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Abstract. Mixed problems with nonlocal boundary condition or with nonlocal initial con-
ditions were studied by many mathematicians lately [3, 4, 5, 7]. The importance of problems
with integral condition has been pointed out by Samarskii [8]. Mathematical modelling by
evolution problems with nonlocal constraint is encountered in heat transmission theory, ther-
moelasticity, chemical engineering, underground water flow, and plasma physics. In [1] the
author derived a priori estimation of the solution for mixed problems with integral condition
for singular parabolic equations, and in [2] it was proved that such problem is solvable. In
this paper we prove a theorem about the existence and uniqueness of strong generalized
solution of nonlocal mixed problems for singular parabolic equations.

1. INTRODUCTION

In the rectangle @ = (0, L) x (0,7T), we consider the following mixed prob-
lem:

ou 1 0 [ ,0u\
Lu = u(z,0) = ¢(x), (1.2)
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m Ou (x,t)

il—%x77 =0, (1.3)
(2 u(l,t) —a2u(a,t) =0, 0<a</{ (1.4)

2. A PRIORI ESTIMATIONS

We denote by E, Banach space, which is a completion by the norm

W, (x)z™u? (z, t)dx

T ¢
m m—1, 2
—|—2(£_a)//x u® (x,t) dxdt, (2.1)
00

set of sufficiently smooth functions u(x,t), which satisfy the conditions (1.3),
(1.4), and the function

1, 0<zx<a
\I/“(x):{ ﬁ:i, a< </

We will use this space for the solution u(x, t) of the problem (1.1)-(1.4). For the
right-hand side f(z,t) of equation (1.1) and initial function ¢(x) of condition
(1.2) we introduce the space F,, which consist of vector-functions F = (f, ¢)
with the following norm

l
2 = x)x™ T 2 dx )™ (z)dx. .
\fHFa—/Qw) | fab) | ddt+/wa<> P (x)d (2.2)

a

Problem (1.1)-(1.4) generate the operator L with the domain D(L), consisted
of the functions z2 u € Ly(Q) : x?% € LQ(Q)7$%% € Ly(Q), ﬁa% (asm%)
€ L9(Q),which satisfy conditions (1.3) and (1.4). We note that for any
functions v € D(L) at m > 1 condition (1.3) implied from the condition

|u (0,%)| < oo. In fact, we denote

xim% <xma$> — h(z, 1), (2.3)
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then
m 1 ’
G m/gmh(g,t)d5+ ‘. (2.4)
ox T2 T2
0
r1f rd
u(z,t) :/nm/gmh(ﬁ,t)dgdn—l—cl/nz—|—02. (2.5)
0 0 0

If m > 1 and |u(0,t)| < oo, then from (2.5) implies that ¢; = 0, and then
from (2.4) implies (1.3).

Theorem 2.1. For any function u € D(L) the following inequality holds
lulls, <elFlE, (2.6)
where ¢ = max (%, T).

Proof. Integrating by parts and from conditions (1.3) and (1.4), we get

T ! l
//\I/a(a:)xmauuda:dt: 1/\Ila(a:)x u?(z, 7)dx
ot 2
00 0
1 l
— Q/Wa(x)xmch(x)d:U
0
T L
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2" 2 (z, t)dxdt

0 a
- / 20, 1) — a™u(a, b)]dt
Z —a ) )
0
T £
__m m—1, 2
= 30—a) //$ u” (z,t) dzdt. (2.7)
0 a

Hence, from (2.7) we get the following equation

T £

;/Z\Ihz(:v):vmuQ (x,7) dw"‘//‘l’a(x)xm(gz)dedt
0

0

//ml?gctdmdt
{—a)

T /£

_ ;/\Ila(x)x oz dm+//\l’a Vo™ f(x, )u(z, t)dudt. (2.8)
0 0

We estimate the second term in the right-hand side of (2.8) as follows

T /£ T

¢
//\I/a )™ fudxdt| < //\Ifa Y™ f2(x, t)dxdt
0

0

O<t<T

¢
su /\Ifa (x,t)dz
0<t

0

¢

T
+T U, (z) 2™ f2 (x,t) dadt. (2.9)
0/0/

0
J T sup \I/a (x) xmu? (z,t) d

rlk\ =
I/\'U
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From (2.8) and (2.9) implies the following inequality
¢

T L
1 m 2 m [ Ou 2
2/\Ila () 2™u (w,T)dx—i-//\I’a (x)z (8:6) dxdt
0 0

0
T /
m m—1, 2
_— dxdt
+2(£_a)//x u“dx
0 a

l
< % /\I/a (z) 2™* (x) dx + T/Q U, (z) 2™ f2(x, t)dxdt
0

¢
1
+ — sup /\I/a (z) z™u? (z,t) dz. (2.10)

The right-hand side of (2.10) does not depend on T. Then we take the sup
in the left-hand side of (2.10) by 7" and we get (2.6). This completes the
proof. O

3. EXISTENCE OF GENERALIZED SOLUTION

We consider the operator L, which maps E, into F, with the domain D(L).
In a standard way (see [6]) it is proved that the operator L admit the closure
which we denote by L with the domain D (L)

Definition 3.1. Solution of the equation Lu = F is called strong generalized
solution of the problem (1.1)-(1.4). In other words, the function wu, is called
strong generalized solution of (1.1)-(1.4), if there exist a sequence of functions
u, € D(L), such that [|u, —ullp, — 0 and [jup, — Fl|p — 0 as n — oo.

Theorem 3.2. For any F = (f,{) € F,, there exists a unique strong general-
ized solution of the problem (1.1)-(1.4).

Proof. For u,, € D(L), the following inequality holds

2
lunllp, < llunlg, (3.1)

which implies from Theorem 2.1. In (3.1) passing on to the limit as n — oo,
we get the inequality

2 2 -
HuHEa <c HLuHFa , ueD (L) . (3.2)
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From (3.2), we know that the strong generalized solution of (1.1)-(1.4) is
unique, the range R (f) of the operator L has a closure in F, and R (f) =

R (L). Hence for the proof of the existence of strong generalized solution of
(1.1)-(1.4) we need to prove that the range R(L) of the operator L is dense

in F,. Since the range of track operator is dense in the space with norm
1

2

¢
< [, (z) 2™p? (2) dx) , then it is sufficient to prove that from the equality
0

/ U, () 2" Lug (x,t) dedt = 0, (3.3)
Q

where
u€Dy(L)={ueD(L):u(x,0)=0}
and
/Q\Pa (z)2™g? (x,t) dedt < oo,

implies that g = 0. In (3.3) we set

U(%t)=/{/x7;n/n£mg(§,7)d§+£ga:;ag /an}n/nﬁmg(fﬁ)d&
0 O 0 0 0
+a€j€m j - ] §"g (€,7) d€}dr.
0

0
It is not hard to see that u € Dg (L) and g (z,t) = -4 2 (zm%). From (3.3),

™ Oz
we get
ou 0 0u
Vo (z) === =™ dt
/Q () 5t 9 (”” axat> d
1 0 ou\ 0 0u
— | U, (x) —=— (2" =— ) — [ 2™ =—— | dzdt = 0. 4
/Q (z) x™ Ox (m 03:) Ox <:c 8:U8t> . 0 (34)

Also as in (2.7), we have

oud [, 0% 9?u?
/Q\I'a(x)atax (x 83}875) dxdt—/Q\Ila (x)x <83}8t) dxdt




and
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1 0 ou\ 0 0%u
— | U () ——=— (2" =— ™ dxdt
/Q « (@) ™ Ox ( 3x> Ox Ox0t

o (2 (2D
0

From (3.4)-(3.6) implies that u is constant, but since u € Dgy(L), that is,
=0,

u (z,0)

[1]

then u = 0. Consequently g = 0. This completes the proof. 0
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