Copyright © 2020 Kyungnam University Press

COMMON COUPLED FIXED POINT IN A PARTIALLY ORDERED b-METRIC SPACE

K. Kumara Swamy ${ }^{1}$ and T. Phaneendra ${ }^{2}$
${ }^{1}$ Department of Mathematics GMR Institute of Technology, Rajam 532127, Andhra Pradesh, India e-mail: kumaraswamy.k@gmrit.edu.in
${ }^{2}$ Department of Mathematics, School of Advanced Sciences
Vellore Institute of Technology, Vellore-632 014, Tamil Nadu, India
e-mail: drtp.indra@gmail.com

Abstract

A common coupled fixed point theorem supported with an illustrative example, and a related problem of existence of solution of system of Fredhlom type integral equations, are presented for two mappings, which satisfy mixed weakly monotone property in a partially ordered b-metric space.

1. Introduction

Let Y be a nonempty set and $\rho_{s}: Y \times Y \rightarrow \mathbb{R}$ such that
(bs1) $\rho_{s}(x, y) \geq 0$ for all $x, y \in X$ with $\rho_{s}(x, y)=0$ iff $x=y$,
$(\mathrm{bs} 2) \rho_{s}(x, y)=\rho_{s}(y, x)$ for all $x, y \in X$,
$(\mathrm{bs} 3) \rho_{s}(x, y) \leq s\left[\rho_{s}(x, y)+\rho_{s}(y, z)\right]$ for all $x, y \in X$ and $s \geq 1$.
Bakthin [1] introduced ρ_{s} as a b-metric on Y, and the pair (Y, ρ_{s}) denotes a b-metric space with constant s. If (Y, \leq) is a partially ordered set, the triad $\left(Y, \rho_{s}, \leq\right)$ gives a partially ordered b-metric space. The completeness and convergence in a partially ordered b-metric space is similar to those in a b-metric space [7] . In establishing the existence and uniqueness of solution of periodic

[^0]boundary value problems, Bhaskar and Lakshmikantham [2] introduced mixed monotone mappings in partially ordered metric space as given below:
Definition 1.1. Let (Y, \leq) be a partially ordered set. A a mapping S : $Y \times Y \rightarrow Y$ is said to have mixed monotone property, if
(a) $x_{1}, x_{2} \in Y, x_{1} \leq x_{2} \Rightarrow S\left(x_{1}, y\right) \leq S\left(x_{2}, y\right)$,
(b) $y_{1}, y_{2} \in Y, y_{1} \leq y_{2} \Rightarrow S\left(x, y_{1}\right) \geq S\left(x, y_{2}\right)$ for all $x, y \in Y$.

Definition 1.2. Let (Y, \leq) be a partially ordered set. A pair (S, T) of mappings $S: Y \times Y \rightarrow Y$ and $T: Y \times Y \rightarrow Y$ is said to have mixed weakly monotone property, if for all $x, y \in Y$,
(a) $x \leq S(x, y), S(y, x) \leq y \Rightarrow S(x, y) \leq T(S(x, y), S(y, x)), S(y, x) \geq$ $T(S(y, x), S(x, y))$,
(b) $x \leq T(x, y), T(y, x) \leq y \Rightarrow T(x, y) \leq S(T(x, y), T(y, x)), T(y, x) \geq$ $S(T(y, x), T(x, y))$.

Let (Y, d) be a metric space. An element $(x, y) \in Y \times Y$ is said to be a coupled fixed point $[4,7]$ of a mapping $f: Y \times Y \rightarrow Y$, if $f(x, y)=x$ and $f(y, x)=y$. While, $(x, y) \in Y \times Y$ is a common coupled fixed point $[3,4,5]$ of mappings $f: Y \times Y \rightarrow Y$ and $g: Y \times Y \rightarrow Y$, if $x=g(x, y)=f(x, y)$ and $y=g(y, x)=f(y, x)$.

In this paper, we prove a common coupled fixed point theorem, supported by an illustrative example, and present a problem of existence of solution of system of Fredhlom type integral equations, for a pair of mappings, which satisfy mixed weakly monotone property in partially ordered b-metric space.

2. Main results

Lemma 2.1. ([6]) Let $\left(Y, \rho_{s}\right)$ be a b-metric space. Then $Y \times Y$ is a b-metric space endowed with b-metric ρ_{d} as follows:

$$
\begin{equation*}
\rho_{d}((x, y),(u, v))=\rho_{s}(x, y)+\rho_{s}(u, v) . \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Let $\left(Y, \rho_{s}, \leq\right)$ be a partially ordered complete b-metric space with constant $s \geq 1$ and mappings $S, T: Y \times Y \rightarrow Y$ have weakly mixed monotone property on Y. Suppose that there exists $k \in[0,1 / 4 s)$ such that

$$
\begin{align*}
\rho_{s}(S(x, y), T(u, v)) & \leq k \max \left\{\frac{1+\rho_{d}((x, y),(S(x, y), S(y, x)))}{1+\rho_{d}((x, y),(u, v))},\right. \tag{2.2}\\
& \rho_{d}((u, v),(T(u, v), T(v, u))), \rho_{d}((x, y),(u, v)), \\
& \rho_{d}((x, y),(S(x, y), S(y, x)))+\rho_{d}((u, v),(T(u, v), T(v, u))), \\
& \left.\rho_{d}((u, v),(S(x, y), S(y, x)))+\rho_{d}((x, y),(T(u, v), T(v, u)))\right\}
\end{align*}
$$

for all $x, y, u, v \in Y$ with $x \leq u, y \geq v$ and ρ_{d} is given by (2.1). Also, suppose that $x_{0}, y_{0} \in Y$ such that

$$
x_{0} \leq S\left(x_{0}, y_{0}\right) \text { and } y_{0} \geq S\left(y_{0}, x_{0}\right)
$$

or

$$
x_{0} \leq T\left(x_{0}, y_{0}\right) \text { and } y_{0} \geq T\left(y_{0}, x_{0}\right) .
$$

If S or T is continuous, then S and T have a common coupled fixed point.

Proof. Let $\left(x_{0}, y_{0}\right) \in Y \times Y$. Define $\left\langle x_{n}\right\rangle_{n=1}^{\infty},\left\langle y_{n}\right\rangle_{n=1}^{\infty} \subset Y$ by:

$$
\begin{aligned}
& x_{2 n+1}=S\left(x_{2 n}, y_{2 n}\right), \quad y_{2 n+1}=S\left(x_{2 n}, y_{2 n}\right), \\
& x_{2 n+2}=T\left(x_{2 n+1}, y_{2 n+1}\right), \quad y_{2 n+2}=T\left(x_{2 n+1}, y_{2 n+1}\right) \text { for } n \geq 1 .
\end{aligned}
$$

Since S and T have weakly mixed monotone property, we have

$$
\begin{aligned}
& x_{1}=S\left(x_{0}, y_{0}\right) \leq T\left(S\left(x_{0}, y_{0}\right), S\left(y_{0}, x_{0}\right)\right)=T\left(x_{1}, y_{1}\right)=x_{2} \Rightarrow x_{1} \leq x_{2}, \\
& x_{2}=T\left(x_{1}, y_{1}\right) \leq S\left(T\left(x_{1}, y_{1}\right), T\left(y_{1}, x_{1}\right)\right)=S\left(x_{2}, y_{2}\right)=x_{3} \Rightarrow x_{2} \leq x_{3} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& y_{1}=S\left(y_{0}, x_{0}\right) \geq T\left(S\left(y_{0}, x_{0}\right), S\left(x_{0}, y_{0}\right)\right)=T\left(y_{1}, x_{1}\right)=y_{2} \Rightarrow y_{1} \geq y_{2} \\
& y_{2}=T\left(y_{1}, x_{1}\right) \geq S\left(T\left(y_{1}, x_{1}\right), T\left(x_{1}, y_{1}\right)\right)=S\left(y_{2}, x_{2}\right)=x_{3} \Rightarrow y_{2} \geq y_{3} .
\end{aligned}
$$

By induction, $x_{0} \leq x_{1} \leq x_{2} \leq x_{3} \leq \cdots$ and $y_{0} \geq y_{1} \geq y_{2} \geq y_{3} \geq \cdots$. That is, $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ is increasing, while $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ is decreasing.

Now using (2.2), we get

$$
\begin{aligned}
\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)= & \rho_{s}\left(S\left(x_{2 n}, y_{2 n}\right), T\left(x_{2 n+1}, y_{2 n+1}\right)\right) \\
\leq & k \max \left\{\frac{1+\rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(S\left(x_{2 n}, y_{2 n}\right), S\left(y_{2 n}, x_{2 n}\right)\right)\right)}{1+\rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right)},\right. \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(T\left(x_{2 n+1}, y_{2 n+1}\right), T\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right), \\
& \rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right), \\
& \rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(S\left(x_{2 n}, y_{2 n}\right), S\left(y_{2 n}, x_{2 n}\right)\right)\right) \\
& +\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(T\left(x_{2 n+1}, y_{2 n+1}\right), T\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right), \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(S\left(x_{2 n}, y_{2 n}\right), S\left(y_{2 n}, x_{2 n}\right)\right)\right) \\
& \left.+\rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(T\left(x_{2 n+1}, y_{2 n+1}\right), T\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right)\right\}
\end{aligned}
$$

$$
\begin{gathered}
\leq k \max \left\{\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)+\rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right),\right. \\
\rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right)+\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right), \\
\left.s\left[\rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right)+\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)\right]\right\} \\
\leq k s\left[\rho_{d}\left(\left(x_{2 n}, y_{2 n}\right),\left(x_{2 n+1}, y_{2 n+1}\right)\right)+\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)\right]
\end{gathered}
$$

or

$$
\begin{align*}
\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right) \leq & k s\left[d\left(x_{2 n}, x_{2 n+1}\right)+d\left(y_{2 n}, y_{2 n+1}\right)\right. \\
& \left.+d\left(x_{2 n+1}, x_{2 n+2}\right)+d\left(y_{2 n+1}, y_{2 n+2}\right)\right] . \tag{2.3}
\end{align*}
$$

Similarly, we have

$$
\begin{gathered}
\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)=\rho_{s}\left(S\left(y_{2 n}, x_{2 n}\right), T\left(y_{2 n+1}, x_{2 n+1}\right)\right) \\
\leq k \max \left\{\frac{1+\rho_{d}\left(\left(y_{2 n}, x_{2 n}\right),\left(y_{2 n+1}, x_{2 n+1}\right)\right)}{1+\rho_{d}\left(\left(y_{2 n}, x_{2 n}\right),\left(y_{2 n+1}, x_{2 n+1}\right)\right)},\right. \\
\rho_{d}\left(\left(y_{2 n+1}, x_{2 n+1}\right),\left(y_{2 n+2}, x_{2 n+2}\right)\right), \\
\rho_{d}\left(\left(y_{2 n}, x_{2 n}\right),\left(y_{2 n+1}, x_{2 n+1}\right)\right), \\
\rho_{d}\left(\left(y_{2 n}, x_{2 n}\right),\left(y_{2 n+1}, x_{2 n+1}\right)\right) \\
+\rho_{d}\left(\left(y_{2 n+1}, x_{2 n+1}\right),\left(y_{2 n+2}, x_{2 n+2}\right)\right), \\
\rho_{d}\left(\left(y_{2 n+1}, x_{2 n+1}\right),\left(y_{2 n+1}, x_{2 n+1}\right)\right) \\
\left.+\rho_{d}\left(\left(y_{2 n}, x_{2 n}\right),\left(y_{2 n+2}, x_{2 n+2}\right)\right)\right\} \\
\leq
\end{gathered}
$$

or

$$
\begin{align*}
\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right) \leq & k s\left[\rho_{s}\left(x_{2 n}, x_{2 n+1}\right)+\rho_{s}\left(y_{2 n}, y_{2 n+1}\right)\right. \\
& \left.+\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)\right] . \tag{2.4}
\end{align*}
$$

Adding (2.3) and (2.4) and then simplifying, we get

$$
\begin{equation*}
\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right) \leq c\left[\rho_{s}\left(x_{2 n}, x_{2 n+1}\right)+\rho_{s}\left(y_{2 n}, y_{2 n+1}\right)\right], \tag{2.5}
\end{equation*}
$$

where $c=2 k s /(1-2 k s)$. The choice of k implies that $0 \leq c<1$. Again by (2.2),

$$
\begin{aligned}
& \rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right) \\
& =\rho_{s}\left(T\left(x_{2 n+1}, y_{2 n+1}\right), S\left(x_{2 n+2}, y_{2 n+2}\right)\right) \\
& \leq k \max \left\{\frac{1+\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(T\left(x_{2 n+1}, y_{2 n+1}\right), T\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right)}{1+\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right)\left(x_{2 n+2}, y_{2 n+2}\right)\right)},\right. \\
& \rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(S\left(x_{2 n+2}, y_{2 n+2}\right), S\left(y_{2 n+2}, x_{2 n+2}\right)\right)\right) \text {, } \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right) \text {, } \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(T\left(x_{2 n+1}, y_{2 n+1}\right), T\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right) \\
& +\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(S\left(x_{2 n+2}, y_{2 n+2}\right), S\left(y_{2 n+2}, x_{2 n+2}\right)\right)\right) \text {, } \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(S\left(x_{2 n+2}, y_{2 n+2}\right), S\left(y_{2 n+2}, x_{2 n+1}\right)\right)\right) \\
& \left.+\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(T\left(x_{2 n+1}, y_{2 n+1}\right), T\left(y_{2 n+1}, x_{2 n+1}\right)\right)\right)\right\} \\
& =k \max \left\{\frac{1+\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)}{1+\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)},\right. \\
& \rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(x_{2 n+3}, y_{2 n+3}\right)\right), \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right) \text {, } \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right) \\
& +\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(x_{2 n+3}, y_{2 n+3}\right)\right) \text {, } \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+3}, y_{2 n+3}\right)\right) \\
& \left.+\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)\right\} \\
& \leq k \max \left\{\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)\right. \\
& +\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(x_{2 n+3}, y_{2 n+3}\right)\right), \\
& \rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right) \\
& +\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(x_{2 n+3}, y_{2 n+3}\right)\right) \text {, } \\
& s\left[\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)\right. \\
& \left.\left.+\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(x_{2 n+3}, y_{2 n+3}\right)\right)\right]\right\} \\
& \leq k s\left[\rho_{d}\left(\left(x_{2 n+1}, y_{2 n+1}\right),\left(x_{2 n+2}, y_{2 n+2}\right)\right)+\rho_{d}\left(\left(x_{2 n+2}, y_{2 n+2}\right),\left(x_{2 n+3}, y_{2 n+3}\right)\right)\right]
\end{aligned}
$$

or

$$
\begin{align*}
\rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right) \leq & k s\left[\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)\right. \\
& \left.+\rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+\rho_{s}\left(y_{2 n+2}, y_{2 n+3}\right)\right] . \tag{2.6}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\rho_{s}\left(y_{2 n+2}, y_{2 n+3}\right) \leq & k s\left[\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)\right. \\
& \left.+\rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+\rho_{s}\left(y_{2 n+2}, y_{2 n+3}\right)\right] . \tag{2.7}
\end{align*}
$$

Adding (2.6) and (2.7),

$$
\begin{equation*}
\rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+\rho_{s}\left(y_{2 n+2}, y_{2 n+3}\right) \leq c\left[\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)\right] . \tag{2.8}
\end{equation*}
$$

From (2.5) and (2.8),

$$
\begin{equation*}
\rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+\rho_{s}\left(y_{2 n+2}, y_{2 n+3}\right) \leq c^{2}\left[\rho_{s}\left(x_{2 n}, x_{2 n+1}\right)+\rho_{s}\left(y_{2 n}, y_{2 n+1}\right)\right] . \tag{2.9}
\end{equation*}
$$

Continuning in this process, we obtain

$$
\begin{aligned}
\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right) & \leq c\left[\rho_{s}\left(x_{2 n}, x_{2 n+1}\right)+\rho_{s}\left(y_{2 n}, y_{2 n+1}\right)\right] \\
& \leq c^{3}\left[\rho_{s}\left(x_{2 n-2}, x_{2 n-1}\right)+\rho_{s}\left(y_{2 n-2}, y_{2 n-1}\right)\right] \\
& \leq c^{5}\left[\rho_{s}\left(x_{2 n-4}, x_{2 n-3}\right)+\rho_{s}\left(y_{2 n-4}, y_{2 n-3}\right)\right] \\
& \vdots \\
& \leq c^{2 n+1} \cdot\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+\rho_{s}\left(y_{2 n+2}, y_{2 n+3}\right) & \leq c\left[\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)\right] \\
& \leq c^{2 n+2}\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right]
\end{aligned}
$$

for $n \geq 1$.
Now, for all $m, n \geq 1$ with $n \leq m$, we have

$$
\begin{aligned}
& \rho_{s}\left(x_{2 n+1}, x_{2 m+1}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 m+1}\right) \\
& \leq s\left[\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(x_{2 n+2}, y_{2 m+1}\right)\right] \\
&+s\left[\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)+\rho_{s}\left(y_{2 n+2}, y_{2 m+1}\right)\right] \\
& \leq s\left[\rho_{s}\left(x_{2 n+1}, x_{2 n+2}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 n+2}\right)\right] \\
&+s^{2}\left[\rho_{s}\left(x_{2 n+2}, x_{2 n+3}\right)+\rho_{s}\left(y_{2 n+2}, y_{2 n+3}\right)\right] \\
&+s^{2}\left[\rho_{s}\left(x_{2 n+3}, x_{2 m+1}\right)+\rho_{s}\left(y_{2 n+3}, y_{2 m+1}\right)\right] \\
& \leq s c^{2 n+1}\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right] \\
&+s^{2} c^{2 n+2}\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right] \\
&+\cdots+s^{2(m-n)} . c^{2 m}\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\leq & s c^{2 n+1}\left[1+(c s)+(c s)^{2}+(c s)^{3}+\ldots+(c s)^{2 m-2 n-1}\right] \\
& \times\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right] \\
< & \frac{s c^{2 n+1}}{1-c s}\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\rho_{s}\left(x_{2 n}, x_{2 m+1}\right)+\rho_{s}\left(y_{2 n}, y_{2 m+1}\right) & \leq \frac{s c^{2 n}}{1-c s}\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right] \\
\rho_{s}\left(x_{2 n}, x_{2 m}\right)+\rho_{s}\left(y_{2 n}, y_{2 m}\right) & \leq \frac{s c^{2 n}}{1-c s}\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right] \\
\rho_{s}\left(x_{2 n+1}, x_{2 m}\right)+\rho_{s}\left(y_{2 n+1}, y_{2 m}\right) & \leq \frac{s c^{2 n+1}}{1-c s} \quad\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right]
\end{aligned}
$$

Hence for all $m, n \geq 1$ with $n \leq m$, we see that

$$
\rho_{s}\left(x_{n}, x_{m}\right)+\rho_{s}\left(y_{n}, y_{m}\right) \leq \frac{s c^{n}}{1-c s} \quad\left[\rho_{s}\left(x_{0}, x_{1}\right)+\rho_{s}\left(y_{0}, y_{1}\right)\right]
$$

Since $0 \leq c<1, \rho_{s}\left(x_{n}, x_{m}\right)+\rho_{s}\left(y_{n}, y_{m}\right) \rightarrow 0$ as $n \rightarrow \infty$, which implies that $\rho_{s}\left(x_{n}, x_{m}\right) \rightarrow 0$ and $\rho_{s}\left(y_{n}, y_{m}\right) \rightarrow 0$ as $m, n \rightarrow \infty$. This means that $\left\langle x_{n}\right\rangle_{n=1}^{\infty}$ and $\left\langle y_{n}\right\rangle_{n=1}^{\infty}$ are Cauchy sequences in complete Y, so there exist $x, y \in Y$ such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$.

First, suppose that S is continuous. Then

$$
x=\lim _{n \rightarrow \infty} x_{2 n+1}=\lim _{n \rightarrow \infty} S\left(x_{2 n}, y_{2 n}\right)=S(x, y)
$$

and

$$
y=\lim _{n \rightarrow \infty} y_{2 n+1}=\lim _{n \rightarrow \infty} S\left(y_{2 n}, x_{2 n}\right)=S(y, x)
$$

which imply that (x, y) is a coupled fixed point of S.
Using (2.2) with $u=x$ and $v=y$, we have

$$
\begin{aligned}
\rho_{s}(S(x, y), & T(x, y)) \\
\leq k \max \{ & \frac{1+\rho_{d}((x, y),(S(x, y), S(y, x)))}{1+\rho_{d}((x, y),(x, y))} \times \rho_{d}((x, y),(T(x, y), T(y, x))), \\
& \rho_{d}((x, y),(x, y)),\left[\rho_{d}((x, y)(S(x, y), S(y, x)))\right. \\
& \left.\quad+\rho_{d}((x, y)(T(x, y), T(y, x)))\right] \\
& {\left.\left[\rho_{d}((x, y)(S(x, y), S(y, x)))+\rho_{d}((x, y)(T(x, y), T(y, x)))\right]\right\} }
\end{aligned}
$$

$$
\begin{gathered}
=k \max \left\{\frac{1+\rho_{d}((x, y),(x, y))}{1+\rho_{d}((x, y),(x, y))} \times \rho_{d}((x, y),(T(x, y), T(y, x))),\right. \\
\rho_{d}((x, y),(x, y))+\rho_{d}((x, y),(T(x, y), T(y, x))), \\
\left.\left[\rho_{d}((x, y),(x, y))+\rho_{d}((x, y)(T(x, y), T(y, x)))\right]\right\}
\end{gathered}
$$

or

$$
\begin{equation*}
\rho_{s}(x, T(x, y)) \leq k \rho_{d}((x, y),(T(x, y), T(y, x))) . \tag{2.10}
\end{equation*}
$$

Similarly, we can get

$$
\begin{equation*}
\rho_{s}(y, T(y, x)) \leq k \rho_{d}((y, x),(T(y, x), T(x, y))) . \tag{2.11}
\end{equation*}
$$

From (2.10) and (2.11)

$$
\begin{aligned}
& \rho_{s}(x, T(x, y))+\rho_{s}(x, T(x, y)) \\
& \leq k\left[\rho_{d}((x, y),(T(x, y), T(y, x)))+\rho_{d}((x, y),(T(x, y), T(y, x)))\right] \\
& =2 k\left[\rho_{s}(x, T(x, y))+\rho_{s}(y, T(y, x))\right]
\end{aligned}
$$

which implies that $\rho_{s}(x, T(x, y))=0$ and $\rho_{s}(y, T(y, x))=0$, since $k<1 / 2$. That is, (x, y) is a coupled fixed point of T, and henceit is a common coupled fixed point of S and T.

The following example illustrates Theorem 2.2.
Example 2.3. Let $Y=\mathbb{R}$. Define $\rho_{s}: Y \times Y \rightarrow[0, \infty)$ by $\rho_{s}(x, y)=|x-y|^{2}$, where $s=2$. Clearly, $\left(Y, \rho_{s}, \leq\right)$ is a partially orderded complete b-metric space. Set $S(x, y)=\frac{6 x-3 y+33}{36}$ and $T(x, y)=\frac{8 x-4 y+44}{48}$. Then the pair (S, T) satisfies mixed weakly monotone property. Now

$$
\begin{aligned}
& \left.\rho_{s}(S(x, y), T(u, v))\right) \\
& =|S(x, y)-T(u, v)|^{2}=\left|\frac{6 x-3 y+33}{36}-\frac{8 u-4 v+44}{48}\right|^{2} \\
& \leq\left(\frac{1}{6}|x-u|+\frac{1}{8}|y-v|\right)^{2} \leq\left(\frac{1}{6}(|x-u|+|y-v|)\right)^{2} \\
& \leq \frac{1}{18}\left(|x-u|^{2}+|y-v|^{2}\right)=\frac{1}{18}\left[\rho_{s}(x, u)+\rho_{s}(y, v)\right] \\
& =\frac{1}{18} \quad \rho_{d}((x, y),(u, v)) \\
& \leq k \max \left\{\frac{1+\rho_{d}((x, y)(S(x, y), S(y, x))) \rho_{d}((u, v),(T(u, v), T(v, u))}{1+\rho_{d}((x, y)(u, v))}, \rho_{d}((x, y)(u, v))\right. \\
& \quad\left[\rho_{d}((x, y)(S(x, y), S(y, x)))+\rho_{d}((u, v)(T(u, v), T(v, u)))\right] \\
& \left.\quad\left[\rho_{d}((u, v)(S(x, y), S(y, x)))+\rho_{d}((x, y)(T(u, v), T(v, u)))\right]\right\} .
\end{aligned}
$$

where $k=1 / 18$. Note that $0 \leq k<1 / 4 s$ for $s=2$. Thus all the conditions of Theorem 2.2 are satisfied. Therefore, S and T have a common coupled fixed point, namely $(1,1)$.

Remark 2.4. If Y is a totally ordered set, then common coupled fixed point of S and T in Theorem 2.2 is unique. In fact, suppose that (p, q) is another common coupled fixed point of S and T. That is, $S(p, q)=p, S(q, p)=q$ and $T(p, q)=p, T(q, p)=q$. Now, using (2.2), we get

$$
\left.\left.\begin{array}{l}
\rho_{s}(x, p)+\rho_{s}(y, q) \\
=\rho_{s}(S(x, y), T(p, q))+\rho_{s}(S(y, x), T(q, p)) \\
\leq k \max \left\{\frac{1+\rho_{d}((x, y)(S(x, y), S(y, x))) \rho_{d}((p, q),(T(p, q), T(q, p))}{1+\rho_{d}((x, y)(p, q))}, \rho_{d}((x, y),(p, q)),\right. \\
\quad\left[\rho_{d}((x, y),(S(x, y), S(y, x)))+\rho_{d}((p, q),(T(p, q), T(q, p))],\right. \\
\quad\left[\rho_{d}((p, q),(S(x, y), S(y, x)))+\rho_{d}((x, y),(T(p, q), T(q, p))]\right\} \\
+k \max \left\{\frac{1+\rho_{d}((y, x),(S(y, x), S(x, y))) \rho_{d}((q, p),(T(q, p), T(p, q))}{1+\rho_{d}((y, x)(q, p))}, \rho_{d}((y, x),(q, p)),\right. \\
\quad\left[\rho_{d}((y, x)(S(y, x), S(x, y)))+\rho_{d}((q, p),(T(q, p), T(q, p))],\right. \\
\quad\left[\rho_{d}((q, p),(S(y, x), S(x, y)))+\rho_{d}((y, x),(T(q, p), T(p, q))]\right\} \\
=2 k\left[\rho_{d}((p, q),(x, y))+\rho_{d}((x, y),(p, q))\right] \\
=
\end{array}\right] d(x, p)+d(y, q)\right] \$
$$

or

$$
(1-4 k)\left(\rho_{s}(x, p)+\rho_{s}(y, q)\right) \leq 0 .
$$

Since $k<1 / 4$ for $s \geq 1$, it follows that $\rho_{s}(x, p)+\rho_{s}(y, q)=0$, which in turn implies that $x=p$ and $y=q$. Thus common coupled fixed point of S and T is unique.

Taking $S=T$ and $s=1$ in the Theorem 2.2, we get
Corollary 2.5. Suppose that $\left(Y, \rho_{s}, \leq\right)$ is a partially ordered complete b-metric space with constant $s=1$ and $T: Y \times Y \rightarrow Y$ is a mapping which has a mixed monotone property on Y and there exists $k \in[0,1 / 4)$ such that

$$
\begin{align*}
& \rho_{s}(T(x, y), T(u, v)) \\
& \leq k \max \left\{\frac{1+\rho_{d}((x, y),(T(x, y), T(y, x))) \rho_{d}((u, v),(T(u, v), T(v, u))}{\left.1+\rho_{d}((x), y)(u, v)\right)}, \rho_{d}((x, y),(u, v)),\right. \\
& {\left[\rho_{d}((x, y),(T(x, y), T(y, x)))+\rho_{d}((u, v),(T(u, v), T(v, u)))\right],} \\
& \left.\quad\left[\rho_{d}((u, v),(T(x, y), T(y, x)))+\rho_{d}((x, y),(T(u, v), T(v, u)))\right]\right\} \tag{2.12}
\end{align*}
$$

for all $x, y, u, v \in Y$ with $x \leq u, y \geq v$, and $\rho_{d}((x, y),(u, v))=\rho_{s}(x, y)+$ $\rho_{s}(u, v)$. Let x_{0} and x_{0} be any two elements in Y such that $x_{0} \leq T\left(x_{0}, y_{0}\right)$ and $y_{0} \geq T\left(y_{0}, x_{0}\right)$. If T is continuous, then T has a coupled fixed point.

3. An application to system of Fredolom type integral equations

Consider the following system of Fredholom type integral equations:

$$
\begin{align*}
& f(w)=q(w)+\int_{a}^{b} \lambda(w, t)\left[T_{1}(t, f(t))+T_{2}(t, g(t))\right] d t \tag{3.1}\\
& g(w)=q(w)+\int_{a}^{b} \lambda(w, t)\left[T_{1}(t, g(t))+T_{2}(t, f(t))\right] d t
\end{align*}
$$

Let $Y=C([a, b], \mathbb{R})$ be the class of all real valued continuous functions on $[a, b]$. Define $\rho_{s}(f, g)=\max \{|f(w)-g(w)| / w \in[a, b]\}$ and the partial ordered relation on Y as

$$
\begin{equation*}
f \leq g \Leftrightarrow f(w) \leq g(w) \text { for all } f, g \in Y \text { and } w \in[a, b] . \tag{3.2}
\end{equation*}
$$

Then $\left(Y, \rho_{s}, \leq\right)$ is a partially orderded complete metric space. We make the the following assumptions:
(a) The mappings $T_{1}:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}, T_{2}:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}, q:[a, b] \rightarrow \mathbb{R}$ and $\lambda:[a, b] \times \mathbb{R} \rightarrow[0, \infty)$ are continuous,
(b) There exists $c>0$ and $k \in[0,1 / 4)$ such that

$$
\begin{aligned}
& 0 \leq T_{1}(w, y)-T_{1}(w, x) \leq c k(y-x) \\
& 0 \leq T_{2}(w, x)-T_{2}(w, y) \leq c k(y-x)
\end{aligned}
$$

for all $x, y \in \mathbb{R}$ with $y \geq x$ and $w \in[a, b]$,
(c) $c \max \left\{\int_{a}^{b} \lambda(w, t) d t: w \in[a, b]\right\} \leq 1$,
(d) There exists u_{0} and v_{0} in Y such that

$$
\begin{aligned}
& u_{0}(w) \geq q(w)+\int_{a}^{b} \lambda(w, t)\left[T_{1}\left(t, u_{0}(t)\right)+T_{2}\left(t, v_{0}(t)\right)\right] d t \\
& v_{0}(w) \leq q(w)+\int_{a}^{b} \lambda(w, t)\left[T_{1}\left(t, v_{0}(t)\right)+T_{2}\left(t, u_{0}(t)\right)\right] d t
\end{aligned}
$$

Then the system (3.1) has a solution in $Y \times Y$.
To achieve this, define $T: Y \times Y \rightarrow Y$ as

$$
T(f, g)(w)=q(w)+\int_{a}^{b} \lambda(w, t)\left[T_{1}(t, f(t))+T_{2}(t, g(t))\right] d t
$$

for all $f, g \in Y$ and $w \in[a, b]$. Then, using condition (b), it can be shown that T has mixed monotone property.

Now for $x, y, u, v \in Y$ with $x \geq u$ and $y \leq v$,

$$
\begin{aligned}
& \rho_{s}(T(x, y), T(u, v)) \\
&= \max \{|T(x, y)(w)-T(u, v)(w)| / w \in[a, b]\} \\
&= \max \left\{\mid \int_{a}^{b} \lambda(w, t)\left[T_{1}(t, x(t))+T_{2}(t, y(t))\right] d t\right. \\
&\left.\quad-\int_{a}^{b} \lambda(w, t)\left[T_{1}(t, u(t))+T_{2}(t, v(t))\right] d t \mid / w \in[a, b]\right\} \\
& \leq c k \max \left\{\int_{a}^{b}|x(t)-u(t)||\lambda(w, t)| d t\right. \\
&\left.+\int_{a}^{b}|y(t)-v(t)||\lambda(w, t)| d t / w \in[a, b]\right\} \\
& \leq k \max \{|x(w)-u(w)| / w \in[a, b]\}+\max \{|y(w)-v(w)| / w \in[a, b]\} \\
&-c \max \left\{\int_{a}^{b}|\lambda(w, t)| d t / w \in[a, b]\right\} \\
& \leq k \max \{|x(w)-u(w)| / w \in[a, b]\}+\max \{|y(w)-v(w)| / w \in[a, b]\} \\
&= k\left[\rho_{s}((x, u)+(y, v))\right] \\
&= k\left[\rho_{d}((x, y),(u, v))\right]
\end{aligned}
$$

or

$$
\begin{aligned}
& \rho_{s}(T(x, y), T(u, v)) \\
& \leq k \max \left\{\frac{1+\rho_{d}((x, y),(T(x, y), T(y, x))) \rho_{d}((u, v),(T(u, v), T(v, u))}{1+\rho_{d}((x, y),(u, v))},\right. \\
& \rho_{d}((x, y),(u, v)), \\
& {\left[\rho_{d}((u, v),(T(x, y), T(y, x)))+\rho_{d}((x, y),(T(u, v), T(v, u))]\right.} \\
& \quad\left[\rho_{d}((x, y),(T(x, y), T(y, x)))+\rho_{d}((u, v),(T(u, v), T(v, u))]\right\} .
\end{aligned}
$$

Hence all the conditions of Corollary 2.5 are satisfied. Therefore, T has a coupled fixed point in $Y \times Y$. In other words, the system (3.1) of Fredhelom type integral equations has a solution in $Y \times Y$.

References

[1] I.A. Bakhtin, The contraction principle in quasi metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., 30 (1989), 26-37.
[2] T.G. Bhaskar and V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Anal., 65 (2006), 1379-1393.
[3] D. Eshi, K.D. Pramod and D. Pradip, Coupled coincidence and coupled common fixed point theorems on a metric space with a graph, Fixed Point Theory Appl., 2016:37 (2016), doi.org/10.1186/s13663-016-0530-7.
[4] D. Guo and V. Lakshmikantham, Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., 11 (1987), 623-632.
[5] M.M. Rezaee, S. Sedghi and K.S. Kim, Coupled common fixed point results in ordered S-metric spaces, Nonlinear Funct. Anal. Appl., 23(3) (2018), 595-612.
[6] D. Singh, Ch.O. Parakash, A.N. Afrah and G. Singh, Mixed weakly monotone property and its applications to system of integral equations via fixed point theorems, J. Comput. Anal. Appl., 27 (2019), 527-543.
[7] M. Singh, N. Singh, Om P. Chauhan and M. Younis, Coupled fixed point theorems for single-valued mappings in complete b-metric spaces, Nonlinear Funct. Anal. Appl., 22(1) (2017), 77-86.

[^0]: ${ }^{0}$ Received November 21, 2019. Revised December 22, 2019. Accepted January 29, 2020.
 ${ }^{0} 2010$ Mathematics Subject Classification: 54H25.
 ${ }^{0}$ Keywords: Common coupled fixed point, mixed monotone property, partially ordered b-metric space, Fredholm-type integral equation.
 ${ }^{0}$ Corresponding author: K. Kumara Swamy(kumaraswamy.k@gmrit.edu.in).

