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Abstract. In this paper, we prove the existence of unique fixed point for asymptotically

nonexpansive nonself mapping in CAT (0) spaces.

1. Introduction

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or,
more briefly, a geodesic from x to y) is a mapping c from a closed interval
[0, l] ⊂ R to X such that c(0) = x, c(l) = y, and d(c(t), c(t′)) = |t − t′| for all
t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The image α of c is
called a geodesic (or, metric) segment joining x and y. When it is unique, this
geodesic is denoted by [x, y]. The space (X, d) is said to be a geodesic space if
every two points of X are joined by a geodesic, and X is said to be uniquely
geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A
subset Y ⊆ X is said to be convex if Y includes every geodesic segment joining
any two of its points.

A geodesic triangle4(x1, x2, x3) is a geodesic metric space (X, d) consists of
three points x1, x2, x3 ∈ X (the vertices of 4) and a geodesic segment between
each pair of vertices (the edges of 4). A comparison triangle for the geodesic
triangle 4(x1, x2, x3) in (X, d) is a triangle 4̄(x1, x2, x3) = 4(x̄1, x̄2, x̄3) in
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R2 such that dR2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. Such a triangle always

exists(see, [1], [18]).

A metric space X is a CAT (0) space. This term is due to Gromov [9] and
it is an acronym for Cartan, Aleksandrov and Toponogov. If it is geodesically
connected, and if every geodesic triangle in X is at least as ‘thin’ as its com-
parison triangle in the Euclidean plane(see, e.g., [1], p.159). It is well known
that any complete, simply connected Riemannian manifold having nonpositive
sectional curvature is a CAT (0) space. The precise definition is given below.

A geodesic metric space is said to be a CAT (0) space if all geodesic triangles
of appropriate size satisfy the following CAT (0) comparison axiom.

Let 4 be a geodesic triangle in X and let 4̄ ⊂ R2 be a comparison
triangle for 4. Then 4 is said to satisfy the CAT (0) inequality if for
all x, y ∈ 4 and all comparison points x̄, ȳ ∈ 4̄,

d(x, y) ≤ dR2(x̄, ȳ).

If x, y1, y2 are points of a CAT (0) space and if y0 is the midpoint of the
segment [y1, y2], which we will denote by y1⊕y2

2 , then the CAT (0) inequality
implies

d2
(
x,
y1 ⊕ y2

2

)
= d2(x, y0) ≤

1

2
d2(x, y1) +

1

2
d2(x, y2)−

1

4
d2(y1, y2).

This inequality is the (CN) inequality of Bruhat and Tits [3]. In fact, a geodesic
space is a CAT (0) space if and only if it satisfies the (CN) inequality(cf. [1],
p.163). The above inequality has been extended by Khamsi and Kirk [11] as

d2(z, αx⊕ (1− α)y)

≤ αd2(z, x) + (1− α)d2(z, y)− α(1− α)d2(x, y),
(CN∗)

for any α ∈ [0, 1] and x, y, z ∈ X. The inequality (CN∗) also appeared in [7].

In the recent years, CAT (0) spaces have attracted many researchers as they
played a very important role in different aspects of geometry and mathematics
(see [1], [2], [4], [8], [14], [15]). Complete CAT (0) spaces are often called
Hadamard spaces (see [15]).

Let (X, d) be a metric space and C be a nonempty subset of X. Recall that
C is called a retract of X if there exists a continuous mapping P from X onto
C such that Px = x, for all x ∈ C. A mapping P : X → C is said to be
retraction if P 2 = P . It follows that if a mapping P is retraction, then Py = y
for all y in the range of P .
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Definition 1.1. Let C be a nonempty subset of a metric space (X, d). Let
P : X → C be a nonexpansive retraction of X onto C.

(1) A nonself mapping T : C → X is said to be nonexpansive(cf. [12]) if

d(Tx, Ty) = d(T (PT )0x, T (PT )0y) ≤ d(x, y),

for all x, y ∈ C.
(2) A nonself mapping T : C → X is said to be asymptotically nonexpansive([5])

if there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that

d(T (PT )n−1x, T (PT )n−1y) ≤ knd(x, y), ∀n ∈ N,
for all x, y ∈ C.

2. Preliminaries

Throughout this paper, N denotes the set of all positive integers. Let C be
a nonempty subset of a metric space (X, d). F(T ) = {x : Tx = x} denotes
the set of fixed points of T .

We write (1− t)x⊕ ty for the unique point z in the geodesic segment joining
from x to y such that

d(z, x) = td(x, y) and d(z, y) = (1− t)d(x, y).

We also denote by [x, y] the geodesic segment joining from x to y, that is,

[x, y] = {(1− t)x⊕ ty : t ∈ [0, 1]}.
A subset C of a CAT (0) space is convex if [x, y] ⊂ C for all x, y ∈ C.

Now, we give the concept of 4-convergence and its some basic properties.

The concept of 4-convergence introduces by Lim [17] in 1976 was shown
by Kirk and Panyanak [16] in CAT (0) spaces to be very similar to the weak
convergence in a Banach space setting.

Let X be a CAT (0) space, and let {xn} be a bounded sequence in X. For
x ∈ X, we let

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf {r(x, {xn}) : x ∈ X} ,
and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})} .
It is known that an asymptotic center A({xn}) consists of exactly one point
in a complete CAT (0) space(see, e.g., [6], Proposition 7).
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Definition 2.1. ([16]) A sequence {xn} in a complete CAT (0) space X is
said to be 4-convergent to x ∈ X if x is the unique asymptotic center of {un}
for every subsequence {un} of {xn}. In this case we can write

xn
4−→ x or 4− lim

n→∞
xn = x

and call x the 4-limit of {xn}.

Remark 2.2. In a CAT (0) space, strong convergence in the metric implies
4-convergence(see, [10], [13]).

3. Existence theorem of a fixed point

Now, we shall prove the existence of a fixed point for asymptotically non-
expansive nonself mapping T : C → X in a complete CAT (0) space.

Theorem 3.1. Let C be a nonempty, closed and convex subset of a complete
CAT (0) space X and let T : C → X be an asymptotically nonexpansive nonself
mapping with a sequence {kn} ⊂ [1,∞) such that limn→∞ kn = 1. Then T has
a fixed point in C. Moreover, the set F(T ) is closed and convex subset of X.

Proof. For a given x0 ∈ C, we define

ϕ(u) = lim sup
n→∞

d(T (PT )n−1x0, u), ∀u ∈ C, (3.1)

where P is a nonexpansive retraction ofX onto C. Since T is an asymptotically
nonexpansive nonself mapping, we have

d(T (PT )n+m−1x0, T (PT )m−1u) ≤ kmd((PT )nx0, u)

= kmd(PT (PT )n−1x0, Pu)

≤ kmd(T (PT )n−1x0, u)

for any n,m ∈ N. Taking lim supn→∞ in above inequality and using (3.1), we
have that

ϕ(T (PT )m−1u) ≤ kmϕ(u), ∀u ∈ C. (3.2)

It is easy to see that the function u 7→ ϕ(u) is a lower semi-continuous function.
Since C is closed and convex, there exists a point w ∈ C such that

ϕ(w) = inf
u∈C

ϕ(u). (3.3)

Letting u = w in (3.2), for each m ∈ N, we have

ϕ(T (PT )m−1w) ≤ kmϕ(w). (3.4)
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By using (CN) inequality for any positive integers n,m ∈ N, we obtain

d2
(
T (PT )n−1x0,

T (PT )m−1w ⊕ T (PT )l−1w

2

)
≤ 1

2
d2(T (PT )n−1x0, T (PT )m−1w)

+
1

2
d2(T (PT )n−1x0, T (PT )l−1w)

− 1

4
d2(T (PT )m−1w, T (PT )l−1w).

Taking lim supn→∞ on the both sides, from (3.3) and (3.4), we get

ϕ2(w) ≤ ϕ2

(
T (PT )m−1w ⊕ T (PT )l−1w

2

)
≤ 1

2
ϕ2(T (PT )m−1w) +

1

2
ϕ2(T (PT )l−1w)

− 1

4
d2(T (PT )m−1w, T (PT )l−1w)

≤ 1

2
(k2m + k2l )ϕ2(w)− 1

4
d2(T (PT )m−1w, T (PT )l−1w).

This implies that

d2(T (PT )m−1w, T (PT )l−1w) ≤ 2(k2m + k2l − 2)ϕ2(w).

Taking lim supm,l→∞ on the both sides, we have

lim sup
m,l→∞

d2(T (PT )m−1w, T (PT )l−1w) ≤ 0,

this means that

lim sup
m,l→∞

d(T (PT )m−1w, T (PT )l−1w) ≤ 0,

which implies that {T (PT )m−1w} is a Cauchy sequence in C. Since C is
complete, it converges to some v ∈ C. Let

4− lim
m→∞

T (PT )m−1w = v.

From the continuity of TP, we have

v = 4− lim
m→∞

T (PT )mw

= 4− lim
m→∞

TP (T (PT )m−1w)

= (TP )v = Tv.

This means that T has a fixed point v.
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Next, we have to prove that F(T ) is closed and convex subset. Since T is
continuous, F(T ) is closed. To show that F(T ) is convex, it is enough to show
that

x⊕ y
2
∈ F(T ), ∀x, y ∈ F(T ).

Let p = x⊕y
2 . Since C is convex, p ∈ C. By using (CN) inequality, we have

d2(T (PT )n−1p, p) = d2
(
T (PT )n−1p,

x⊕ y
2

)
≤ 1

2
d2(T (PT )n−1p, x) +

1

2
d2(T (PT )n−1p, y)

− 1

4
d2(x, y). (3.5)

Since x ∈ F(T ), we obtain

d2(T (PT )n−1p, x) = d2(T (PT )n−1p, T (PT )n−1x)

≤ k2nd2(p, x) = k2nd
2

(
x⊕ y

2
, x

)
≤ k2n

(
1

2
d(x, x) +

1

2
d(y, x)

)2

=
1

4
k2nd

2(x, y). (3.6)

Similarly, since y ∈ F(T ), we can get

d2(T (PT )n−1p, y) ≤ 1

4
k2nd

2(x, y). (3.7)

Substituting (3.6) and (3.7) into (3.5). we obtain

d2(T (PT )n−1p, p) ≤ 1

8
k2nd

2(x, y) +
1

8
k2nd

2(x, y)− 1

4
d2(x, y)

=
1

4
(k2n − 1)d2(x, y).

Hence, we have

lim
n→∞

d(T (PT )n−1p, p) = 0,

that is

4− lim
n→∞

T (PT )n−1p = p.
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From the continuity of TP and p ∈ C, we get

p = 4− lim
n→∞

T (PT )np

= 4− lim
n→∞

TP (T (PT )n−1p)

= (TP )p

= Tp.

It implies that

x⊕ y
2

= p ∈ F(T ), ∀x, y ∈ F(T ).

This completes the proof. �

Corollary 3.2. Let C be a nonempty, closed and convex subset of a complete
CAT (0) space X and let T : C → X be a nonexpansive mapping. Then T has
a fixed point in C. Moreover, the set F(T ) is closed and convex subset of X.

4. Conclusion

In this paper, we show that the existence of fixed point and uniquess for
asymptotically nonexpansive nonself mapping in CAT (0) spaces. It is ex-
pected that this class will inspire and motivate further research in this area.
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