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Abstract. We proposed a new reliable combination of new Homotopy Perturbation Method

(HPM) and Elzaki transform called as Elzaki Transform Homotopy Perturbation Method

(ETHPM) is designed to obtain a exact solution to the fractional Black-Scholes equation

with boundary condition for a European option pricing problem. The fractional derivative

is in Caputo sense and the nonlinear terms in Fractional Black-Scholes Equation can be

handled by using HPM. The Black-Scholes formula is used as a model for valuing European

or American call and put options on a non-dividend paying stock. The methods give an

analytic solution of the fractional Black-Scholes equation in the form of a convergent series.

Finally, some examples are included to demonstrate the validity and applicability of the

proposed technique.
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1. Introduction

Fractional calculus is a part of the study of mathematics and the basic
concepts of fractional calculus are not new. Since many years, fractional dif-
ferential equations have been investigated by many people. It is used in many
fields of science and technology [1, 4, 15, 21, 22, 27, 29]. But some fractional
differential equations do not have exact solutions, so we require new meth-
ods and integral transforms. Several methods and integral transforms have
been designed for solving such fractional differential equations. One of such
transform is known as Elzaki transform, it was initially introduced by Elzaki
in 2011. Elzaki derived this transform for ordinary and partial differential
equations in the time domain [13, 16, 17, 18]. But first time in 2012, Elzaki
and Hilal, also developed a mixture of homotopy perturbation and Elzaki
transform for solving nonlinear partial differential equations [19]. Later on
many researchers used this mixture for solving linear and nonlinear partial
differential equations [20] and then it is also used for solving fractional par-
tial differential equations [9]. In 2012, Kumar et al. used the mixture of
homotopy perturbation and Laplace transform for solving fractional Black-
Scholes European option pricing equation [30]. Also in 2013, Elbeleze et al.
proposed a new method known as Sumudu transform homotopy perturbation
method for fractional Black-Scholes European option pricing equations [2].
From last few years many researchers have been paying their attention on
the existence of solution of the Black Scholes model using different methods
[3, 5, 6, 12, 14, 24, 25, 28, 33].

Black and Scholes in 1973 [11] got an idea that would change the world
of finance forever. Black-Scholes is a pricing model used to determine the
fair price or theoretical value for a call or a put option based on six variables
such as volatility, type of options, underlying stock price, time, strike price,
and risk-free rate. In 2000 Manale and Mahomed have modified a simple
formula for valuing American and European calll and put options [31]. Black-
Scholes pricing model is mostly used by the traders who buy options that are
priced under the formula calculated value, and sell options that title are priced
higher than the Black-Scholes calculated value. This model for pricing stock
options has been applied for many different commodities and payoff structures,
because it is very easy to use. The Black-Scholes model for value of an option
is shown by the following equation:

∂u

∂t
+
σx2

2

∂2u

∂x2
+ r(t)x

∂u

∂x
− r(t)u, 0 < µ ≤ 1, (1.1)

where u(x, t), (x, t) ∈ R+ × (0,T) is the European option price at asset price
x and at time t, T is maturity, r(t) is the risk-free interest rate and σ(x, t)
represents the volatility function of the underlying asset. The payoff functions
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are vc(x, t) = max(x−E, 0) denotes the European call option value, vp(x, t) =
max(E−x, 0) denotes the European put option value, E denotes the expiration
price for the option and the function max(x, 0) gives the large value between
x and 0.

In this article, we consider the following form of the Black-Schools fractional
differential equation:

∂µu

∂tµ
+
σx2

2

∂2u

∂x2
+ r(t)x

∂u

∂x
− r(t)u, 0 < µ ≤ 1, (1.2)

subject to the condition

u(x, 0) = max (ex − 1, 0) .

The aim of this article is to study the application of ETHPM, to obtain ap-
proximate solution of fractional Black-Schools equation with initial conditions
of the form

Dµ
t u = uxx + (k − 1)ux − ku, 0 < µ ≤ 1,

and the result is presented.

2. Elzaki transform

A new transform called the Elzaki transform defined for function of expo-
nential order [7, 8, 10], we consider functions in the set A defined by

A = {f(t) : ∃M,K1,K2 > 0, |f(t)| < Me
|t|
kj , if t ∈ (−1)j [0,∞)}.

In the set A, the constant M is finite number, K1,K2 are finite or infinite. The
Elzaki transform denoted by the operator E(·) and defined by the integral
equation.

E[f(t)] = T (v) = v

∫ ∞
0

f(t)e
−t
v dt, t ≥ 0, K1 ≤ v ≤ K2, 0 ≤ t <∞.

3. Fundamental facts of the fractional calculus

Here, we mention some basic fundamental properties of the fractional cal-
culus.

Definition 3.1. ([23, 32]) The Riemann-Liouville fractional integral operator
of order µ ≥ 0, of a function f ∈ Cµ, µ ≥ −1 is defined by:

Jµf(x) =
1

Γ(µ)

∫ x

0
(x− t)µ−1f(t)dt, µ > 0, x > 0,

J0f(x) = f(x).

Properties of the operator Jµ can be found, we mention only the followings:



334 P. R. Bhadane, K. P. Ghadle and A. A. Hamoud

(1) f ∈ Cµ, µ ≥ −1, α, β ≥ 0, and γ > −1,

(2) JαJβf(x) = Jα+βf(x) and JαJβf(x) = JβJαf(x) ,

(3) Jαxγ = Γ(γ+1)
Γ(α+γ+1)x

α+γ .

The Riemann-Liouville derivative has certain disadvantage, when trying to
model real world phenomenon with fractional differential equations. There-
fore, we shall introduce a modified fractional differential operator Dµ

t proposed
by Caputo in his work.

Definition 3.2. ([26]) The fractional derivative of f(x) in the Caputo sense
is defined by:

Dµ
∗ f(x) = Jm−µDmf(x) =

1

Γ(m− µ)

∫ x

0
(x− t)m−µ−1fm(t)dt,

for m− 1 < µ ≤ m, m ∈ N, x > 0.

For the Riemann-Liouville fractional integral and the Caputo fractional de-
rivative, we have the following relation:

JµTD
µ
t f(x) = f(x)−

m−1∑
k=0

f (k)(0+)
xk

k!
x > 0.

Definition 3.3. ([18]) The Elzaki transform of the Caputo fractional deriva-
tive is defined by:

E [Dµ
t f(t)] = ν−µ

{
T (ν)−

n∑
k=1

νµ−k+2
[
Dµ−K (f(t))|t=0

]}
.

4. Elzaki transform homotopy perturbation method

Consider a general nonlinear non-homogeneous partial fractional differential
equation with initial condition of the form:

Dµ
t u(x, t) +Ru(x, t) +Nu(x, t) = g(x, t), (4.1)

Lu(x, o) = h(x), ut(x, o) = f(x), (4.2)

where Dµ
t u(x, t) is the Caputo fractional derivative of the function u(x, t), R

is linear differential operator, N is the general nonlinear differential operator
and g(x, t) is the source term.

Taking Elzaki transform on both sides of equation (4.1), to get

E[Dµ
t u(x, t)] + E[Ru(x, t)] + E[Nu(x, t)] = E[g(x, t)].
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Using the differentiation property of Elzaki transforms and initial condition
(4.2), we have

E[u(x, t)] = f(x) + uµE[g(x, t)]− uµE−1[E[Ru(x, t)] + E[Nu(x, t)]]. (4.3)

Appling the inverse Elzaki transform on both sides of equation (4.3), to find

u(x, t) = g(x, t)− p.E−1[vµ[E[Ru(x, t)] + E[Nu(x, t)]]], (4.4)

where g(x, t) represent the term arising from the source term and the pre-
scribed initial condition.

Now we apply the HPM

u(x, t) =
∞∑
n=0

pnun(x, t), (4.5)

and the nonlinear term can be decomposed as

Nu(x, t) =
∞∑
n=0

pnHn(u), (4.6)

where Hn(u) are He’s polynomials and given by

Hn(u0, u1, u2, . . . , un) =
1

n!

∂n

∂pn

[
N

( ∞∑
n=0

piui

)]
p=0

, n = 0, 1, 2, . . . .

Substituting (4.5) and (4.6) in (4.4), we get

∞∑
n=0

pnun(x, t) = g(x, t)−p

{
E−1

[
vµE

(
R
∞∑
n=0

pnun(x, t) +
∞∑
n=0

pnHn(u)

)]}
.

This is the coupling of the Elzaki transform and the HPM, comparing the
coefficients of like powers of the following approximations are obtained.

p0 : u0(x, t) = g(x, t),

p1 : u1(x, t) = −E−1 [Evµ [Ru0(x, t) +H0(u)]] ,

p2 : u2(x, t) = −E−1 [Evµ [Ru1(x, t) +H1(u)]] ,

p3 : u3(x, t) = −E−1 [Evµ [Ru2(x, t) +H2(u)]] .

Proceeding in this same manner, the rest of the components un(x, t) can be
completely obtained and the series solution is thus entirely determined, finally
we approximate the analytical u(x, t) as

u(x, t) = lim
p→1

∞∑
n=0

pnun(x, t) = u0(x, t) + u1(x, t) + u2(x, t) + · · · .
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Theorem 4.1. The function u(x, t) is defined by

u(x, t) = max (ex, o)
(

1− e−kt
)

+ max (ex − 1, o) e−kt, (4.7)

i.e., u(x, t) = ex(1− e−kt) + (ex − 1)e−kt

satisfies the equation

∂µu

∂tµ
=
∂2u

∂x2
+ (k − 1)

∂u

∂x
− ku, 0 < µ ≤ 1. (4.8)

Proof. We have

∂u

∂t
= ke−kt,

∂u

∂x
= ex,

∂2u

∂x2
= ex. (4.9)

Substituting Eqs.(4.7) and (4.9) into the Eq.(4.8) gives (when µ = 1)

∂u

∂t
− ∂2u

∂x2
− (k − 1)

∂u

∂x
+ ku

= ke−kt − ex − (k − 1)ex + k[ex(1− e−kt) + (ex − 1)e−kt]

= ke−kt − ex − kex + ex + kex − kexe−kt + kexe−kt − ke−kt

= 0.

This completes the proof. �

Theorem 4.2. The function u(x, t) is defined by

u(x, t) = x(1− e−0.06t) + max
(
x− 25e−0.06, 0

)
e−0.06t,

i.e., u(x, t) = x(1− e−0.06t) + (x− 25e−0.06 − 1)e−0.06t, (4.10)

satisfies equation

∂µu

∂tµ
+ 0.08(2 + sinx)2x2∂

2u

∂x2
+ 0.06x

∂u

∂x
− 0.06u = 0, 0 < µ ≤ 1. (4.11)

Proof. We have

∂u

∂t
= (1.5)e−0.06−0.06t,

∂u

∂x
= 1,

∂2u

∂x2
= 0. (4.12)

Substituting Eqs.(4.10) and (4.12) into the Eq.(4.11) gives (when µ = 1)
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∂u

∂t
+ 0.08(2 + sinx)2x2∂

2u

∂x2
+ 0.06x

∂u

∂x
− 0.06u

= (1.5)e−0.06−0.06t + [0.08(2 + sinx)2x2](0) + 0.06x(1)

−0.06
[
x(1− e−0.06t) + (x− 25e−0.06 − 1)e−0.06t

]
= (1.5)e−0.06−0.06t + 0 + 0.06x− 0.06x+ 0.06xe−0.06t

−0.06xe−0.06t − 1.5e−0.06−0.06t

= 0.

This completes the proof. �

5. Applications

Example 5.1. Consider the following fiactional Black-Scholes option pricing
equation as

∂µu

∂tµ
=
∂2u

∂x2
+ (k − 1)

∂u

∂x
− ku, 0 < µ ≤ 1, (5.1)

subject to the condition

u(x, 0) = max (ex − 1, 0) . (5.2)

Applying Elzaki transform on both sides of equation (5.1) subject to the initial
condition (5.2), we get

E[u(x, t)] = max (ex − 1, 0) + vµE [uxx + (k − 1)ux − ku] . (5.3)

Using the inverse Elzaki transform on both sides of the equation (5.3) we have

u(x, t) = max (ex − 1, 0)− E−1 [vµE [uxx + (k − 1)ux − ku]] .

Now appling HPM

u(x, t) = max (ex − 1, 0)− p
[
E−1 [vµE [uxx + (k − 1)ux − ku]]

]
, (5.4)

where max (ex − 1, 0) represent the term arising from the source term and the
prescribed initial condition. Now we apply the HPM

∞∑
n=0

pnun(x, t) = max(ex − 1, 0)− p

{
E−1

[
vµE

( ∞∑
n=0

pnHn(u)

)]}
, (5.5)

where

Hn = unxx + (k − 1)unx − kun, n ∈ N
and

u(x, t) =

∞∑
n=0

pnun(x, t).
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Equating the corresponding power of p on both sides in equation (5.5), we
have

po : u0(x, t) = max (ex − 1, 0) , (5.6)

p1 : u1(x, t) = −E−1 {vµE [H0(u)]} (5.7)

= −max(ex, 0)
(−ktµ)

Γ(µ+ 1)
+ max (ex − 1, 0)

(−ktµ)

Γ(µ+ 1)
,

p2 : u2(x, t) = E−1 {vµE [H1(u)]} (5.8)

= −max(ex, 0)
(−ktµ)2

Γ(2µ+ 1)
+ max (ex − 1, 0)

(−ktµ)2

Γ(2µ+ 1)
,

...

pn : un(x, t) = E−1 {vµE [Hn−1(u)]} (5.9)

= −max(ex, 0)
(−ktµ)n

Γ(nµ+ 1)
+ max (ex − 1, 0)

(−ktµ)n

Γ(nµ+ 1)
.

The solution u(x, t) of Eq. (5.1) by using Eqs. (5.6)-(5.9) is given by

u(x, t) = lim
p→1

∞∑
n=0

pnun(x, t),

u(x, t) = uo(x, t) + u1(x, t) + u2(x, t) + . . . ,

u(x, t) = max (ex, 0)

−max(ex, 0)

[
1 +

(−ktµ)

Γ(µ+ 1)
+

(−ktµ)2

Γ(2µ+ 1)
+

(−ktµ)3

Γ(3µ+ 1)
+ · · ·

]

+ max(ex − 1, 0)

[
1 +

(−ktµ)

Γ(µ+ 1)
+

(−ktµ)2

Γ(2µ+ 1)
+

(−ktµ)3

Γ(3µ+ 1)
+ · · ·

]

= max (ex, 0)−max(ex, 0)
∞∑
n=0

(−ktµ)n

Γ(nµ+ 1)

+ max(ex − 1, 0)

∞∑
n=0

(−ktµ)n

Γ(nµ+ 1)
,

and the closed form

u(x, t) = max (ex, 0) [1− Eµ (−ktµ)] + max (ex − 1, 0) [Eµ (−ktµ)] ,

where Eµ(z) is Mittag-Leffler function in one parameter. When µ = 1, then

u(x, t) = max (ex, 0)
(

1− e−kt
)

+ max (ex − 1, 0) e−kt. (5.10)
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Therefore, the obtained solution is (5.10).

The following plots are obtained using wolfram Alpha software:

(A): x = −3 . . . 3, t = −3 . . . 3, k = 2 (B): x = 0 . . . 3, t = −3 . . . 3, k = 2

(C): x = 0 . . . 3, t = 0 . . . 3, k = 2 (D): x = −3 . . . 3, t = 0 . . . 3, k = 2

(E): x = −3 . . . 3, t = 0 . . . 3; k = −2 (F): x = 0 . . . 3, t = 0 . . . 3, k = −2

Example 5.2. Consider the another following generalized fractional Black
Scholes equation as

∂µu

∂tµ
+ 0.08(2 + sinx)2x2∂

2u

∂x2
+ 0.06x

∂u

∂x
− 0.06u = 0 , 0 < µ ≤ 1, (5.11)

subject to the initial condition

u(x, 0) = max
(
x− 25e−0.06, 0

)
. (5.12)
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Applying Elzakit transform on both sides of equation (5.11) we have

E[u(x, t)] = max
(
x− 25e−0.06, 0

)
(5.13)

−vµE
[
0.08(2 + sinx)2x2uxx + 0.06xux − 0.06u

]
.

Using the inverse Elzaki transform on both sides of the equation (5.13), we
have

u(x, t) = max
(
x− 25e−0.06, 0

)
−E−1

{
vµE

[
0.08(2 + sinx)2x2uxx + 0.06xux − 0.06u

]}
.

Now by using HPM, we have
∞∑
n=0

pnun(x, t) = max(x− 25e−0.06 − 1, 0) (5.14)

−p

{
E−1

[
vµE

( ∞∑
n=0

pnHn(u)

)]}
,

where Hn = 0.08 (2 + sinx)2 x2unxx+ 0.06xunx−0.06un, n ∈ N. Equating the
corresponding power of p on both sides in equation (5.14), we have

p0 : u0(x, t) = max
(
x− 25e−0.06, 0

)
, (5.15)

p1 : u1(x, t) = E−1 {vµE [H0(u)]} (5.16)

= −x(−0.06tµ)

Γ(µ+ 1)
+ max

(
x− 25e−0.06, 0

) (−0.06tµ)

Γ(µ+ 1)
,

p2 : u2(x, t) = E−1 {vµE [H1(u)]} (5.17)

= −x(−0.06tµ)2

Γ(2µ+ 1)
+ max

(
x− 25e−0.06, 0

) (−0.06tµ)2

Γ(2µ+ 1)
,

...

pn : un(x, t) = E−1 {vµE [Hn−1(u)]} (5.18)

= −x(−0.06tµ)n

Γ(nµ+ 1)
+ max

(
x− 25e−0.06, 0

) (−0.06tµ)n

Γ(nµ+ 1)
.

The solution u(x, t) of Eq. (5.11) by using Eqs. (5.15)-(5.18) is given by

u(x, t) = uo(x, t) + u1(x, t) + u2(x, t) + · · · ,

u(x, t) = −x

[
(−0.06tµ)

Γ(µ+ 1)
+

(−0.06tµ)2

Γ(2µ+ 1)
+

(−0.06tµ)3

Γ(3µ+ 1)
+ · · ·

]

+ max(x−25ex, 0)

[
1+

(−0.06tµ)

Γ(µ+ 1)
+

(−0.06tµ)2

Γ(2µ+ 1)
+

(−0.06tµ)3

Γ(3µ+ 1)
+· · ·

]
,
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u(x, t) = x

[
1−

∞∑
n=0

(−0.06tµ)n

Γ(nµ+ 1)

]
+max

(
x− 25e−0.06 − 1, 0

) ∞∑
n=0

(−0.06tµ)n

Γ(nµ+ 1)

and closed form

u(x, t) = x [1− Eµ (−0.06tµ)] + max
(
x− 25e−0.06, 0

)
[Eµ (−0.06tµ)] ,

where Eµ(z) is Mittag-Leffler function in one parameter. When µ = 1, then

u(x, t) = x
(
1− e−0.06t − 1, 0

)
+ max

(
x− 25e−0.06 − 1, 0

)
e−0.06t. (5.19)

Therefore, the obtained solution is (5.19).

The following plots are obtained using wolform Alpha software:

(G): x = −3 . . . 3, t = 5 (H): x = 0 . . . 3, t = 0 . . . 3

(I): x = −1 . . . 1, t = 5 (J): x = −3 . . . 3, t = 0 . . . 3

(K): x = 0 . . . 3; t = −3 . . . 3 (L): x = −3 . . . 3, t = −3 . . . 3
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6. Conclusion

This paper intends to show the applicability of the Elzaki transform ho-
motopy perturbation method to obtain an analytical solution for fractional
Black-Scholes equation. It concludes that the new integral Elzaki transform
homotopy perturbation method is very powerful, effective and efficient tool.

The obtained result, by this method are found to be more precise with the
exact solution obtains by other existing methods. So the method could be one
of the most practicable existing methods.

Acknowledgments: The authors would like to thank the anonymous re-
viewers and the editor of this journal for their helpful comments and valuable
suggestions which led to an improved presentation of this paper.

References

[1] J. Ahmad, M. Shakeel, Q. Hassan and S. Mohyud-Din, Analytical solution of Black-
Scholes model using fractional variation method, Int. J. Modern Math. Sci., 5 (2013),
133-142.

[2] A. Ali, A. Kilicman and MB. Taib, Homotopy perturbation method for fractional Black-
Scholes European option pricing equations using Sumudu transform, Math. Problems in
Eng., Article ID 524852 (2013), 1-7.

[3] T. Allahviranloo and S. Behzadi, The use of iterative methods for solving Black-Scholes
equations, Int. J. Ind. Math., 5 (2013), 1-11.

[4] K. Balachandran, L. Byszewski and J.K. Kim, Nonlocal Cauchy problem for second
order functional differential equations and fractional differential equations, Nonlinear
Funct. Anal. Appl., 24(3) (2019), 457-475.

[5] M. Bani Issa and A. Hamoud, Some approximate methods for solving system of nonlinear
integral equations, Technology Reports of Kansai University, 62(3) (2020), 388-398.

[6] M. Bani Issa and A. Hamoud, Solving systems of Volterra integro-differential equations
by using semi-analytical techniques, Technology Reports of Kansai University, 62(3)
(2020), 685-690.

[7] P. Bhadane and K. Ghadle, Solution of advection diffusion equation for concentration of
pollution and dissolved Oxygen in the River Water by Elzaki transform, Amer. J. Eng.
Research, 5(9) (2016), 116-121.

[8] P. Bhadane and K. Ghadle, Application of Elzaki transform to system of linear differ-
ential equations, Int. J. Research Pub., 6(2) (2016), 36-43.

[9] P. Bhadane and K. Ghadle, Approximate analytical solution of fractional gas dynamic
equation by Elzaki transform homotopy perturbation method, J. Basic and Appl. Research
Int., I (2017), 29-36.

[10] P. Bhadane and V. Pradhan, Elzaki transform homotopy perturbation method for solving
gas dynamic equation, Int. J. Research in Eng. Tech., 2(12) (2013), 260-264.

[11] F. Black and M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ.,
81 (1973), 637-654.

[12] M. Bohner and Y. Zheng, On analytical solution of the Black-Scholes equation, Appl.
Math. Lett., 22 (2009), 309-313.

[13] M. Bohner, F. Sanchez and S. Rodriguez, European call option pricing using the Ado-
mian decomposition method, Adv. Dyn. Syst. Apst., 9 (2014), 75-85.



Fractional Black-Schole’s european option pricing equation 343

[14] R. Company, E. Navarro, J. Pintos and E. Ponsoda, Numerical solution of linear and
nonlinear Black-Scholes option pricing equations, Comput. Math. Appl., 56 (2008),
813-821.

[15] L. Dawood, A. Hamoud and N. Mohammed, Laplace discrete decomposition method
for solving nonlinear Volterra-Fredholm integro-differential equations, Journal of Math-
ematics and Computer Science, 21(2) (2020), 158-163.

[16] T. Elzaki, The new integral transform Elzaki transform, Global J. Pure and Appl. Math.,
7(1) (2011), 57-64.

[17] T. Elzaki and S. Elzaki, Application of new transform ”Elzaki transform” to partial
differential equations, Global J. Pure and Appl. Math., 7(1) (2011), 65-70.

[18] T. Elzaki and S. Elzaki, On the new integral transform ”Elzaki transform” fundamental
properties investigation and application, Global J. Math. Sci.: Theory and Practicals, 4
(2012), 1-13.

[19] T. Elzaki and E. Hilal, Homotopy perturbation and Elzaki transform for solving nonlin-
ear partial differential equations, Math. Theory and Mod., 2(3) (2012), 33-42.

[20] T. Elzaki and H. Kim, The solution of Burger’s equation by Elzaki transform homotopy
perturbation method, Appl. Math. Sci., 8 (2014), 2931-2940.

[21] A. Hamoud and K. Ghadle, Some new existence, uniqueness and convergence results
for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech.,
5(1) (2019), 58-69.

[22] A. Hamoud and K. Ghadle, Existence and uniqueness of solutions for fractional mixed
Volterra-Fredholm integro-differential equations, Indian J. Math., 60(3) (2018), 375-395.

[23] A. Hamoud and K. Ghadle, The approximate solutions of fractional Volterra-Fredholm
integro-differential equations by using analytical techniques, Probl. Anal. Issues Anal.,
7(25) (2018), 41-58.

[24] A. Hamoud and K. Ghadle, Existence and uniqueness of the solution for Volterra- Fred-
holm integro-differential equations, J. Siberian Federal University. Math. Phys., 11(6)
(2018), 692-701.

[25] A. Hamoud and K. Ghadle, Homotopy analysis method for the first order fuzzy Volterra-
Fredholm integro-differential equations, Indonesian Journal of Electrical Engineering and
Computer Science, 11(3) (2018) 857-867.

[26] A. Hamoud and K. Ghadle, Usage of the homotopy analysis method for solving fractional
Volterra-Fredholm integro-differential equation of the second kind, Tamkang J. Math.,
49(4) (2018), 301-315.

[27] K. Hussain, A. Hamoud and N. Mohammed, Some new uniqueness results for fractional
integro-differential equations, Nonlinear Funct. Anal. Appl., 24(4) (2019), 827-836.

[28] L. Jodar, P. Sevilla-Peris, J. Cortes and R. Sala, A new direct method for solving the
Black-Scholes equation, Applied Mathematics Letters, 18 (2005), 29-32.

[29] S. Kumar, D. Kumar and J. Singh, Numerical computation of fractional Black Scholes
equation arising in financial market, Egyptian j. Basic and Appl. Sci., I(15) (2014),
177-183.

[30] S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand and L. Wei, Analytical solution
of fractional Black-Scholes European option pricing equation by using Laplace transform,
J. Fractional Calcu. Appl., 2(8) (2012), 1-9.

[31] J. Manale and F. Mahomed, A simple formula for valuing American and European call
and put options in: J. Banasiak (Ed.), Proceeding of the Hanno Rund Workshop on
the Differential Equations, University of Natal, 2000.

[32] K. Miller and B. Ross, An introduction to the fractional calculus and fractional differ-
ential equations, Johan Willey and Sons, Inter Science. New York, 2003.



344 P. R. Bhadane, K. P. Ghadle and A. A. Hamoud

[33] N. Ozdemir and M. Yavuz, Numerical solution of fractional Black-Scholes equation by
using the multivariate Pad approximation, Int. Conference on Comput. and Expe. Sci.
and Eng., 132(3) (2017), 1050-1053.


