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Abstract. The purpose of this paper is to present some sufficient conditions for the exis-

tence and uniqueness of solutions of the nonlinear Hammerstein integral equations and the

two-point boundary value problems for nonlinear second-ordinary differential equations. To

establish this, we introduce the generalized Suzuki-(α, β)-F -contraction and the generalized

(α, β)-F -contraction in the framework of a metric space and establish some fixed point re-

sults. The results obtained in this work provide extension as well as substantial generalization

and improvement of several well-known results on fixed point theory and its applications.

1. Introduction and Preliminaries

The concept of the Banach Contraction Principle is a well-known result in
the theory of nonlinear analysis. Due to its usefulness for showing the existence
and uniqueness theorems for nonlinear differential and integral equations, this
concept has been generalized in term of space and nonlinear mappings (see
[3, 5, 7, 8, 11] and the references therein). One of the interesting generalization
was introduced by Berinde [3, 4], he gave the following definition:
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Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is said
to be a generalized almost contraction if there exist δ ∈ [0, 1) and L ≥ 0 such
that

d(Tx, Ty) ≤ δd(x, y) + Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)},

for all x, y ∈ X.

Furthermore, in 2008, Suzuki [21] introduced a class of mappings satisfying
condition (C) which is also known as the Suzuki-type generalized nonexpansive
mapping and he proved some fixed point theorems for this class of mappings.

Definition 1.2. Let (X, d) be a metric space. A mapping T : X → X is said
to satisfy condition (C) if for all x, y ∈ X,

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) < d(x, y).

Theorem 1.3. Let (X, d) be a compact metric space and T : X → X be a
mapping satisfying condition (C) for all x, y ∈ X. Then T has a unique fixed
point.

In the art of generalizing the contractive definition in the sense of Banach
and other existing contraction mappings, Wardowski [23] introduced the no-
tion of F -contractions. This class of mappings is defined as follows:

Definition 1.4. Let (X, d) be a metric space. A mapping T : X → X is said
to be a F -contraction if there exists τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1.1)

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing;
(F2) for all sequences {αn} ⊆ R+, limn→∞ αn = 0 if and only if

limn→∞ F (αn) = −∞;
(F3) there exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

He also established the following result:

Theorem 1.5. Let (X, d) be a complete metric space and T : X → X be an
F -contraction. Then T has a unique fixed point x∗ ∈ X and for each x0 ∈ X,
the sequence {Tnx0} converges to x∗.

Remark 1.6. ([23]) If we suppose that F (t) = ln t, the F -contraction mapping
becomes the Banach contraction mapping.
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We denote by F1 the family of all functions satisfying (F1), (F2) and (F3). In
2014, Minak et al. [12] introduced and studied some fixed point results for the

generalized F -contractions including the Ćirić-type generalized F -contraction
and almost F -contraction on a complete metric space.

Definition 1.7. Let (X, d) be a metric space and T : X → X be a mapping.

Then T is said to be the Ćirić type generalized F -contraction if F ∈ F1 and
there exist L ≥ 0 and τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (M(x, y)), (1.2)

where M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2

}
.

Definition 1.8. Let (X, d) be a metric space and T : X → X be a mapping.

Then T is said to be the Ćirić-type generalized F -contraction if F ∈ F1 and
there exists τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y) + Ld(x, Ty)). (1.3)

In the same year, Cosentino et al. [6] introduced and studied some fixed
point results for the F -contraction of Hardy-Rogers type on a complete metric
space.

Definition 1.9. Let (X, d) be a metric space and T : X → X be a mapping.
Then T is said to be the F -contraction Hardy-Rogers type if F ∈ F1 and there
exists τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0

⇒ τ + F (d(Tx, Ty)) ≤ F (αd(x, y) + βd(x, Tx) + γd(y, Ty)

+ δd(y, Ty) + Ld(y, Tx)), (1.4)

where α+ β + γ + 2δ = 1, γ 6= 1 and L ≥ 0.

In [16], Piri et al. used the continuity condition instead of condition (F3)
and proved the following result:

Theorem 1.10. Let X be a complete metric space and T : X → X be a
selfmap of X. Assume that there exists τ > 0 such that for all x, y ∈ X with
Tx 6= Ty,

1

2
d(x, Tx) ≤ d(x, y) ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)), (1.5)

where F : R+ → R is continuous strictly increasing and inf F = −∞. Then
T has a unique fixed point z ∈ X, and for every x ∈ X, the sequence {Tnx}
converges to z.
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Secelean in [19] proved the following lemma.

Lemma 1.11. ([19]) Let F : R+ → R be an increasing mapping and {αn} be
a sequence of positive integers. Then the following assertion hold:

(1) if limn→∞ F (αn) = −∞ then limn→∞ αn = 0;
(2) if inf F = −∞ and limn→∞ αn = 0 then limn→∞ F (αn) = −∞.

Furthermore, the authors in [19] replaced the condition F2 in the definition
of the F -contraction with the following condition.

(F∗) inf F = −∞
or, also by

(F∗∗) there exists a sequence {αn} of positive real numbers such that

lim
n→∞

F (αn) = −∞.

We denote by F the family of all functions F : R+ → R which satisfy
conditions:

(F
′
1) F is strictly increasing,

(F
′
2) inf F = −∞,

or, also by,

(F
′
3) there exists a sequence {αn} of positive real numbers such that

lim
n→∞

F (αn) = −∞,

(F
′
4) F is continuous on (0,∞).

Samet et al. [18] introduced the notion of the α-admissible mapping and
obtained some fixed point results for this class of mappings.

Definition 1.12. ([18]) Let α : X ×X → [0,∞) be a function. We say that
a self mapping T : X → X is α-admissible if for all x, y ∈ X,

α(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Definition 1.13. ([8]) Let T : X → X and α : X ×X → [0,∞) be mappings.
We say that T is a triangular α-admissible if

(1) T is α-admissible and
(2) α(x, y) ≥ 1 and α(y, z) ≥ 1 ⇒ α(x, z) ≥ 1 for all x, y, z ∈ X.

Theorem 1.14. ([18]) Let (X, d) be a complete metric space and T : X → X
be an α-admissible mapping. Suppose that the following conditions hold:
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(1) for all x, y ∈ X, we have

α(x, y)d(Tx, Ty) ≤ ψ(d(x, y)),

where ψ : [0,∞)→ [0,∞) is a nondecreasing function such that∑∞
n=1 ψ

n(t) <∞ for all t > 0;
(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(3) either T is continuous or for any sequence {xn} in X with

α(xn, xn+1) ≥ 1 for all n ≥ 0 and xn → x as n→∞, then
α(xn, x) ≥ 1.

Then T has a fixed point.

In 2016, Chandok et al. [5] introduced another class of mappings, called
the TAC-contraction mapping and established some fixed point results in the
framework of a complete metric space.

Definition 1.15. Let T : X → X be a mapping and let α, β : X → R+ be
two functions. Then T is called a cyclic (α, β)-admissible mapping, if

(1) α(x) ≥ 1 for some x ∈ X implies that β(Tx) ≥ 1,
(2) β(x) ≥ 1 for some x ∈ X implies that α(Tx) ≥ 1.

Definition 1.16. Let (X, d) be a metric space and let α, β : X → [0,∞)
be two mappings. We say that T is a TAC-contractive mapping, if for all
x, y ∈ X,

α(x)β(y) ≥ 1 ⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), φ(d(x, y))),

where ψ is a continuous and nondecreasing function with ψ(t) = 0 if and
only if t = 0, φ is continuous with limn→∞ φ(tn) = 0 ⇒ limn→∞ tn = 0 and
f : [0,∞)2 → R is continuous, f(a, t) ≤ a and f(a, t) = a⇒ a = 0 or t = 0 for
all s, t ∈ [0,∞).

Theorem 1.17. Let (X, d) be a complete metric space and let T : X → X
be a cyclic (α, β)-admissible mapping. Suppose that T is a TAC contraction
mapping. Assume that there exists x0 ∈ X such that α(x0) ≥ 1, β(x0) ≥ 1 and
either of the following conditions hold:

(1) T is continuous,
(2) if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and

xn → x as n→∞, then β(x) ≥ 1.

In addition, if α(x) ≥ 1 and β(y) ≥ 1 for all x, y ∈ F (T ) (where F (T ) denotes
the set of fixed points of T ), then T has a unique fixed point.

Definition 1.18. ([11]) Let X be a nonempty set, T : X → X be a mapping
and α, β : X ×X → R+ be two functions. We say that T is an (α, β)-cyclic
admissible mapping, if for all x, y ∈ X,
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(1) α(x, y) ≥ 1 ⇒ β(Tx, Ty) ≥ 1,
(2) β(x, y) ≥ 1 ⇒ α(Tx, Ty) ≥ 1.

Lemma 1.19. ([11]) Let X be a nonempty set and T : X → X be an (α, β)-
cyclic admissible mapping. Suppose that there exists x0 ∈ X such that
α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1. Define the sequence xn+1 = Txn, then
α(xm, xm+1) ≥ 1 implies that β(xn, xn+1) ≥ 1 and β(xm, xm+1) ≥ 1 implies
that α(xn, xn+1) ≥ 1, for all n,m ∈ N ∪ {0} with m < n.

Lemma 1.20. ([2]) Suppose that (X, d) is a metric space and {xn} is a se-
quence in X such that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy
sequence then there exists an ε > 0 and sequences of positive integers {xmk

}
and {xnk

} with nk > mk ≥ k such that d(xmk
, xnk

) ≥ ε, d(xmk
, xnk−1

) < ε and

(1) limk→∞ d(xmk
, xnk

) = ε,
(2) limk→∞ d(xnk

, xmk+1
) = ε,

(3) limk→∞ d(xmk−1
, xnk

) = ε,
(4) limk→∞ d(xnk

, xmk+1
) = ε.

Motivated by the works of Wardowski [23], Piri et al. [16], Minak et al. [12],
Cosentino et al. [6], Samet et al. [18] and Chandok et al. [5], Mebawondu
et al. [11], we introduce the generalized Suzuki-(α, β)-F -contraction and the
generalized (α, β)-F -contraction in the framework of a metric space and es-
tablished some fixed point results. In addition, we establish the existence and
uniqueness theorems of fixed points for such mappings in the framework of a
complete metric space and we apply our fixed point results to establish the
existence of a two-point boundary value problem of second-order differential
equations.

2. Main results

In this section, we introduce the concept of the generalized Suzuki-(α, β)-
F -contraction and the generalized (α, β)-F -contraction in the framework of a
metric space and prove the existence and uniqueness theorems of fixed points
for such mappings.

Definition 2.1. Let (X, d) be a metric space, α, β : X ×X → [0,∞) be two
functions and T be a self map on X. The mapping T is said to be a generalized
Suzuki-(α, β)-F -contraction mapping, if there exists F ∈ F , τ > 0 and L ≥ 0
such that for all x, y ∈ X with Tx 6= Ty then

1

2
d(x, Tx) ≤ d(x, y)

⇒ τ + F (α(x, Tx)β(y, Ty)d(Tx, Ty)) ≤ F (M(x, y) + LN(x, y)), (2.1)
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where

M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
and

N(x, y) = min{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Definition 2.2. Let (X, d) be a metric space, α, β : X ×X → [0,∞) be two
functions and T be a self map on X. The mapping T is said to be a generalized
(α, β)-F -contraction mapping, if there exists F ∈ F , τ > 0 and L ≥ 0 such
that for all x, y ∈ X with Tx 6= Ty

2τ + F (α(x, Tx)β(y, Ty)d(Tx, Ty)) ≤ F (M(x, y)), (2.2)

where M(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)2

}
.

Remark 2.3. In Defintition 2.1, we note the following:

(1) If we take α(x, Tx)β(y, Ty) = 1 and L = 0, we obtain

1

2
d(x, Tx) ≤ d(x, y) ⇒ τ + F (d(Tx, Ty)) ≤ F (M(x, y)). (2.3)

It is easy to see that (2.3) is a generalization of Definition 1.4, Defini-
tion 1.7 and inequality (1.5).

(2) If we suppose that F (x) = lnx in Definition 2.1. Thus (2.1) becomes

τ + In(α(x, Tx)β(y, Ty)d(Tx, Ty)) ≤ In(M(x, y) + LN(x, y))

⇒ α(x, Tx)β(y, Ty)d(Tx, Ty) ≤ e−τ (M(x, y) + LN(x, y))

= e−τM(x, y) + e−τLN(x, y))

= δM(x, y) + L1N(x, y)),

we have

1

2
d(x, Tx) ≤ d(x, y)

⇒ α(x, Tx)β(y, Ty)d(Tx, Ty) ≤ δM(x, y) + L1N(x, y)), (2.4)

where δ = e−τ ∈ (0, 1) and L1 = e−τL ≥ 0. Clearly, if

α(x, Tx)β(y, Ty)d(Tx, Ty) = 1,

we obtain a generalization of Definition 1.1 and Definition 1.2.
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(3) We also note that if, we take α = β = γ = 1
4 and δ = L = 1

8 , clear
α+ β + γ + 2δ = 1. Then Definition 1.9, becomes

τ + F (d(Tx, Ty))

≤ F
(

1

4

[
d(x, y) + d(x, Tx) + d(y, Ty) +

d(x, Ty) + d(y, Tx)

2

])
≤ F

(1

4
[4M(x, y)]

)
≤ F (M(x, y) + LN(x, y)

)
.

Theorem 2.4. Let (X, d) be a complete metric space and T : X → X be a
generalized Suzuki-(α, β)-F -contraction mapping. Suppose the following con-
ditions hold:

(1) T is an (α, β)-cyclic admissible mapping,
(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,
(3) T is continuous.

Then T has a fixed point.

Proof. We define a sequence {xn} by xn+1 = Txn for all n ∈ N ∪ {0}. If we
suppose that xn+1 = xn, we obtain the desired result. Now, suppose that
xn+1 6= xn for all n ∈ N ∪ {0}. Since T is an (α, β)-cyclic admissible mapping
and α(x0, x1) ≥ 1, we have β(Tx0, Tx1) = β(x1, x2) ≥ 1 and this implies that
α(x2, x3) = α(Tx1, Tx2) ≥ 1, continuing the process, we have

α(x2k, x2k+1) ≥ 1 and β(x2k+1, x2k+2) ≥ 1, ∀ k ∈ N ∪ {0}. (2.5)

Using similar arguments, we have that

β(x2k, x2k+1) ≥ 1 and α(x2k+1, x2k+2) ≥ 1, ∀ k ∈ N ∪ {0}. (2.6)

It follows from (2.5) and (2.6) that α(xn, xn+1) ≥ 1, β(xn, xn+1) ≥ 1 for all
n ∈ N ∪ {0} and

1

2
d(xn, Txn) =

1

2
d(xn, xn+1) < d(xn, xn+1).

Hence we obtain from (2.1)

τ + F (d(xn+1, xn+2))

≤ τ + F (α(xn, xn+1)β(xn+1, xn+2)d(Txn, Txn+1))

≤ F (M(xn, xn+1)

+ Lmin{d(xn, xn+1), d(xn+1, xn+2), d(xn, xn+2), d(xn+1, xn+1)})
= F (M(xn, xn+1) + L.0)

= F (M(xn, xn+1)), (2.7)
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where

M(xn, xn+1)) = max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2

}
= max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2)

2

}
.

Since

d(xn, xn+2)

2
≤ 1

2
[d(xn, xn+1) + d(xn+1, xn+2)]

≤ max{d(xn, xn+1), d(xn+1, xn+2)}.

we have that M(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)}. If we take

M(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2),

then we obtain a contradiction in (2.7) as such

M(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn, xn+1).

It therefore follows from (2.7) that

F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1))− τ.
Using a similar approach, it is easy to see that,

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− τ.
Thus inductively we obtain

F (d(xn, xn+1)) ≤ F (d(x0, x1))− nτ, ∀ n ∈ N ∪ {0}. (2.8)

Since F ∈ F , taking limit as n→∞ in (2.8), we have

lim
n→∞

F (d(xn, xn+1)) = −∞. (2.9)

It follows from (F
′
3) and Lemma 1.11 that

lim
n→∞

d(xn, xn+1) = 0. (2.10)

We now show that {xn} is a Cauchy sequence. Suppose that {xn} is not a
Cauchy sequence, then by Lemma 1.20, there exists an ε > 0 and sequences of
positive integers {xnk

} and {xmk
} with nk > mk ≥ k such that d(xmk

, xnk
) ≥

ε. For each k > 0, corresponding to mk, we can choose nk to be the smallest
positive integer such that d(xmk

, xnk
) ≥ ε, d(xmk

, xnk−1
) < ε and (1) − (4) of

Lemma 1.20 hold. Since α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1, using Lemma
1.19, we obtain that α(xmk

, xmk+1
)β(xnk

, xnk+1
) ≥ 1. Hence for all k ≥ n0, we

have
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τ + F (d(xmk+1
, xnk+1

))

≤ τ + F (α(xmk
, xmk+1

)β(xnk
, xnk+1

)d(Txmk
, Txnk

))

≤ F (M(xmk
, xnk

)

+ Lmin{d(xmk
, xmk+1

), d(xnk
, xnk+1

), d(xmk
, xnk+1

), d(xnk
, xmk+1

)})

≤
(

max

{
d(xmk

, xnk
), d(xmk

, xmk+1
), d(xnk

, xnk+1
),

d(xmk
, xnk+1

) + d(xnk
, xmk+1

)

2

}
+ Lmin{d(xmk

, xmk+1
), d(xnk

, xnk+1
), d(xmk

, xnk+1
), d(xnk

, xmk+1
)}
)
.

(2.11)

Using Lemma 1.20, (F
′
4) and (2.10), we have that

τ + F (ε)

= lim
k→∞

[τ + F (α(xmk
, xmk+1

)β(xnk
, xnk+1

)d(Txmk
, Txnk

))]

≤ lim
k→∞

[
F

(
max

{
d(xmk

, xnk
), d(xmk

, xmk+1
), d(xnk

, xnk+1
),

d(xmk
, xnk+1

) + d(xnk
, xmk+1

)

2

}
+ Lmin{d(xmk

, xmk+1
), d(xnk

, xnk+1
), d(xmk

, xnk+1
), d(xnk

, xmk+1
)

})]
≤ F (ε).

That is,

τ + F (ε) ≤ F (ε),

which is a contradiction. We therefore have that {xn} is Cauchy. Since (X, d)
is complete, it follows that there exists x ∈ X such that limn→∞ xn = x. Since
T is continuous, we have that

x = lim
n→∞

xn = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx.

Thus T has a fixed point. �

Theorem 2.5. Let (X, d) be a complete metric space and T : X → X be a
generalized Suzuki-(α, β)-F -contraction mapping. Suppose the following con-
ditions hold:

(1) T is an (α, β)-cyclic admissible mapping,
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(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,
(3) if for any sequence {xn} in X such that xn → x as n → ∞, then

β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.

Proof. We define a sequence {xn} by xn+1 = Txn for all n ∈ N∪ {0}. In The-
orem 2.4, we have established that {xn} is Cauchy. Now suppose hypothesis
(3) holds. Now, we claim that

d(xn, x) <
1

2
d(xn, xn+1)

and

d(xn+1, x) <
1

2
d(xn+1, xn+2).

Indeed, by using the fact that d(xn+1, xn+2) ≤ d(xn, xn+1), we have

d(xn, xn+1) ≤ d(xn, x) + d(x, xn+1)

<
1

2
d(xn, xn+1) +

1

2
d(xn+1, xn+2)

= d(xn, xn+1).

The above inequality is a contradiction, thus we must have that

d(xn, x) ≥ 1

2
d(xn, xn+1) or d(xn+1, x) ≥ 1

2
d(xn+1, xn+2).

Hence we have

τ + F (d(xn+1, Tx))

≤ τ + F (α(xn, xn+1)β(x, Tx)d(Txn, Tx))

≤ F
(

max

{
d(xn, x), d(xn, xn+1), d(x, Tx),

d(xn, Tx) + d(x, Txn)

2

}
+ Lmin{d(xn, xn+1), d(x, Tx), d(xn, Tx), d(x, Txn)}

)
.

Taking the limit k →∞ and using the fact that F ∈ F , we have that

τ + F (d(x, Tx)) ≤ F (d(x, Tx)),

which is a contradiction. Then

x = Tx.

Hence T has a fixed point. �

Theorem 2.6. Suppose that the hypothesis of Theorem 2.5 holds and in ad-
dition suppose α(x, Tx) ≥ 1 and β(y, Ty) ≥ 1 for all x, y ∈ F (T ). Then T has
a unique fixed point.
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Proof. Let x, y ∈ F (T ), that is Tx = x and Ty = y such that x 6= y. Since,
α(x, Tx) ≥ 1 and β(y, Ty) ≥ 1, we have α(x, Tx)β(y, Ty) ≥ 1 and
1
2d(x, Tx) = 0 ≤ d(x, y), and consequently we obtain that

F (d(x, y)) = F (d(Tx, Ty)) < τ + F (α(x, Tx)β(y, Ty)d(Tx, Ty))

≤ F
(

max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
+ Lmin{d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}

)
,

= F (d(x, y)),

which implies that

F (d(x, y)) < F (d(x, y)).

Clearly, this is a contradiction. Thus T has a unique fixed point. �

Theorem 2.7. Let (X, d) be a complete metric space and T : X → X be
a generalized (α, β)-F -contraction mapping. Suppose the following conditions
hold:

(1) T is an (α, β)-cyclic admissible mapping,
(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,
(3) T is continuous.

Then T has a fixed point.

Proof. The proof follows a similar approach as of Theorem 2.4 and thus we
omit it. �

Theorem 2.8. Let (X, d) be a complete metric space and T : X → X be
a generalized (α, β)-F -contraction mapping. Suppose the following conditions
hold:

(1) T is an (α, β)-cyclic admissible mapping,
(2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 and β(x0, Tx0) ≥ 1,
(3) if for any sequence {xn} in X such that xn → x as n → ∞, then

β(x, Tx) ≥ 1 and α(x, Tx) ≥ 1.

Then T has a fixed point.

Proof. The proof follows a similar approach as of Theorem 2.5 and thus we
omit it. �

Theorem 2.9. Suppose that the hypothesis of Theorem 2.8 holds and in ad-
dition suppose α(x, Tx) ≥ 1 and β(y, Ty) ≥ 1 for all x, y ∈ F (T ). Then T has
a unique fixed point.
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Proof. The proof follows a similar approach as of Theorem 2.6 and thus we
omit it. �

3. Application

In this section, we give an application of Theorem 2.8 and Theorem 2.9 to
guarantee the existence and uniqueness of solutions for the following nonlinear
Hammerstein integral equations

x(t) = g(t) +

∫ 1

0
G(t, s)K(s, x(s))ds (3.1)

and the following two-point boundary value problem of the second-order dif-
ferential equations: 

−εx′′ = K(t, x)− c,
ax(0)− bx′(0) = 0,

dx(1)− ex′(1) = 0,

(3.2)

where t ∈ (0, 1), K is a continuous real valued function and the constants
ε > 0, b, c, e ≥ 0, a+ b > 0, d+ e > 0 and f := ad+ ae+ bd > 0.

Let X = C([0, 1]) be the space of all continuous real function defined on
I = [0, 1]. It is well-known that C([0, 1]) with the metric d(x, y) = supt∈I |x(t)−
y(t)| for all x, y ∈ C(I) is a complete metric space. It is also well known that
x∗ ∈ C([0, 1]) ∩ C2([0, 1]) is a solution for (3.2) if and only if x∗C([0, 1]) is a
solution of the following nonlinear integral equation

x(t) =
1

ε

∫ 1

0
G(t, s)(K(s, x(s))− c)ds, t ∈ I (3.3)

where G(t, s) is the Green function defined by

G(t, s) =
1

f

{
(b+ as)(e+ d(1− t)), 0 ≤ s ≤ t ≤ 1,

(b+ at)(e+ d(1− s)), 0 ≤ t ≤ s ≤ 1.
(3.4)

It is also well known that for t ∈ I,

sup
t∈I

∫ 1

0
G(t, s)ds =

1

f2
(4f(bd+ 2be) + (ad+ 2ae)2) := N 6= 0.

It is worth mentioning that problem (3.2) is equivalent to the integral equation
(3.3).

Theorem 3.1. Let X = C(I) and T : X → X be an operator defined by

Tx(t) =
1

ε

∫ 1

0
G(t, s)(K(s, x(s))− c)ds, t ∈ I, x ∈ X.
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Also, let α, β : X × X → [0,∞) be a given function. Suppose the following
assertions hold:

(1) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, β(x0, Tx0) ≥ 1;
(2) there exists τ > 0 and K : I × R→ R such that

|K(s, x(s))−K(s, y(s))| ≤ ε|x(s)− y(s)|e−2τ

Nα(x, Tx)β(y, Ty)

for all s ∈ I and x, y ∈ X;
(3) for any sequence {xn} in X such that xn → x in X, then

α(x, Tx) ≥ 1, β(x, Tx) ≥ 1.

Then there exists a solution to the integral equation (3.3), and hence there
exists a solution of the problem (3.2).

Proof. Define the function α, β : X ×X → [0,∞) by

α(x, y) = β(x, y) =

{
2, if α(x, Tx) ≥ 1, β(x, Tx) ≥ 1,

0, if otherwise.

Now observe that

|Tx(s)− Ty(s)| = 1

ε
sup
s∈I

∣∣∣∣ ∫ 1

0
G(t, s)(K(s, x(s))−K(s, y(s)))ds

∣∣∣∣
≤ 1

ε
sup
s∈I

∫ 1

0
G(t, s)|(K(s, x(s))−K(s, y(s)))|ds

≤ 1

ε

ε|x(s)− y(s)|e−2τ

Nα(x, Tx)β(y, Ty)

(
sup
s∈I

∫ 1

0
G(t, s)ds

)
(3.5)

≤ |x(s)− y(s)|
α(x, Tx)β(y, Ty)

e−2τ .

Thus, we have that

α(x, Tx)β(y, Ty)d(Tx, Ty) ≤ d(x, y)e−2τ ≤ (M(x, y) + LN(x, y))e−2τ

⇒ 2τ + ln(α(x, Tx)β(y, Ty)d(Tx, Ty)) ≤ ln((M(x, y) + LN(x, y))),

taking F (t) = ln t, we have that

2τ + F (α(x, Tx)β(y, Ty)d(Tx, Ty)) ≤ F ((M(x, y) + LN(x, y))),

Clearly, all the conditions of Theorem 2.9 are satisfied, and so T has a fixed

point. Hence, we have x∗(t) = Tx∗(t) = 1
ε

∫ 1
0 G(t, s)(K(s, x∗(s)) − c)ds and

consequently, x∗ is a solution of the two-point boundary value problem (3.2).
This completes the proof. �
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Theorem 3.2. Let X = C(I) and T : X → X be the operator given by

Tx(t) = g(t) +

∫ 1

0
G(t, s)K(t, x(s))ds

for all t, s ∈ [0, 1], where G : [0, 1] × [0, 1] → R+, K : [0, 1] × R → R and
g : [0, 1] → R are continuous functions. Furthermore, suppose the following
conditions hold:

(1) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1, β(x0, Tx0) ≥ 1;
(2) there exists a continuous mapping µ : X ×X → [0,∞) such that

|K(s, x(s))−K(s, y(s))| ≤ µ(x, y)|x(s)− y(s)|

for all s ∈ [a, b] and x, y ∈ X;
(3) there exists τ > 0 and α, β : X → [0,∞) such that for all x ∈ X, we

have ∫ 1

0
G(t, s)µ(x, y) ≤ e−τ

α(x, Tx)β(y, Ty)
;

(4) for any sequence {xn} in X such that xn → x in X, then
α(x, Tx) ≥ 1, β(x, Tx) ≥ 1.

Then the integral equation (3.1) has a solution.

Proof. Define the function α, β : X ×X → [0,∞) by

α(x, y) = β(x, y) =

{
1, if α(x, Tx) ≥ 1, β(x, Tx) ≥ 1,

0, if otherwise.

Without a loss of generality, we suppose that x ≤ y, so that

sup{|y(s)− x(s)| : s ∈ [0, 1]} ≥ sup{|Tx(s)− x(s)| : s ∈ [0, 1]},
which implies that

d(y, x) ≥ d(Tx, x) ≥ 1

2
d(Tx, x).

Thus, we have that

|Ty(s)− Tx(s)| ≤
∫ 1

0
|G(t, s)[K(t, y(s))−K(t, x(s))]|ds

≤
∫ 1

0
G(t, s)µ(x, y)|y(s)− x(s)|ds

≤ sup
s∈[a,b]

|y(s)− x(s)|
∫ b

a
G(t, s)µ(x, y)ds

≤ d(y, x)
e−τ

α(x, Tx)β(y, Ty)
.
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Therefore, we have

α(x, Tx)β(y, Ty)d(Tx, Ty) ≤ d(x, y)e−τ ≤ (M(x, y) + LN(x, y))e−τ

⇒ τ + In(α(x, Tx)β(y, Ty)d(Tx, Ty)) ≤ ln((M(x, y) + LN(x, y))).

Taking F (t) = ln t, we have that

1

2
d(x, Tx) ≤ d(x, y)

⇒ τ + F (α(x, Tx)β(y, Ty)d(Tx, Ty)) ≤ F ((M(x, y) + LN(x, y))).

Clearly, all the conditions in Theorem 2.9 are satisfied, and so T has a fixed
point. Hence, we have

x∗(t) = Tx∗(t) = g(t) +

∫ 1

0
G(t, s)K(t, x∗(s))ds

and consequently, x∗ is a solution of the integral equation (3.1). �
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