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Abstract. In this paper, we introduce a new model of generalized Nash game with additively

coupled payoff functions which generalizes Balder’s model in [2], and next give two social

equilibrium existence theorems for general strategic games which are comparable with the

previous results due to Arrow and Debreu, Balder, Debreu, and Park in several aspects.

1. Introduction

In 1951, Nash [7] established the pioneering result on the existence of equi-
librium for abstract economies, and next, in 1952, Debreu [5] established the
existence of social equilibrium existence theorem using constraint correspon-
dences. Since then, there are many generalizations and applications of these
two theorems as basic references for the existence of Nash equilibrium for
generalized games, e.g., see [3,6,8–11] and references therein.

Among them, we met an economic condition which presents a psychologic
behavior of payoff functions. For a generalized game Γ = (Xi;Ti, fi)i∈I , we
encountered an individual and independent payoff function fi on the constraint
correspondence Ti : X → 2Xi which satisfies the optimal inequality with
respect to the utility function fi. That is, if the strategy xj is feasible in the
game Γ, the j-th player can choose the strategy xj restricted on the constraint
set Tj(x) so that we want to find the optimal value of utility function fj . This
is a kind of natural economic sense in the real strategic game situation, and in
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[2], Balder introduced a basic optimization problem where the each player is
faced with an individual and independent payoff so that an existence of Nash
equilibrium is obtained.

In this paper, we first introduce a new model of strategic Nash game with
additively coupled payoff functions which generalizes Balder’s model in [2] us-
ing constraint correspondences. Next, we establish two new social equilibrium
existence theorems for general strategic games by using Bauer’s maximum
theorem and Berge’s maximum theorem, respectively, which are comparable
with the previous results due to Arrow and Debreu [1], Balder [2], Debreu [5],
Ding-Kim-Tan [6], Park [8], and others in several aspects. Finally, we give
an example which is suitable for our theorems but the previous equilibrium
existence theorems can not be applied.

2. Preliminaries

We begin with some notions and terminologies in generalized Nash equi-
librium for non-cooperative pure strategic games. Let the set I of players
be possibly countable. Then, a generalized Nash game of normal form (or
social system) is the system of ordered triples Γ = (Xi;Ti, fi)i∈I , where for
each player i ∈ I, the nonempty set Xi is a player’s pure strategy space,
Ti : X → 2Xi is a player’s constraint correspondence, and fi : X → R is
a player’s payoff (or utility) function. The set X, joint strategy space, is the
Cartesian product of the individual strategy spaces, and the element of Xi is
called a strategy. When I is any set of players, we shall use the notation as

X−i :=
∏

j∈I;j 6=i
Xj ;

and hence we write a typical strategy profile x = (xi, x−i) ∈ X = Πi∈IXi =
Xi × X−i. Then, a strategy profile x̄ = (x̄i, x̄−i) ∈ X is called the social
equilibrium (or generalized Nash equilibrium) for the generalized Nash game Γ
if the following system of inequalities holds: for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄i, x̄−i) ≤ fi(xi, x̄−i) for each xi ∈ Ti(x̄).

Next, we now introduce an economic condition which presents a kind of
psychologic behavior as follows: Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash
game with the set I of players which is finite (possibly countable). Then
we can consider an individual and independent payoff for the constraint cor-
respondence Ti : X → 2Xi which satisfies the following optimal inequality
with respect to the utility function fi. That is, we want to find the optimal
strategy x = (xi)i∈I ∈ X such that all of individual players might imagine
and guess that there might be a better strategy y ∈ Ti(x) satisfying that
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fi(xi, x−i) ≤ fi(y, x−i), i.e., there might be a strategy having least payoff
value. This is a kind of psychologic and natural economic sense in the real
strategic game situation.

We first introduce a generalized additively coupled condition of payoff func-
tions for a generalized Nash game Γ = (Xi;Ti, fi)i∈I as follows:

Definition 2.1. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game with a
finite (possibly countable) set I of players. Then the payoff functions {fi}i∈I
are called additively coupled if for each i ∈ I, there exists component functions
fi,j : Xj → R, j ∈ I, such that

fi(x1, x2, · · · , xn) =

n∑
j=1

fi,j(xj)

for each x = (x1, x2, · · · , xn) ∈ X = Πj∈IXj , and xj ∈ Tj(x).

When Ti(x) := Xi, for each i ∈ I in Definition 2.1, this coincides with
Balder’s definition in [2], and he introduced an optimization problem where
the each player is faced with an individual and independent payoff so that an
existence of Nash equilibrium is obtained.

In most equilibrium existence theorems, payoff functions should be satisfied
uniform kind of convex assumptions, e.g. [3, 6, 9–11]. However, in some
games, payoff functions can not be satisfied with uniform convex assumptions.
For example, let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game with the each
player i is faced with an individual and independent payoff function as

fi(x1, x2, · · · , xn) =
n∑
j=1

fi,j(xj),

where fi,j(xj) := 1
j (−1)i+jx2

j for each x = (x1, x2, · · · , xn) ∈ X, and xj ∈
Tj(x). Then, when i + j is even, fi,j is convex, and when i + j is odd, fi,j
is concave. Therefore, we can not apply the previous existence theorems of
Nash equilibria as in [1, 5–11] for this game Γ; however we can apply the next
Theorems 3.1 or 3.3 for the existence of social equilibrium in this game Γ.

Next, we shall need the following which is a basic tool for proving the
existence of social equilibrium for a generalized Nash game:

Lemma 2.2. Let Γ = (Xi;Ti, fi)i∈I be the generalized Nash game with I =
{1, . . . , n} the (possibly countable) set of players, whose payoff functions {fi}i∈I
are additively coupled. Then we have

x̄ = (x̄1, x̄2, · · · , x̄n) ∈ X is a social equilibrium for Γ,
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if and only if, for each i ∈ I,

x̄i ∈ Ti(x̄) and fi,i(x̄i) = inf
xi∈Ti(x̄)

fi,i(xi).

Proof. For the necessity, we let x̄ = (x̄1, x̄2, · · · , x̄n) ∈ X be a social equilib-
rium for Γ. Then, for each i ∈ I, fi(x̄i, x̄−i) ≤ fi(xi, x̄−i) for each xi ∈
Ti(x̄) so that fi,i(x̄i) ≤ fi,i(xi). Indeed, since the payoff function fi is
additively coupled, for each xi ∈ Ti(x̄), we have

fi(x̄i, x̄−i) = fi,1(x̄1) + fi,2(x̄2) + · · ·+ fi,i(x̄i) + · · ·+ fi,n(x̄n);

fi(xi, x̄−i) = fi,1(x̄1) + fi,2(x̄2) + · · ·+ fi,i(xi) + · · ·+ fi,n(x̄n);

so that fi,i(x̄i) ≤ fi,i(xi), and hence

fi,i(x̄i) ≤ inf
xi∈Ti(x̄)

fi,i(xi).

Since x̄i ∈ Ti(x̄), infxi∈Ti(x̄) fi,i(xi) ≤ fi,i(x̄i), thus fi,i(x̄i) = infxi∈Ti(x̄) fi,i(xi).

For the sufficiency, if fi,i(x̄i) = infxi∈Ti(x̄) fi,i(xi) for each i ∈ I, then

fi(x̄i, x̄−i) = fi,1(x̄1) + fi,2(x̄2) + · · ·+ fi,i(x̄i) + · · ·+ fi,n(x̄n)

≤ fi,1(x̄1) + fi,2(x̄2) + · · ·+ fi,i(xi) + · · ·+ fi,n(x̄n)

= fi(xi, x̄−i);

for all xi ∈ Ti(x̄). Hence, x̄ = (x̄1, x̄2, · · · , x̄n) ∈ X is a social equilibrium for
Γ. �

Remark 2.3. Lemma 2.2 further generalizes Proposition 1.1 in [2] to a gen-
eralized Nash game Γ = (Xi;Ti, fi)i∈I in the following aspects:

(a) for each x ∈ X, Ti(x) need not be a constant multimap;
(b) the set of players I need not be finite.

Let X be a convex subset of a vector space E. Recall that a point x ∈ X is
said to be an extreme point of X if, whenever elements y and z of X satisfy
x = λy + (1− λ)z, where λ ∈ [0, 1], then either λ = 0 or λ = 1.

Let A and B be two convex subsets of a vector space E. Also, recall that a
function f : A → B is called an affine map if for every family {(ai, λi)}i∈I of
weighted points in A such that

∑
i∈I λi = 1, we have

f

(∑
i∈I

λiai

)
=
∑
i∈I

λif(ai).

For the existence of extreme social equilibrium for a generalized Nash game,
we shall need the following minimum version of Bauer’s maximum theorem for
extreme points of compact convex sets:
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Lemma 2.4. (Theorem 25.9, [4])Let X be a nonempty compact convex subset
of a locally convex Hausdorff topological vector space E. Suppose that f : X →
R is a concave and lower semicontinuous function on X. Then there exists an
extreme point of X where f assumes its minimum value.

We also need Berge’s theorem for continuous multimaps which is well known
for the existence of fixed points in nonlinear analysis:

Lemma 2.5. ([11]) Let X and Y be topological spaces, f : X × Y → R a real
function, T : X → 2Y a multimap, and

f̂(x) := inf
y∈T (x)

f(x, y), S(x) := {y ∈ T (x) | f(x, y) = f̂(x)}

for each x ∈ X. Then we have

(1) If f is l.s.c. and T is u.s.c. with compact values, then f̂ is l.s.c.;

(2) If f is u.s.c. and T is l.s.c., then f̂ is u.s.c.;

(3) If f is continuous and T is continuous with compact values, then f̂
is continuous and S is u.s.c.

From now on, let Xi be a nonempty compact convex subset of a locally
convex Hausdorff topological vector space E. For the other standard nota-
tions and terminologies, we shall refer to Border [3], Ding-Kim-Tan [6], Yuan-
Tarafdar [11], and the references therein.

3. Existence of social equilibria with additively coupled payoffs

Using Lemma 2.2, we begin with the existence of social equilibria in gener-
alized Nash games with additively coupled payoffs as follows:

Theorem 3.1. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game with I =
{1, . . . , n} the (possibly countable) set of players, where for each player i ∈ I,
Xi is a nonempty compact convex subset of a locally convex Hausdorff topo-
logical vector space E, and X := Πi∈IXi = Xi ×X−i. Suppose that for each
i ∈ I,

(1) Ti : X → 2Xi is a continuous constraint multimap such that Ti(x) is
a nonempty compact and convex subset of Xi for each x ∈ X;

(2) fi : X → R is an additively coupled payoff function such that
fi,i : Xi → R is continuous;

(3) fi,i : Xi → R is a quasi-convex component function on Ti(x).

Then there exists a social equilibrium x̄ = (x̄i)i∈I ∈ X for Γ, i.e., for each
i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄i, x̄−i) ≤ fi(xi, x̄−i) for each xi ∈ Ti(x̄).
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Proof. For each i ∈ I, we first define a multimap Φi : X → 2Xi by

Φi(x) :=
{
z ∈ Ti(x) | fi,i(z) = inf

y∈Ti(x)
fi,i(y)

}
for each x = (xi, x−i) ∈ X.

By the assumptions (1) and (2), each fi,i is a continuous function, and Ti
is a continuous multimap with compact values. Therefore, by Lemma 2.5,
Φi is an upper semicontinuous multimap with nonempty values. Since fi,i is
continuous and Ti is continuous, it is easy to see that Φi(x) is nonempty closed
for each x ∈ X. For the convexity of Φi(x), we let z1, z2 ∈ Ti(x) such that
fi,i(zk) = infy∈Ti(x) fi,i(y) for each k = 1, 2. For any λ ∈ [0, 1], we shall show
that ẑ = λz1 + (1 − λ)z2 ∈ Ti(x) such that fi,i(ẑ) = infy∈Ti(x) fi,i(y). Since
Ti(x) is convex, and z1, z2 ∈ Ti(x), it is clear that ẑ ∈ Ti(x). If we let

A :=
{
z ∈ Ti(x) | fi,i(z) ≤ inf

y∈Ti(x)
fi,i(y)

}
,

then we have z1, z2 ∈ A. By the assumption (3), since fi,i : X → R is a
quasi-convex function on Ti(x), A is convex so that ẑ = λz1 + (1− λ)z2 ∈ A
for all λ ∈ [0, 1], that is, fi,i(ẑ) ≤ infy∈Ti(x) fi,i(y). Therefore, Φi(x) is convex
for each x ∈ X.

Next, we define a multimap Φ : X → 2X by

Φ(x) := Πi∈I Φi(x) for each x = (xi, x−i) ∈ X.

Then, Φ is an upper semicontinuous multimap such that Φ(x) is a nonempty
compact convex subset of X for each x ∈ X. By the Fan-Glicksberg fixed
point theorem, there exists a fixed point x̄ ∈ Φ(x̄), that is, for each i ∈ I,

x̄i ∈ Ti(x̄) and fi,i(x̄i) = inf
xi∈Ti(x̄)

fi,i(xi).

Therefore, by Lemma 2.2, the fixed point x̄ for Φ is exactly a social equilibrium
for the game Γ = (Xi;Ti, fi)i∈I which completes the proof. �

Remark 3.2. Theorem 3.1 asserts an existence of a social equilibrium in
generalized Nash games Γ = (Xi;Ti, fi)i∈I with the (possibly countable) set
of players. However, we shall need the additional continuity and quasi-convex
assumption on the component function fi,i for each i ∈ I so that Theorem 3.1
is comparable with Corollary 1.2 [2] in special case of Ti(x) = Xi.

Next, using Lemma 2.4, we shall prove an existence theorem of an extreme
social equilibrium as follows:

Theorem 3.3. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game with I =
{1, . . . , n} the (possibly countable) set of players, where for each player i ∈ I,
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Xi is a nonempty compact convex subset of a locally convex Hausdorff topo-
logical vector space E. Suppose that for each i ∈ I,

(1) Ti : X → 2Xi is a continuous constraint multimap such that Ti(x) is
a nonempty compact and convex subset of Xi for each x ∈ X;

(2) fi : X → R is an additively coupled payoff function such that
fi,i : Xi → R is a continuous function;

(3) fi,i : Xi → R is a quasi-convex component function on Ti(x);
(4) the mapping x 7→ infy∈Ti(x) fi,i(y) is concave on X.

Then there exists a social equilibrium x̄ = (x̄i)i∈I ∈ X for the game Γ such
that x̄i is an extreme point of Ti(x̄) for each i ∈ I.

Proof. By the same proof of Theorem 3.1, we can obtain a social equilibrium
x̄ = (x̄i)i∈I ∈ X for Γ. It remains to show that x̄i is an extreme point of Ti(x̄)
for each i ∈ I.

For each i ∈ I, by the assumptions (1) and (2), each fi,i is a continuous
function, and Ti is a continuous multimap with compact values so that by
Lemma 2.5(1), the function φi : X → R defined by

φi(x) := inf
y∈Ti(x)

fi,i(y) for each x ∈ X,

is a lower semicontinuous function on X. By the assumption (4), φi is a
concave mapping on X. Therefore, since each Ti(x) is nonempty compact
convex, by Lemma 2.4, we obtain that φi has an extreme point of Ti(x) where
φi assumes its minimum value on Ti(x), i.e., the set{

z ∈ Ti(x) | fi,i(z) = inf
y∈Ti(x)

fi,i(y)
}

has values of extreme points of Ti(x) for each x ∈ X. Therefore, we can
obtain a social equilibrium x̄ = (x̄i)i∈I ∈ X for Γ where x̄i is an extreme
point of Ti(x̄) for each i ∈ I. This completes the proof. �

Remark 3.4. (1) In Theorem 3.3, if we assume the following condition instead
of the assumption (4), then we can obtain the same conclusion:

(4′) for each x1, x2 ∈ X, and any λ ∈ (0, 1),

Ti
(
λx1 + (1− λ)x2

)
⊆ Ti(xk) for each k = 1, 2.

In fact, we will show that φi is concave function. Indeed, for any x1, x2 ∈ X
such that φi(x1) = infy∈Ti(x1) fi,i(y), and φi(x2) = infy∈Ti(x2) fi,i(y), we shall
show that for any λ ∈ (0, 1),

φi
(
λx1 + (1− λ)x2

)
≥ λ inf

y∈Ti(x1)
fi,i(y) + (1− λ) inf

y∈Ti(x2)
fi,i(y).
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Indeed, by the assumption (4′), for any λ ∈ (0, 1),

inf
y∈Ti

(
λx1+(1−λ)x2

) fi,i(y) ≥ λ inf
y∈Ti(x1)

fi,i(y) + (1− λ) inf
y∈Ti(x2)

fi,i(y);

thus

φi
(
λx1 + (1− λ)x2

)
≥ λφi(x1) + (1− λ)φi(x2)

so that φi is a concave function on X, and we obtain the conclusion.

(2) When Ti(x) := Xi, for each x ∈ X, then the condition (4′) is automati-
cally satisfied so that the assumptions (1) and (4) in Theorem 3.3 are clearly
satisfied. In this case, Theorem 3.3 is comparable with Corollary 1.3 [2] in the
following aspects:

(a) the component function fi,i need not be convex but quasi-convex; how-
ever we shall need lower semicontinuity of fi,i for each i ∈ I;

(b) the set of players I need not be finite.

Note that the following existence theorem is contained in Theorem 3.3, and
it shows that the additive coupledness is an inherent aspect of affine condition
as follows:

Theorem 3.5. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game with I =
{1, . . . , n} the (possibly countable) set of players, where for each player i ∈ I,
Xi is a nonempty compact convex subset of a locally convex Hausdorff topo-
logical vector space E. For each i ∈ I, suppose that

(1) Ti : X → 2Xi is a continuous constraint multimap such that Ti(x) is
a nonempty compact and convex subset of Xi for each x ∈ X;

(2) fi : X → R is a continuous and affine payoff function on X;
(3) for any λ ∈ (0, 1), Ti

(
λx1+(1−λ)x2

)
⊆ Ti(xk) for each k = 1, 2.

Then there exists a social equilibrium x̄ = (x̄i)i∈I ∈ X for the game Γ, i.e.,
for each i ∈ I,

x̄i ∈ Ti(x̄), and fi(x̄i, x̄−i) ≤ fi(xi, x̄−i) for each xi ∈ Ti(x̄);

and also x̄i is an extreme point of Ti(x̄) for each i ∈ I.

Proof. By applying Theorem 3.3, we shall show that fi is an additively coupled
function on X. For this, we let x̂ = (x̂1, x̂2, · · · , x̂n) ∈ X = Πi∈IXi be fixed.
For each j ∈ I, we now define a component function fi,j : Xj → R by

fi,j(xj) := fi(xj , x̂−j)−
(

1− 1

n

)
fi(x̂j , x̂−j) for each xj ∈ Xj .
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Then, by the affine assumption of fi on X, for each x = (x1, x2, · · · , xn) ∈ X,
we have

n∑
j=1

1

n
fi,j(xj) =

n∑
j=1

1

n

[
fi(xj , x̂−j)− (1− 1

n
)fi(x̂)

]
=

n∑
j=1

fi(
1

n
xj ,

1

n
x̂−j) − (1− 1

n
)fi(x̂)

= fi
( 1

n
[(x1, x̂−1) + · · ·+ (xn, x̂−n)]

)
− (1− 1

n
)fi(x̂)

= fi
( 1

n
x+ (1− 1

n
) x̂
)
− (1− 1

n
)fi(x̂)

=
1

n
fi(x) + (1− 1

n
) fi(x̂)− (1− 1

n
)fi(x̂)

=
1

n
fi(x),

so that we have fi(x) =
∑n

j=1 fi,j(xj) for each x ∈ X; thus fi is additively

coupled by {fi,j} for each i ∈ I. It remains to show that for each i ∈ I,
fi,i : Xi → R is a quasi-convex component function on Ti(x). Indeed, since

fi,i(xi) = fi(xi, x̂−i)− (1− 1

n
)fi(x̂i, x̂−i)

and fi : X → R is affine on Xi, fi,i is clearly an affine map on Xi and hence
fi,i is a quasi-convex component function on Ti(x). Therefore, all the hypothe-
ses of Theorem 3.3 are satisfied so that we can obtain a desired conclusion.
This completes the proof. �

Finally, we give an example of a generalized Nash game which is suitable for
Theorem 3.1 or Theorem 3.3, but the previous equilibrium existence theorems
in Border [3], Ding-Kim-Tan [6], and Park [8] for compact games can not be
applied:

Example 3.6. Let Γ = (Xi;Ti, fi)i∈I be a generalized Nash game where for
each player i ∈ I = {1, 2, · · · , n}, and for each x = (x1, x2, · · · , xn) ∈ X,
suppose that

(1) Xi := [0, 1] is a nonempty compact convex strategy set, and X =
Πi∈IXi;

(2) Ti : X → 2Xi is a continuous constraint multimap such that Ti(x) :=
[0, 1] for each x ∈ X;
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(3) fi : X → R is an additively coupled continuous payoff function on X
such that

fi(x1, x2, · · · , xn) =
n∑
j=1

fi,j(xj),

where fi,j(xj) := 1
j (−1)i+jx2

j for each x = (x1, x2, · · · , xn) ∈ X =

Πj∈IXj .

Then, for each i ∈ I, fi,i is clearly a (quasi-)convex component function on
Ti(x), and for any λ ∈ (0, 1), Ti

(
λx1 +(1−λ)x2

)
⊆ Ti(xk) for each k = 1, 2.

Therefore, all hypotheses of Theorem 3.3 are satisfied so that there exists an
extreme social equilibrium x̄ = (0, 0, · · · , 0) ∈ X for the game Γ. Indeed, for
each i ∈ I, 0 ∈ Ti(x̄), and

0 = fi(0, 0, · · · , 0) ≤ fi(xi, x̄−i)

= fi,1(0) + fi,2(0) + · · ·+ fi,i(xi) + · · ·+ fi,n(0)

= fi,i(xi) =
1

i
x2
i

for each xi ∈ Ti(x̄) = [0, 1], and also 0 is an extreme point of Ti(x̄) = [0, 1].
However, since fi(·, xi) is neither (quasi-)convex nor (quasi-)concave for each

i ∈ I, we can not apply the previous equilibrium existence theorems in Border
[3], Ding-Kim-Tan [6], and Park [8] for this compact game Γ.
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