbb{U}) .
$$

Lemma 2.3. ([13]) Let p be analytic in \mathbb{U} with $p(0)=1$ and $p(z) \neq 0$ for all $z \in \mathbb{U}$. If there exist two points $z_{1}, z_{2} \in \mathbb{U}$ such that

$$
\begin{equation*}
-\frac{\pi}{2} \delta_{1}=\arg \left\{p\left(z_{1}\right)\right\}<\arg \{p(z)\}<\arg \left\{p\left(z_{2}\right)\right\}=\frac{\pi}{2} \delta_{2} \tag{2.1}
\end{equation*}
$$

for some δ_{1} and $\delta_{2}\left(\delta_{1}, \delta_{2}>0\right)$ and for all $z\left(|z|<\left|z_{1}\right|=\left|z_{2}\right|\right)$, then

$$
\begin{equation*}
\frac{z_{1} p^{\prime}\left(z_{1}\right)}{p\left(z_{1}\right)}=-i\left(\frac{\delta_{1}+\delta_{2}}{2} m\right) \quad \text { and } \quad \frac{z_{2} p^{\prime}\left(z_{2}\right)}{p\left(z_{2}\right)}=i\left(\frac{\delta_{1}+\delta_{2}}{2} m\right) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
m \geq \frac{1-|b|}{1+|b|} \quad \text { and } \quad b=i \tan \left(\frac{\delta_{2}-\delta_{1}}{\delta_{2}+\delta_{1}}\right) . \tag{2.3}
\end{equation*}
$$

Theorem 2.4. Let $\alpha>-1,0 \leq \lambda \leq 1$ and $\gamma>1$. If $f \in \Sigma$, then

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}+\lambda \frac{D^{\alpha+2} f(z)}{D^{\alpha+1} f(z)}\right\}<\gamma \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}\right\}<\beta \quad(z \in \mathbb{U}) \tag{2.5}
\end{equation*}
$$

where $\beta \in(1, \infty)$ is the positive root of the equation:

$$
\begin{equation*}
(2(\alpha+1)(1-\lambda)+2 \lambda(\alpha+1)) x^{2}+(3 \lambda-2 \gamma(\alpha+2)) x-\lambda=0 . \tag{2.6}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
p(z)=\frac{1}{\beta-1}\left(\beta-\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}\right) \quad(z \in \mathbb{U}) . \tag{2.7}
\end{equation*}
$$

Then p is analytic in \mathbb{U} and $p(0)=1$. Differentiating (2.7) and using (1.3), we obtain

$$
\begin{aligned}
& (1-\lambda) \frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}+\lambda \frac{D^{\alpha+2} f(z)}{D^{\alpha+1} f(z)} \\
& =(1-\lambda) \beta+\frac{\lambda(1+(\alpha+1) \beta)}{\alpha+2}-\left((1-\lambda)(\beta-1)+\frac{\lambda(\alpha+1)(\beta-1)}{\alpha+2}\right) p(z) \\
& \quad-\frac{\lambda(\beta-1) z p^{\prime}(z)}{(\alpha+2)(\beta-(\beta-1) p(z))} \\
& =\psi\left(p(z), z p^{\prime}(z)\right)
\end{aligned}
$$

where

$$
\begin{align*}
\psi(r, s)=(1 & -\lambda) \beta+\frac{\lambda(1+(\alpha+1) \beta)}{\alpha+2}-\left((1-\lambda)(\beta-1)+\frac{\lambda(\alpha+1)(\beta-1)}{\alpha+2}\right) r \\
& -\frac{\lambda(\beta-1) s}{(\alpha+2)(\beta-(\beta-1) r)} \tag{2.8}
\end{align*}
$$

By virtue of (2.4) and (2.8), we have

$$
\left\{\psi\left(p(z), z p^{\prime}(z): z \in \mathbb{U}\right\} \subset \Omega=\{w \in \mathbb{C}: \operatorname{Re}\{w\}<\gamma\} .\right.
$$

Now for all real $x, y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re}\{\psi(i x, y)\} & =(1-\lambda) \beta+\frac{\lambda(1+(\alpha+1) \beta)}{\alpha+2}-\frac{\lambda(\beta-1) \beta y}{(\alpha+2)\left(\beta^{2}+(\beta-1)^{2} x^{2}\right)} \\
& \geq(1-\lambda) \beta+\frac{\lambda(1+(\alpha+1) \beta)}{\alpha+2}+\frac{\lambda(\beta-1) \beta\left(1+x^{2}\right)}{2(\alpha+2)\left(\beta^{2}+(\beta-1)^{2} x^{2}\right)} \\
& \geq(1-\lambda) \beta+\frac{\lambda(1+(\alpha+1) \beta)}{\alpha+2}+\frac{\lambda(\beta-1)}{2(\alpha+2) \beta}=\gamma,
\end{aligned}
$$

where β is the positive root of the equation (2.6). Note that, if

$$
g(x)=(2(1+\alpha)(1-\lambda)+2 \lambda(\alpha+1)) x^{2}+(3 \lambda-2 \gamma(\alpha+2)) x-\lambda,
$$

then $g(0)=-\lambda<0$ and $g(1)=2((\alpha+1)(1-\gamma))<0$. This shows that $\beta \in(1, \infty)$. Hence for each $z \in \mathbb{U}, \psi(i x, y) \notin \Omega$. Therefore, by Lemma 2.2, $\operatorname{Re}\{p(z)\}>0$ for $z \in \mathbb{U}$, which proves (2.5).

Theorem 2.5. Let $\lambda \geq 0, \gamma>1$ and $0 \leq \delta<1$. Suppose also that

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{\alpha} g(z)}{D^{\alpha+1} g(z)}\right\}>\delta \quad(g \in \Sigma ; z \in \mathbb{U}) . \tag{2.9}
\end{equation*}
$$

If $f \in \Sigma$ satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{D^{\alpha} f(z)}{D^{\alpha} g(z)}+\lambda \frac{D^{\alpha+1} f(z)}{D^{\alpha+1} g(z)}\right\}<\gamma \quad(z \in \mathbb{U}) \tag{2.10}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{\alpha} f(z)}{D^{\alpha} g(z)}\right\}<\frac{2 \gamma(\alpha+1)+\lambda \delta}{2(\alpha+1)+\lambda \delta} \quad(z \in \mathbb{U}) . \tag{2.11}
\end{equation*}
$$

Proof. Let

$$
\beta=\frac{2 \gamma(\alpha+1)+\lambda \delta}{2(\alpha+1)+\lambda \delta} \quad(\beta>1)
$$

and

$$
\begin{equation*}
p(z)=\frac{1}{\beta-1}\left(\beta-\frac{D^{\alpha} f(z)}{D^{\alpha} g(z)}\right) \quad(z \in \mathbb{U}) \tag{2.12}
\end{equation*}
$$

Then the function p is analytic in \mathbb{U} and $p(0)=1$. Setting

$$
B(z)=\frac{D^{\alpha} g(z)}{D^{\alpha+1} g(z)} \quad(g \in \Sigma ; z \in \mathbb{U})
$$

by assumption, we have

$$
\operatorname{Re}\{B(z)\}>\delta \quad(z \in \mathbb{U})
$$

Differentiating (2.12) and using (1.3), we have

$$
\begin{aligned}
& (1-\lambda) \frac{D^{\alpha} f(z)}{D^{\alpha} g(z)}+\lambda \frac{D^{\alpha+1} f(z)}{D^{\alpha+1} g(z)} \\
& =\beta-(\beta-1) p(z)-\frac{\lambda(\beta-1) B(z) z p^{\prime}(z)}{\alpha+1} .
\end{aligned}
$$

Letting

$$
\psi(r, s)=\beta-(\beta-1) r-\frac{\lambda(\beta-1) s B(z)}{\alpha+1} \quad(z \in \mathbb{U})
$$

we deduce from (2.10) that

$$
\left\{\psi\left(p(z), z p^{\prime}(z)\right) ; z \in \mathbb{U}\right\} \subset \Omega=\{w \in \mathbb{C}: \operatorname{Re}\{w\}<\gamma\} .
$$

Now for all real $x, y \leq-\left(1+x^{2}\right) / 2$, we have

$$
\begin{aligned}
\operatorname{Re}\{\psi(i x, y)\} & =\beta-\frac{\lambda(\beta-1) y}{\alpha+1} \operatorname{Re}\{B(z)\} \\
& \geq \beta+\frac{\lambda(\beta-1) \delta}{2(\alpha+1)}\left(1+x^{2}\right) \\
& \geq \beta+\frac{\lambda(\beta-1) \delta}{2(\alpha+1)}=\gamma,
\end{aligned}
$$

Hence for each $z \in \mathbb{U}, \psi(i x, y) \notin \Omega$. Thus by Lemma $2.2, \operatorname{Re}\{p(z)\}>0$ for $z \in \mathbb{U}$. Therefore we complete the proof of Theorem 2.5.

Theorem 2.6. Let Let $\alpha>-1, \beta \geq 1$ and $\gamma>0$. If $f \in \Sigma$, then

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{D^{\alpha+1} f(z)}{D^{\alpha} f(z)}\right\}<\frac{\alpha+1+\gamma}{\alpha+1} \quad(z \in \mathbb{U}) \tag{2.13}
\end{equation*}
$$

implies that

$$
\begin{equation*}
\operatorname{Re}\left\{\left(z D^{\alpha} f(z)\right)^{-1 / 2 \beta \gamma}\right\}>2^{-1 / \beta} \quad(z \in \mathbb{U}) \tag{2.14}
\end{equation*}
$$

The bound $2^{-1 / \beta}$ is the best possible.
Proof. From (1.3) and (2.13), we have

$$
\operatorname{Re}\left\{\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} f(z)}\right\}<-1+\gamma \quad(z \in \mathbb{U})
$$

That is,

$$
\begin{equation*}
\frac{1}{2 \gamma}\left(\frac{z\left(D^{\alpha} f(z)\right)^{\prime}}{D^{\alpha} f(z)}+1\right) \prec \frac{z}{1+z} \quad(z \in \mathbb{U}) . \tag{2.15}
\end{equation*}
$$

Let

$$
p(z)=\left(z D^{\alpha} f(z)\right)^{-1 / 2 \gamma} \quad(z \in \mathbb{U}) .
$$

Then (2.15) may be written as

$$
\begin{equation*}
z(\log p(z))^{\prime} \prec z\left(\log \frac{1}{1+z}\right)^{\prime} \quad(z \in \mathbb{U}) . \tag{2.16}
\end{equation*}
$$

By using the well-known result [12] to (2.16), we obtain

$$
p(z) \prec \frac{1}{1+z} \quad(z \in \mathbb{U}),
$$

that is, that

$$
\begin{equation*}
\left(z D^{\alpha} f(z)\right)^{-1 / 2 \gamma \beta}=\left(\frac{1}{1+w(z)}\right)^{1 / \beta} \quad(z \in \mathbb{U}) \tag{2.17}
\end{equation*}
$$

where w is analytic function in $\mathbb{U}, w(0)=0$ and $|w(z)|<1$ for $z \in \mathbb{U}$. According to $\operatorname{Re}\left\{t^{1 / \beta}\right\} \geq(\operatorname{Re}\{t\})^{1 / \beta}$ for $\operatorname{Re}\{t\}>0$ and $\beta \geq 1$, (2.17) yields

$$
\begin{aligned}
\operatorname{Re}\left\{\left(z D^{\alpha} f(z)\right)^{-1 / 2 \gamma \beta}\right\} & \geq\left(\operatorname{Re}\left\{\frac{1}{1+w(z)}\right\}\right)^{1 / \beta} \\
& >2^{-1 / \beta} \quad(z \in \mathbb{U}) .
\end{aligned}
$$

To see that the bound $2^{-1 / \beta}$ cannot be increased, we consider the function $g \in \Sigma$ such that

$$
z D^{\alpha} g(z)=(1+z)^{2 \gamma} \quad(z \in \mathbb{U})
$$

It is not so difficult to show that g satisfies (2.13) and

$$
\operatorname{Re}\left\{\left(z D^{\alpha} g(z)\right)^{-1 / 2 \gamma \beta}\right\} \longrightarrow 2^{-1 / \beta}
$$

as $z=\operatorname{Re}\{z\} \rightarrow 1^{-}$. Therefore the proof of Theorem 2.6 is complete.

Theorem 2.7. Let $\alpha>-1, \lambda \geq 0$ and $0<\delta_{1}, \delta_{2} \leq 1$. If $f \in \Sigma$ satisfies

$$
\begin{equation*}
-\frac{\pi}{2} \delta_{1}<\arg \left\{(1-\lambda) z D^{\alpha} f(z)+\lambda z D^{\alpha+1} f(z)\right\}<\frac{\pi}{2} \delta_{2}, \tag{2.18}
\end{equation*}
$$

then

$$
\begin{equation*}
-\frac{\pi}{2} \eta_{1}<\arg \left\{z D^{\alpha} f(z)\right\}<\frac{\pi}{2} \eta_{2} \tag{2.19}
\end{equation*}
$$

where η_{1} and η_{2} are the solutions of the equations:

$$
\begin{equation*}
\delta_{1}=\eta_{1}+\frac{2}{\pi} \arctan \left\{\frac{\lambda\left(\eta_{1}+\eta_{2}\right)}{2(\alpha+1)}\left(\frac{1-|a|}{1+|a|}\right)\right\} \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2}=\eta_{2}+\frac{2}{\pi} \arctan \left\{\frac{\lambda\left(\eta_{1}+\eta_{2}\right)}{2(\alpha+1)}\left(\frac{1-|a|}{1+|a|}\right)\right\}, \tag{2.21}
\end{equation*}
$$

when

$$
a=i \tan \left\{\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}\right\} .
$$

Proof. Let

$$
p(z)=z D^{\alpha} f(z) \quad(z \in \mathbb{U}) .
$$

Then by using (1.3), we have

$$
\begin{equation*}
(1-\lambda) z D^{\alpha} f(z)+\lambda z D^{\alpha+1} f(z)=p(z)+\frac{\lambda}{\alpha+1} z p^{\prime}(z) \tag{2.22}
\end{equation*}
$$

Let h be the function which maps \mathbb{U} onto the angular domain $\{w \in \mathbb{C}$: $\left.-\pi \delta_{1} / 2<\arg \{w\}<\pi \delta_{2} / 2\right\}$ with $h(0)=1$. Then from (2.18) and (2.22), we get

$$
p(z)+\frac{\lambda}{\alpha+1} z p^{\prime}(z) \prec h(z) .
$$

Therefore an application of Lemma2.1 yields $\operatorname{Re}\{p(z)\}>0$ for $z \in \mathbb{U}$ and hence $p(z) \neq 0$ for $z \in \mathbb{U}$.

Suppose that there exists two points $z_{1}, z_{2} \in \mathbb{U}$ such that the condition (2.1) is satisfied. Then by Lemma 2.3 , we obtain (2.2) under the restriction (2.3). Therefore we have

$$
\begin{aligned}
\arg \left\{p\left(z_{1}\right)+\frac{\lambda}{\alpha+1} z_{1} p^{\prime}\left(z_{1}\right)\right\} & =\arg \left\{p\left(z_{1}\right)\right\}+\arg \left\{\alpha+1+\lambda \frac{z_{1} p^{\prime}\left(z_{1}\right)}{p\left(z_{1}\right)}\right\} \\
& =-\frac{\pi}{2} \eta_{1}+\arg \left\{\alpha+1-i \frac{\lambda\left(\eta_{1}+\eta_{2}\right)}{2} m\right\} \\
& \leq-\frac{\pi}{2} \eta_{1}-\arctan \left\{\frac{\lambda\left(\eta_{1}+\eta_{2}\right)}{2(\alpha+1)}\left(\frac{1-|a|}{1+|a|}\right)\right\} \\
& =-\frac{\pi}{2} \delta_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
\arg \left\{p\left(z_{2}\right)+\frac{\lambda}{\alpha+1} z_{2} p^{\prime}\left(z_{2}\right)\right\} & \geq \frac{\pi}{2} \eta_{1}+\arctan \left\{\frac{\lambda\left(\eta_{1}+\eta_{2}\right)}{2(\alpha+1)}\left(\frac{1-|a|}{1+|a|}\right)\right\} \\
& =\frac{\pi}{2} \delta_{2},
\end{aligned}
$$

which contradict the assumption (2.18). Therefore we have the assertion (2.19).

For $\delta_{1}=\delta_{2}=\delta$ in Theorem 2.7, we have the following result.
Corollary 2.8. Let $\alpha>-1, \lambda \geq 0$ and $0<\delta \leq 1$. If $f \in \Sigma$ satisfies

$$
\left|\arg \left\{(1-\lambda) z D^{\alpha} f(z)+\lambda z D^{\alpha+1} f(z)\right\}\right|<\frac{\pi}{2} \delta
$$

then

$$
\left|\arg \left\{z D^{\alpha} f(z)\right\}\right|<\frac{\pi}{2} \eta
$$

where η is the solutions of the equation:

$$
\delta=\eta+\frac{2}{\pi} \arctan \left\{\frac{\lambda}{\alpha+1}\right\}
$$

Now we consider the following integral operator F_{c} (see $[2,6,9,10]$) defined by

$$
\begin{equation*}
F_{c}(f)(z)=\frac{c}{z^{c}+1} \int_{0}^{z} f(t) t^{c} d t \quad(\operatorname{Re}\{c\} \geq 0) . \tag{2.23}
\end{equation*}
$$

Theorem 2.9. Let $\alpha>-1, c \geq 0$ and $0<\delta_{1}, \delta_{2} \leq 1$. If $f \in \Sigma$ satisfies

$$
-\frac{\pi}{2} \delta_{1}<\arg \left\{z D^{\alpha} f(z)\right\}<\frac{\pi}{2} \delta_{2},
$$

then

$$
-\frac{\pi}{2} \eta_{1}<\arg \left\{z D^{\alpha} F_{c}(z)\right\}<\frac{\pi}{2} \eta_{2},
$$

where F_{c} is the integral operator defined by (2.23), and η_{1} and η_{2} are the solutions of the equations (2.20) and (2.21) with $\alpha=c-1$ and $\lambda=1$.

Proof. Let

$$
p(z)=z D^{\alpha} F_{c}(z) \quad(z \in \mathbb{U}) .
$$

From the definition of F_{c}, it can be verified that

$$
\begin{equation*}
z\left(D^{\alpha} F_{c}(z)\right)^{\prime}=c D^{\alpha} f(z)-(c+1) D^{\alpha} F_{c}(z) \tag{2.24}
\end{equation*}
$$

Therefore, using (2.24) and (1.3) for F_{c}, we have

$$
z D^{\alpha} f(z)=p(z)+\frac{1}{c} z p^{\prime}(z)
$$

The remaining part of the proof is similar to that of Theorem 2.7 and so we omit for details.

Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology
(2019R1I1A3A01050861).

References

[1] H.Kh. Abdullah, Studt on meromorphic Hurwitz-Zeta function defined by linear operator, Nonlinear Funct. Anal. Appl., 24(1) (2019), 195-206.
[2] S.K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roumaine Math. Pures Appl., 22 (1977), 295-297.
[3] K.A. Challab, M. Darus and F. Ghanim, Inclusion properties of meromorphic functions associated with the extended Cho-Kwon-Srivastava operator by using hypergeometric function, Nonlinear Funct. Anal. Appl., 22(5) (2017), 935-946.
[4] M.R. Ganigi and B.A. Uralegaddi, New Criteria for meromorphic univalent functions, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) 33(81) (1989), 9-13.
[5] R.M. Goel and N.S. Sohi, A new criterion for p-valent functions, Proc. Amer. Math. Soc., 78 (1980), 353-357.
[6] R.M. Goel and N.S. Sohi, On a class of meromorphic functions, Glasnik Mat. Ser. III 17(37) (1981), 19-28.
[7] D.J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, Proc. Amer. Math. Soc., 52 (1975), 191-195.
[8] S.S. Miller and P.T. Mocanu, Differential subordination and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[9] S.S. Miller and P.T. Mocanu, Differential Subordination, Theory and Application Marcel Dekker, Inc., New York, Basel, 2000.
[10] P.T. Mocanu and G.S. Salagean, Integral operators and meromorphic starlike functions, Mathematica, 32(55) (1990), 147-152.
[11] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109-115.
[12] T.J. Suffridge, Some remarks on convex maps of the unit disk, Duke Math. J., $\mathbf{3 7}$ (1970), 775-777.
[13] N. Takahashi and M. Nunokawa, A certain connection between starlike and convex functions, Appl. Math. Lett., 16 (2003), 653-655.
[14] B.A. Uralegaddi and C. Somanatha, Certain subclasses of meromorphic convex functions, Indian J. Math., 32 (1990), 49-57.
[15] B.A. Uralegaddi and C. Somanatha, On generalization of meromorphic Convex functions with negative coefficients, Mathematica 35(58) (1993), 99-107.

[^0]: ${ }^{0}$ Received July 24, 2019. Revised November 19, 2019. Accepted January 29, 2020.
 ${ }^{0} 2010$ Mathematics Subject Classification: 30C80, 30C45.
 ${ }^{0}$ Keywords: Subordination, analytic function, meromorphic function, convolution operator, argument estimate.
 ${ }^{0}$ Corresponding author: Nak Eun Cho(necho@pknu.ac.kr).

