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Abstract. In this paper, we study the statistical approximation properties of a sequence

of double smooth Gauss-Weierstrass singular integral operators which are not positive in

general. We also show that our statistical approximation results are stronger than the

classical uniform approximations.

1. Introduction

In the approximation theory, it is a quite difficult problem to approximate a
function by linear operators that do not need to be positive. The uniform and
Lp-approximation properties of some non-positive operators may be found in
the papers [1, 2, 3, 6, 7, 8, 9, 16].

A similar problem also occurs in the statistical approximation theory. In
this paper, using the concept of statistical convergence from the summability
theory, we study the statistical approximation properties of the double Gauss-
Weierstrass singular integral operators which are not positive in general.

In recent years, the statistical convergence has been used in the Korovkin-
type approximation theory which deals with the problem of approximation of
a function by means of a sequence of positive linear operators. Recall that
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it is possible to approximate (in statistical sense) a function by means of a
sequence of positive linear operators although the limit of the sequence fails
(see, e.g., [4, 10, 11, 12, 13]).

Let A := [ajn], j, n = 1, 2, ..., be an infinite summability matrix and assume
that, for a given sequence x = (xn)n∈N , the series

∑∞
n=1 ajnxn converges for

every j ∈ N. Then, by the A-transform of x, we mean the sequence Ax =
((Ax)j)j∈N such that, for every j ∈ N, (Ax)j :=

∑∞
n=1 ajnxn. A summability

matrix A is said to be regular (see [17]) if for every x = (xn)n∈N for which
limn→∞ xn = L we get limj→∞ (Ax)j = L. Now, fix a non-negative regular
summability matrix A. Then, a given sequence x = (xn)n∈N is said to be A-
statistically convergent to L if, for every ε > 0, limj→∞

∑
n : |xn−L|≥ε anj = 0.

This limit is denoted by stA − limn xn = L (see [15]). It is easy to check that
if A = C1 = [cjn], the Cesáro matrix of order one defined to be cjn = 1/j if
1 ≤ n ≤ j, and cjn = 0 otherwise, then C1-statistical convergence coincides
with the concept of statistical convergence, which was first introduced by
Fast [14]. In this case, we use the notation st − lim instead of stC1 − lim.
Every convergent sequence is A-statistically convergent, however, its converse
is not always true. Not all properties of convergent sequences hold true for
A-statistical convergence (or statistical convergence). For instance, although
it is well-known that a subsequence of a convergent sequence is convergent,
this is not always true for A-statistical convergence. Another example is that
every convergent sequence must be bounded, however it does not need to be
bounded of an A-statistically convergent sequence.

2. Construction of the operators

In this section we introduce a sequence of double smooth Gauss-Weierstrass
singular integral operators. We first give some notation used in the paper. Let

α
[m]
j,r :=





(−1)r−j

(
r

j

)
j−m if j = 1, 2, ..., r,

1−
r∑

j=1
(−1)r−j

(
r

j

)
j−m if j = 0.

(2.1)

and

δ
[m]
k,r :=

r∑

j=1

α
[m]
j,r jk, k = 1, 2, ...,m ∈ N. (2.2)

Then it is clear that
∑r

j=0 α
[m]
j,r = 1 and −∑r

j=1(−1)r−j

(
r

j

)
= (−1)r

(
r

0

)

hold. We also consider the set

D :=
{
(s, t) ∈ R2 : s2 + t2 ≤ π2

}
.
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Assume now that (ξn)n∈N is a sequence of positive real numbers. Setting

λn :=
1

π
(
1− e−π2/ξ2

n

) , (2.3)

we define the double smooth Gauss-Weierstrass singular integral operators as
follows:

W [m]
r,n (f ; x, y) =

λn

ξ2
n

r∑

j=0

α
[m]
j,r




∫∫

D

f (x + sj, y + tj) e−(s2+t2)/ξ2
ndsdt


 , (2.4)

where (x, y) ∈ D, n, r ∈ N, m ∈ N0 := N ∪ {0}, and also f : D → R is a
Lebesgue measurable function. In this case, we observe that our operators
W

[m]
r,n are not positive in general. For example, if we take ϕ(u, v) = u2 + v2

and also take r = 2, m = 3, x = y = 0, then we get

W
[3]
2,n(ϕ; 0, 0) =

λn

ξ2
n




2∑

j=1

j2α
[3]
j,2




∫∫

D

(
s2 + t2

)
e−(s2+t2)/ξ2

ndsdt

=
λn

ξ2
n

(
α

[3]
1,2 + 4α

[3]
2,2

) π∫

−π

π∫

0

ρ3e−ρ2/ξ2
ndρdθ

=
2πλn

ξ2
n

(
−2 +

1
2

) π∫

0

ρ3e−ρ2/ξ2
ndρ

= −3πλn

ξ2
n


−π2ξ2

ne−π2/ξ2
n

2
+

(
1− e−π2/ξ2

n

)
ξ4
n

2




= −3ξ2
n

2
+

3π2e−π2/ξ2
n

2
(
1− e−π2/ξ2

n

) < 0,

by the fact that

1 + u ≤ eu for all u ≥ 0.

We observe that the operators W
[m]
r,n given by (2.4) preserve the constant func-

tions in two variables. Indeed, for the constant function f(x, y) = C, by (2.1),
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(2.3) and (2.4), we get, for every r, n ∈ N and m ∈ N0, that

W [m]
r,n (C; x, y) =

Cλn

ξ2
n

∫∫

D

e−(s2+t2)/ξ2
ndsdt

=
Cλn

ξ2
n

π∫

−π

π∫

0

e−ρ2/ξ2
nρdρdθ

= C.

We also need the following lemma.

Lemma 2.1. Let k ∈ N. Then, it holds, for each ` = 0, 1, ..., k and for every
n ∈ N, that

∫∫

D

sk−`t`e−(s2+t2)/ξ2
ndsdt =

{
0 if k is odd

2γn,kB
(

k−`+1
2 , `+1

2

)
if k is even

where B(a, b) denotes the Beta function, and

γn,k :=

π∫

0

ρk+1e−ρ2/ξ2
ndρ =

ξk+2
n

2

{
Γ

(
1 +

k

2

)
− Γ

(
1 +

k

2
,

(
π

ξn

)2
)}

, (2.5)

where Γ (α, z) =
∫∞
z tα−1e−tdt is the incomplete gamma function and Γ is the

gamma function.

Proof. It is clear that if k is odd, then the integrand is a odd function with
respect to s and t; and hence the above integral is zero. Also, if k is even,
then the integrand is a even function with respect to s and t. If we define

D1 :=
{

(s, t) ∈ R2 : 0 ≤ s ≤ π and 0 ≤ t ≤
√

π2 − s2
}

, (2.6)

then we may write that∫∫

D

sk−`t`e−(s2+t2)/ξ2
ndsdt = 4

∫∫

D1

sk−`t`e−(s2+t2)/ξ2
ndsdt

= 4

π/2∫

0

π∫

0

(cos θ)k−` (sin θ)` e−ρ2/ξ2
nρk+1dρdθ

= 4γn,k

π/2∫

0

(cos θ)k−` (sin θ)` dθ

= 2γn,kB

(
k − ` + 1

2
,
` + 1

2

)
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whence the result. ¤

3. Estimates for the operators (2.4)

Let f ∈ Cπ(D), the space of all continuous functions on D, 2π-periodic per
coordinate. Then, the rth (double) modulus of smoothness of f is given by
(see, e.g., [5])

ωr(f ;h) := sup√
u2+v2≤h; (u,v)∈D

∥∥∆r
u,v(f)

∥∥ < ∞, h > 0, (3.1)

where ‖·‖ is the sup-norm and

∆r
u,v (f(x, y)) =

r∑

j=0

(−1)r−j

(
r

j

)
f(x + ju, y + jv). (3.2)

Let m ∈ N0. By C
(m)
π (D) we mean the space of functions 2π-periodic per

coordinate, having m times continuous partial derivatives with respect to the
variables x and y. Observe that if f ∈ C

(m)
π (D) , then we see that

∥∥∥∥
∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥ := sup
(x,y)∈D

∣∣∣∣
∂mf(x, y)
∂m−`x∂`y

∣∣∣∣ < ∞, (3.3)

for every ` = 0, 1, ..., m.

3.1. Estimates in the case of m ∈ N.
Now we consider the case of m ∈ N. Then, define the function

G
[m]
x,y (s, t) :=

1
(m− 1)!

r∑
j=0

(
r

j

)
1∫
0

(1− w)m−1

×
{

m∑
`=0

(
m

m− `

) ∣∣∣∣
∂mf(x + jsw, y + jtw)

∂m−`x∂`y

∣∣∣∣
}

dw

(3.4)

for m ∈ N and (x, y), (s, t) ∈ D. Notice that G
[m]
x,y (s, t) is well-defined for each

fixed m ∈ N when f ∈ C
(m)
π (D) due to the condition (3.3).

Theorem 3.1. Let m ∈ N and f ∈ C
(m)
π (D). Then, for the operators W

[m]
r,n ,

we have
∣∣∣W [m]

r,n (f ; x, y)− f(x, y)− Im(x, y)
∣∣∣

≤ λn

ξ2
n

∫∫
D

G
[m]
x,y (s, t) (|s|m + |t|m) e−(s2+t2)/ξ2

ndsdt,
(3.5)
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where λn is given by (2.3) and

Im(x, y) :=
2λn

ξ2
n

[m/2]∑
i=1

γn,2iδ
[m]
2i,r

(2i)!

×
{

2i∑
`=0

B

(
2i− ` + 1

2
,
2i + 1

2

)(
2i

2i− `

)
∂2if(x, y)
∂2i−`x∂`y

}
.

(3.6)

The sum in (3.6) collapses when m = 1.

Proof. Let (x, y) ∈ D be fixed. For every f ∈ Cπ (D) we may write that
r∑

j=0

α
[m]
j,r (f(x + js, y + jt)− f(x, y))

=
m∑

k=1

δ
[m]
k,r

k!

k∑

`=0

(
k

k − `

)
sk−`t`

∂kf(x, y)
∂k−`x∂`y

+
1

(m− 1)!

1∫

0

(1− w)m−1ϕ[m]
x,y (w; s, t)dw,

where

ϕ[m]
x,y (w; s, t) : =

r∑

j=0

(−1)r−j

(
r

j

)

×
{

m∑

`=0

(
m

m− `

)
sm−`t`

∂mf(x + jsw, y + jtw)
∂m−`x∂`y

}
.

Hence, using the definition (2.4), one can get

W [m]
r,n (f ; x, y)− f(x, y) =

λn

ξ2
n

m∑

k=1

δ
[m]
k,r

k!

k∑

`=0

(
k

k − `

)
∂kf(x, y)
∂k−`x∂`y

×



∫∫

D

sk−`t`e−(s2+t2)/ξ2
ndsdt




+R[m]
n (x, y),

where

R[m]
n (x, y) : =

λn

ξ2
n(m− 1)!

∫∫

D




1∫

0

(1− w)m−1ϕ[m]
x,y (w; s, t)dw




×e−(s2+t2)/ξ2
ndsdt.
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Also, using Lemma 2.1, we obtain that

W [m]
r,n (f ;x, y)− f(x, y)− Im(x, y) = R[m]

n (x, y), (3.7)

where Im(x, y) is given by (3.6). Since

∣∣∣ϕ[m]
x,y (w; s, t)

∣∣∣ ≤ (|s|m + |t|m)
r∑

j=0

(
r

j

)

×
{

m∑

`=0

(
m

m− `

) ∣∣∣∣
∂mf(x + jsw, y + jtw)

∂m−`x∂`y

∣∣∣∣
}

,

it is clear that
∣∣∣R[m]

n (x, y)
∣∣∣ ≤ λn

ξ2
n

∫∫

D

G[m]
x,y (s, t) (|s|m + |t|m) e−(s2+t2)/ξ2

ndsdt. (3.8)

Therefore, combining (3.7) and (3.8) the proof is completed. ¤

Corollary 3.2. Let m ∈ N and f ∈ C
(m)
π (D). Then, for the operators W

[m]
r,n ,

we have
∥∥∥W [m]

r,n (f)− f
∥∥∥ ≤ Cr,mλn

ξ2
n


γn,m +

[m/2]∑

i=1

γn,2i


 (3.9)

for some positive constant Cr,m depending on r and m, where γn,k is given by
(2.5). Also, the sums in (3.9) collapse when m = 1.

Proof. From (3.5) and (3.6), we may write that
∥∥∥W [m]

r,n (f)− f
∥∥∥ ≤ ‖Im‖+

λn

ξ2
n

∫∫

D

∥∥∥G[m]
x,y (s, t)

∥∥∥ (|s|m + |t|m) e−(s2+t2)/ξ2
ndsdt.

We first estimate ‖Im‖. It is easy to see that

‖Im‖ ≤ 2λn

ξ2
n

[m/2]∑

i=1

γn,2iδ
[m]
2i,r

(2i)!

×
{

2i∑

`=0

B

(
2i− ` + 1

2
,
2i + 1

2

)(
2i

2i− `

)∥∥∥∥
∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥
}

≤ Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i,

where
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Kr,m :

= max
1≤i≤[m/2]

{
2δ

[m]
2i,r

(2i)!

(
2i∑

`=0

B

(
2i− ` + 1

2
,
2i + 1

2

)(
2i

2i− `

) ∥∥∥∥
∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥
)}

.

On the other hand, observe that
∥∥∥G[m]

x,y (s, t)
∥∥∥ ≤ 2r

m!

m∑

`=0

(
m

m− `

) ∥∥∥∥
∂mf(·, ·)
∂m−`x∂`y

∥∥∥∥ := Lr,m.

Then, combining these results we observe that

∥∥∥W [m]
r,n (f)− f

∥∥∥ ≤ Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i

+
Lr,mλn

ξ2
n

∫∫

D

(|s|m + |t|m) e−(s2+t2)/ξ2
ndsdt

=
Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i

+
4Lr,mλn

ξ2
n

∫∫

D1

(sm + tm) e−(s2+t2)/ξ2
ndsdt

=
Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i

+
4Lr,mλn

ξ2
n

π/2∫

0

π∫

0

ρm+1(cosm θ + sinm θ)e−ρ2/ξ2
ndρdθ

=
Kr,mλn

ξ2
n

[m/2]∑

i=1

γn,2i +
4λnLr,m

ξ2
n

B

(
m + 1

2
,
1
2

)
γn,m,

which yields

∥∥∥W [m]
r,n (f)− f

∥∥∥ ≤ Cr,mλn

ξ2
n


γn,m +

[m/2]∑

i=1

γn,2i


 ,

where

Cr,m := max
{

Kr,m, 4Lr,mB

(
m + 1

2
,
1
2

)}
.

So, the proof is completed. ¤



Uniform approximation in statistical sense 495

3.2. Estimates in the case of m = 0.
Now we only consider the case of m = 0. Then, we first get the following

result.

Theorem 3.3. Let f ∈ Cπ (D) . Then, we have
∣∣∣W [0]

r,n(f ; x, y)− f(x, y)
∣∣∣ ≤ 4λn

ξ2
n

∫∫

D1

ωr

(
f ;

√
s2 + t2

)
e−(s2+t2)/ξ2

ndsdt, (3.10)

where λn and D1 are given by (2.3) and (2.6), respectively.

Proof. Let (x, y) ∈ D. Taking m = 0 in (2.1) we observe that

W [0]
r,n(f ; x, y)− f(x, y) =

λn

ξ2
n

∫∫

D





r∑

j=1

α
[0]
j,r (f (x + sj, y + tj)− f(x, y))





×e−(s2+t2)/ξ2
ndsdt

=
λn

ξ2
n

∫∫

D








r∑

j=1

(−1)r−j

(
r

j

)
f (x + sj, y + tj)




−



r∑

j=1

(−1)r−j

(
r

j

)
f(x, y)






 e−(s2+t2)/ξ2

ndsdt.

Then, we have

W [0]
r,n(f ;x, y)− f(x, y) =

λn

ξ2
n

∫∫

D





r∑

j=0

(−1)r−j

(
r

j

)
f (x + sj, y + tj)





×e−(s2+t2)/ξ2
ndsdt

and hence

W [0]
r,n(f ;x, y)− f(x, y) =

λn

ξ2
n

∫∫

D

∆r
s,t (f(x, y)) e−(s2+t2)/ξ2

ndsdt.

Therefore, we obtain that
∣∣∣W [0]

r,n(f ; x, y)− f(x, y)
∣∣∣ ≤ λn

ξ2
n

∫∫

D

∣∣∆r
s,t (f(x, y))

∣∣ e−(s2+t2)/ξ2
ndsdt

≤ λn

ξ2
n

∫∫

D

ωr

(
f ;

√
s2 + t2

)
e−(s2+t2)/ξ2

ndsdt,

which completes the proof. ¤
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Corollary 3.4. Let f ∈ Cπ (D) . Then, we have
∥∥∥W [0]

r,n(f)− f
∥∥∥ ≤ Srλnωr (f ; ξn) (3.11)

for some positive constant Sr depending on r.

Proof. Using (3.10) and also considering the fact that

ωr (f ; λu) ≤ (1 + λ)rωr (f ; u) , λ, u > 0,

we may write that
∥∥∥W [0]

r,n(f)− f
∥∥∥ ≤ 4λn

ξ2
n

∫∫

D1

ωr

(
f ;

√
s2 + t2

)
e−(s2+t2)/ξ2

ndsdt

≤ 4λnωr (f ; ξn)
ξ2
n

∫∫

D1

(
1 +

√
s2 + t2

ξn

)r

e−(s2+t2)/ξ2
ndsdt

=
4λnωr (f ; ξn)

ξ2
n

π/2∫

0

π∫

0

(
1 +

ρ

ξn

)r

ρe−ρ2/ξ2
ndρdθ

=
2πλnωr (f ; ξn)

ξ2
n

π∫

0

(
1 +

ρ

ξn

)r

ρe−ρ2/ξ2
ndρ.

Now setting u = ρ
ξn

, we get

∥∥∥W [0]
r,n(f)− f

∥∥∥ ≤ 2πλnωr (f ; ξn)

π/ξn∫

0

(1 + u)r ue−u2
du

≤ 2πλnωr (f ; ξn)

∞∫

0

(1 + u)r+1

eu2 du

= : Srλnωr (f ; ξn)

where

Sr := 2π

∞∫

0

(1 + u)r+1

eu2 du < ∞.

Therefore, the proof is completed. ¤
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4. Statistical approximation by the operators (2.4)

4.1. Statistical approximation in the case of m ∈ N.
We need the following lemma.

Lemma 4.1. Let A = [ajn] be a non-negative regular summability matrix, and
let (ξn)n∈N be a sequence of positive real numbers for which

stA − lim
n

ξn = 0. (4.1)

Then, for each fixed k = 1, 2, ..., m ∈ N, we have

stA − lim
n

γn,kλn

ξ2
n

= 0,

where λn and γn,k are given by (2.3) and (2.5), respectively.

Proof. Let k = 1, 2, ...,m be fixed. Then, by (2.5), we get

γn,kλn

ξ2
n

=
λn

ξ2
n

π∫

0

ρk+1e−ρ2/ξ2
ndρ

=
λn

ξ2
n

π∫

0

ρk−2ρ2
(
ρe−ρ2/ξ2

n

)
dρ

≤ πk−2λn

ξ2
n

π∫

0

ρ2
(
ρe−ρ2/ξ2

n

)
dρ

(by change of variable and integration by parts)

=
πk−2λn

ξ2
n





π2ξ2
ne−π2/ξ2

n

2
+

ξ4
n

(
1− e−π2/ξ2

n

)

2





Now using (2.3), we obtain that

γn,kλn

ξ2
n

≤ πk−1e−π2/ξ2
n

2
(
1− e−π2/ξ2

n

) +
πk−3ξ2

n

2
,

which gives

0 <
γn,kλn

ξ2
n

≤ mk

(
1

eπ2/ξ2
n − 1

+
ξ2
n

π2

)
, (4.2)

where

mk :=
πk−1

2
.
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On the other hand, the hypothesis (4.1) implies that

stA − lim
n

1
eπ2/ξ2

n − 1
= 0 and stA − lim

n
ξ2
n = 0. (4.3)

Now, for a given ε > 0, consider the following sets:

D : =
{

n ∈ N :
γn,kλn

ξ2
n

≥ ε

}
,

D1 : =
{

n ∈ N :
1

eπ2/ξ2
n − 1

≥ ε

2mk

}
,

D2 : =
{

n ∈ N : ξ2
n ≥

επ2

2mk

}
.

Then, from (4.2), we easily see that

D ⊆ D1 ∪D2,

which yields that, for each j ∈ N,
∑

j∈D

ajn ≤
∑

j∈D1

ajn +
∑

j∈D2

ajn. (4.4)

Letting j →∞ in (4.4) and also using (4.3) we get

lim
j

∑

j∈D

ajn = 0,

which completes the proof. ¤

Now, we are ready to give our first statistical approximation theorem for
the operators (2.4) in the case of m ∈ N.

Theorem 4.2. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn)n∈N be a sequence of positive real numbers for which (4.1) holds.
Then, for each fixed m ∈ N and for all f ∈ C

(m)
π (D) , we have

stA − lim
n

∥∥∥W [m]
r,n (f)− f

∥∥∥ = 0.

Proof. Let m ∈ N be fixed. Then, by (3.9), the inequality

∥∥∥W [m]
r,n (f)− f

∥∥∥ ≤ Cr,m


γn,mλn

ξ2
n

+
[m/2]∑

i=1

γn,2iλn

ξ2
n


 (4.5)
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holds for some positive constant where Cr,m. Now, for a given ε > 0, define
the following sets:

E : =
{

n ∈ N :
∥∥∥W [m]

r,n (f)− f
∥∥∥ ≥ ε

}
,

Ei : =
{

n ∈ N :
γn,2iλn

ξ2
n

≥ ε

(1 + [m/2])Cr,m

}
, i = 1, ...,

[m

2

]
,

E1+[m
2

] : =
{

n ∈ N :
γn,mλn

ξ2
n

≥ ε

(1 + [m/2])Cr,m

}
.

Then, the inequality (4.5) implies that

E ⊆
1+[m

2
]⋃

i=1

Ei,

and hence, for every j ∈ N,

∑

n∈E

ajn ≤
1+[m

2
]∑

i=1

∑

n∈Ei

ajn.

Now taking limit as j →∞ in the both sides of the above inequality and using
Lemma 4.1 we obtain that

lim
j

∑

n∈E

ajn = 0,

which is the desired result. ¤

4.2. Statistical approximation in the case of m = 0.
We now investigate the statistical approximation properties of the operators

(2.4) when m = 0. We need the following result.

Lemma 4.3. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn)n∈N be a bounded sequence of positive real numbers for which (4.1)
holds. Then, for every f ∈ Cπ (D) , we have

stA − lim
n

λnωr (f ; ξn) = 0.

Proof. It follows from (4.1) and (2.3) that

stA − lim
n

λn =
1
π

.

Also, using the right-continuity of ωr (f ; ·) at zero, it is not hard to see that

stA − lim
n

ωr (f ; ξn) = 0.

Combining these results, the proof is completed. ¤
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Then, we get the next statistical approximation theorem.

Theorem 4.4. Let A = [ajn] be a non-negative regular summability matrix,
and let (ξn)n∈N be a sequence of positive real numbers for which (4.1) holds.
Then, for all f ∈ Cπ (D) , we have

stA − lim
n

∥∥∥W [0]
r,n(f)− f

∥∥∥ = 0.

Proof. By (3.11), the inequality
∥∥∥W [0]

r,n(f)− f
∥∥∥ ≤ Srλnωr (f ; ξn)

holds for some positive constant Sr. Then, for a given ε > 0, we can write that
{

n ∈ N :
∥∥∥W [0]

r,n(f)− f
∥∥∥ ≥ ε

}
⊆

{
n ∈ N : λnωr (f ; ξn) ≥ ε

Sr

}
,

which gives, for every j ∈ N, that
∑

n:
∥∥∥W

[0]
r,n(f)−f

∥∥∥≥ε

ajn ≤
∑

n:λnωr(f ;ξn)≥ ε
Sr

ajn.

Now, taking limit as j → ∞ in the both sides of the last inequality and also
using Lemma 4.3, we obtain that

lim
j

∑

n:
∥∥∥W

[0]
r,n(f)−f

∥∥∥≥ε

ajn = 0,

whence the result. ¤

5. Concluding remarks

Taking A = C1, the Cesáro matrix of order one, and also combining Theo-
rems 4.2 and 4.4, we immediately get the following result.

Corollary 5.1. Let (ξn)n∈N be a sequence of positive real numbers for which
st− limn ξn = 0 holds. Then, for each fixed m ∈ N0 and for all f ∈ C

(m)
π (D) ,

we have st− limn

∥∥∥W
[m]
r,n (f)− f

∥∥∥ = 0.

Furthermore, choosing A = I, the identity matrix, in Theorems 4.2 and 4.4,
we have the next approximation theorems with the usual convergence.

Corollary 5.2. Let (ξn)n∈N be a sequence of positive real numbers for which
limn ξn = 0 holds. Then, for each fixed m ∈ N0 and for all f ∈ C

(m)
π (D) , the

sequence
(
W

[m]
r,n (f)

)
n∈N

is uniformly convergent to f on D.
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Now define a sequence (ξn)n∈N by

ξn :=
{ √

n, if n = k2, k = 1, 2, ...
1
n , otherwise. (5.1)

Then, observe that st − limn ξn = 0 although it is unbounded above. In this
case, taking A = C1, we obtain from Corollary 5.1 (or, Theorems 4.2 and 4.4)
that

st− lim
n

∥∥∥W [m]
r,n (f)− f

∥∥∥ = 0

holds for each m ∈ N0 and for all f ∈ C
(m)
π (D) . However, since the sequence

(ξn)n∈N given by (5.1) is non-convergent, the (classical) uniform approximation
to a function f by the sequence

(
W

[m]
r,n (f)

)
n∈N

does not hold, i.e., Corollary

5.2 fails for the operators W
[m]
r,n (f) obtained from the sequence (ξn)n∈N defined

by (5.1).
As a result, we can say that our statistical approximation results obtained

in this paper can be still valid although the operators W
[m]
r,n are not positive

in general and also the sequence (ξn)n∈N is non-convergent or unbounded.
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