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Abstract. In this paper, we establish new coupled best proximity point theorems for

(F,ϕ, α, ψ)-proximal contractive multimaps via C-class funtions. Our results extend and

generalized the results previously obtained in [21] as well as some known results in the

literature. We provide examples to analyze and support our main results.

1. Introduction

Suppose U, V are nonempty subsets of a metric space (X, d). Let T : U → V
be a given map. A point x∗ ∈ U is called to be a fixed point of T if Tx∗ = x∗.
Clearly, T (U) ∩ U 6= ∅ is a necessary (but not sufficient) condition for the
existence of a fixed point of T . If T (U) ∩ U = ∅, then d(x, Tx) > 0 for all
x ∈ U , that is the set {x : Tx = x} = ∅. In a such situation, one attempts
to find an element x which is closest to Tx. Best proximity point theory have
been developed in this direction. For more details on this approach, we refer
the readers to [14, 15, 17, 22, 23, 24] and references therein.
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One of the most remarkable and powerful tool in nonlinear analysis, due to
Banach [11], is known as the Banach contraction principle. This principle has
been generalized by a large number of mathematicians, in many different ways
(see e.g. [2, 12, 13, 19, 27]). Recently, Samet et al. [25] introduced the class
of α-ψ-contractive type mappings and established some fixed point results for
such mappings within the framework of complete metric spaces.

More recently, Jleli and Samet [18] introduced the notion of α-ψ-proximal
contractive type mappings and established certain best proximity point theo-
rems. A number of researchers have obtained best proximity point theorems
in many different settings; see e.g. [3, 5, 8, 9, 10, 16, 17, 20].

Abkar and Gbeleh [5] and Al-Thagafi and Shahzad [8] investigated best
proximity points for multivalued mappings. The notion of coupled best prox-
imity points was introduced by Sintunavarat and Kumam [26] and proved
coupled best proximity point theorems for cyclic contractions in metric spaces.

Recently, Nantadilok [21] established the coupled best proximity point the-
orems for α-ψ-proximal contractive multimaps. Later, Ansari and Shukla [4]
introduced the notions of ordered F -(F,ϕ)-contraction and subcontraction in
the setting of partial metric spaces. Some fixed point theorems for ordered
F -(F,ϕ)-contraction were obtained and proved.

In this paper, combining the ideas of Ansari et al. [4] and Nantadilok [21],
we establish coupled best proximity point theorems for (F,ϕ, α, ψ)-proximal
contractive multivalued mappings.

For the sake of completeness, let (X, d) be a metric space. For U, V ⊂ X,
we use the following notations subsequently:

• dist(U, V ) = inf {d(a, b) : a ∈ U, b ∈ V },
• D(x, V ) = inf {d(x, b) : b ∈ V },
• U0 = {a ∈ U : d(a, b) = dist(U, V ) for some b ∈ V },
• V0 = {b ∈ V : d(a, b) = dist(U, V ) for some a ∈ U},
• 2X\∅ is the set of all nonempty subsets of X,

• CL(X) is the set of all nonempty closed subsets of X,

• K(X) is the set of all nonempty compact subsets of X.

For every U, V ∈ CL(X), the map H which is called the generalized Haus-
dorff metric induced by d, is defined by

H(U, V ) =

max

{
sup
x∈U

d(x, V ), sup
y∈V

d(y, U)

}
if the maximum exists;

∞ otherwise.

(1.1)
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A point x∗ ∈ X is said to be the best proximity point of a mapping T :
U → V if d(x∗, Tx∗) = dist(U, V ). When U = V , the best proximity point is
essentially the fixed point of the mapping T .

2. Preliminaries

We collect some definitions and results which will be necessary and useful
in the sequel.

Definition 2.1. ([28]) Let (U, V ) be a pair of nonempty subsets of a metric
space (X, d) with U0 6= ∅. Then the pair (U, V ) is said to have the weak
P -property if for any x1, x2 ∈ U and y1, y2 ∈ V ,

d(x1, y1) = dist(U, V )
d(x2, y2) = dist(U, V )

}
⇒ d(x1, x2) ≤ d(y1, y2). (2.1)

Let Ψ denote the set of all functions ψ : [0,∞) → [0,∞) satisfying the
following properties:

(1) ψ is monotone nondecreasing;

(2)
∞∑
n=1

ψn(t) <∞ for each t > 0.

Definition 2.2. ([6]) An element x∗ ∈ U is said to be the best proximity
point of a multivalued nonself mapping T , if D(x∗, Tx∗) = dist(U, V ).

Definition 2.3. ([10]) Let U and V be two nonempty subsets of a metric
space (X, d). A mapping T : U → 2V \∅ is called α-proximal admissible if
there exists a mapping α : U × U → [0,∞) such that

α(x1, x2) ≥ 1
d(u1, y1) = dist(U, V )
d(u2, y2) = dist(U, V )

 ⇒ α(u1, u2) ≥ 1, (2.2)

where x1, x2, u1, u2 ∈ U, y1 ∈ Tx1 and y2 ∈ Tx2.

Definition 2.4. ([10]) Let U and V be two nonempty subsets of a metric space
(X, d). A mapping T : U → CL(V ) is said to be an α-ψ-proximal contraction,
if there exist two functions ψ ∈ Ψ and α : U × U → [0,∞) such that

α(x, y)H(Tx, Ty) ≤ ψ
(
d(x, y)

)
, ∀x, y ∈ U (2.3)

Lemma 2.5. ([7]) Let (X, d) be a metric space and V ∈ CL(X). Then for
each x ∈ X with d(x, V ) > 0 and q > 1, there exists an element b ∈ V such
that

d(x, b) < qd(x, V ). (2.4)
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(C) : If {xn} is a sequence in U such that α(xn, xn+1) ≥ 1 for all n and
xn → x ∈ U as n→∞, then there exists a subsequence {xnk

} of {xn}
such that α(xnk

, x) ≥ 1 for all k.

Definition 2.6. ([1, 4]) We say that the function ϕ : R+ × R+ → R is a
function of subclass of type I, if x ≥ 1, then ϕ(1, y) ≤ ϕ(x, y) for all y ∈ R+.

Example 2.7. ([1, 4]) Define ϕ : R+ × R+ → R by:

(a) ϕ(a, b) = anb, n ∈ N;

(b) ϕ(a, b) =
[

1
n+1

(∑n
i=0 a

i
)

+ l
]b
, l > 1, n ∈ N

for all a, b ∈ R+. Then each ϕ is a function of subclass of type I.

Definition 2.8. ([1, 4]) Let ϕ, F : R+ × R+ → R. Then we say that the pair
(F,ϕ) is an upper class of type I, if ϕ is a function of subclass of type I and

(i) 0 ≤ s ≤ 1 =⇒ F (s, t) ≤ F (1, t);
(ii) ϕ(1, y) ≤ F (s, t) =⇒ y ≤ st for all s, t, y ∈ R+.

Example 2.9. ([1, 4]) Define ϕ, F : R+ × R+ → R by:

(a) ϕ(a, b) = (b+ l)a, l > 1 and F (s, t) = st+ l;
(b) ϕ(a, b) = (a+ l)b, l > 1 and F (s, t) = (1 + l)st;
(c) ϕ(a, b) = amb, m ∈ N and F (s, t) = st;
(d) ϕ(a, b) = b and F (s, t) = t;
(e) ϕ(a, b) = 1

n+1

(∑n
i=0 a

i
)
b, n ∈ N and F (s, t) = st;

(f) ϕ(a, b) =
[

1
n+1

(∑n
i=0 a

i
)

+ l
]b
, l > 1, n ∈ N and F (s, t) = (1 + l)st

for all a, b, s, t ∈ R+. Then the each pair (F,ϕ) is an upper class of type I.

We note that for the notion of (F,ϕ) where it is an upper class of type II,
we refer the readers to [1, 4].

Definition 2.10. ([21]) Let U and V be two nonempty subsets of a metric
space (X, d). A mapping T : U ×U → 2V \∅ is called α-proximal admissible if
there exists a mapping α : U × U → [0,∞) such that

α(x1, x2) ≥ 1
d(w1, u1) = dist(U, V )
d(w2, u2) = dist(U, V )

 ⇒ α(w1, w2) ≥ 1, (2.5)

where x1, x2, w1, w2, y1, y2 ∈ U, u1 ∈ T (x1, y1) and u2 ∈ T (x2, y2),
and

α(y1, y2) ≥ 1
d(w′1, v1) = dist(U, V )
d(w′2, v2) = dist(U, V )

 ⇒ α(w′1, w
′
2) ≥ 1, (2.6)
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where y1, y2, w
′
1, w

′
2, x1, x2 ∈ U, v1 ∈ T (y1, x1) and v2 ∈ T (y2, x2).

Definition 2.11. ([21]) Let U and V be two nonempty subsets of a metric
space (X, d). A mapping T : U × U → CL(V ) is said to be an α-ψ-proximal
contraction, if there exist two functions ψ ∈ Ψ and α : U × U → [0,∞) such
that

α(x, y)H(T (x, x′), T (y, y′)) ≤ ψ
(
d(x, y)

)
, ∀ x, x′, y, y′ ∈ U. (2.7)

Definition 2.12. ([21]) An element (r∗, s∗) ∈ U ×U is said to be the coupled
best proximity point of a multivalued nonself mapping T , if

D(r∗, T (r∗, s∗)) = dist(U, V )

and
D(s∗, T (s∗, r∗)) = dist(U, V ).

The results concerning Definitions 2.10, 2.11, 2.12, one can refer [21]. In-
spired and motivated by the recent results of Ansari and Shukla [1, 4], Ali et al.
[10], we establish the coupled best proximity points for (F,ϕ, α, ψ)-proximal
contractive multimaps. Our results extend the recent results of Nantadilok
[21] and many others in the literature. We also give some examples to support
our main results.

3. Main results

We begin this section by introducing the following definition.

Definition 3.1. Let U and V be two nonempty subsets of a metric space
(X, d). A mapping T : U × U → CL(V ) is said to be an (F,ϕ, α, ψ)-proximal
contraction, if there exist two functions ψ ∈ Ψ and α : U × U → [0,∞) such
that

ϕ
(
α(x, y), H(T (x, x′), T (y, y′))

)
≤ F

(
1, ψ

(
d(x, y)

))
, ∀ x, x′, y, y′ ∈ U, (3.1)

where the pair (F,ϕ) is an upper class of type I.

Now we are in a position to introduce the main results.

Theorem 3.2. Let U and V be two nonempty closed subsets of a complete
metric space (X, d) such that U0 is nonempty. Let α : U × U → [0,∞) and
let ψ ∈ Ψ be a strictly increasing map. Suppose that T : U × U → CL(V ) is a
mapping satisfying the following conditions:

(1) T (x, y) ⊆ V0 for each x, y ∈ U0 and (U, V ) satisfies the weak P -
property;

(2) T is an α-proximal admissible map;
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(3) there exist elements (x0, y0), (x1, y1) in U0×U0 and u1 ∈ T (x0, y0), v1 ∈
T (y0, x0) such that

d(x1, u1) = dist(U, V ), α(x0, x1) ≥ 1 and

d(y1, v1) = dist(U, V ), α(y0, y1) ≥ 1;
(3.2)

(4) T is a continuous (F,ϕ, α, ψ)-proximal contraction.

Then there exists an element (r∗, s∗) ∈ U0 × U0 such that

D
(
r∗, T (r∗, s∗)

)
= dist(U, V ) and

D
(
s∗, T (s∗, r∗)

)
= dist(U, V ).

Proof. From condition (3), there exist elements (x0, y0), (x1, y1) in U0×U0 and
u1 ∈ T (x0, y0), v1 ∈ T (y0, x0) such that

d(x1, u1) = dist(U, V ), α(x0, x1) ≥ 1 and

d(y1, v1) = dist(U, V ), α(y0, y1) ≥ 1.
(3.3)

Assume that u1 /∈ T (x1, y1), v1 /∈ T (y1, x1); for otherwise (x1, y1) is the coupled
best proximity point. From condition (4) and Definition 2.8, we have

ϕ
(

1, H
(
T (x0, y0), T (x1, y1)

))
≤ ϕ

(
α(x0, x1), H

(
T (x0, y0), T (x1, y1)

))
≤ F

(
1, ψ

(
d(x0, x1)

))
=⇒ 0 < d(u1, T (x1, y1) ≤ H

(
T (x0, y0), T (x1, y1)

)
≤ ψ

(
d(x0, x1)

)
)

(3.4)

and

ϕ
(

1, H
(
T (y0, x0), T (y1, x1)

))
≤ ϕ

(
α(y0, y1), H

(
T (y0, x0), T (y1, x1)

))
≤ F

(
1, ψ

(
d(y0, y1)

))
=⇒ 0 < d

(
v1, T (y1, x1)

)
≤ H

(
T (y0, x0), T (y1, x1)

)
≤ ψ

(
d(y0, y1)

)
.

(3.5)

For q, q′ > 1, it follows from Lemma 2.5 that there exist u2 ∈ T (x1, y1) and
v2 ∈ T (y1, x1) such that

0 < d(u1, u2) < qd
(
u1, T (x1, y1)

)
and

0 < d(v1, v2) < q′d
(
v1, T (y1, x1)

)
.

(3.6)

From (3.4), (3.5) and (3.6), we have

0 < d(u1, u2) < qd
(
u1, T (x1, y1)

)
≤ qψ

(
d(x0, x1)

)
(3.7)

and
0 < d(v1, v2) < q′d

(
v1, T (y1, x1)

)
≤ q′ψ

(
d(y0, y1)

)
. (3.8)
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As u2 ∈ T (x1, y1) ⊆ V0, there exists x2 6= x1 ∈ U0 such that

d(x2, u2) = dist(U, V ) (3.9)

and as v2 ∈ T (y1, x1) ⊆ V0, there exists y2 6= y1 ∈ U0 such that

d(y2, v2) = dist(U, V ), (3.10)

for otherwise (x1, y1) is the coupled best proximity point. As (U, V ) satisfies
the weak P -property, from (3.3), (3.9) and (3.10), we have

0 < d(x1, x2) ≤ d(u1, u2) and

0 < d(y1, y2) ≤ d(v1, v2).
(3.11)

From (3.7), (3.8) and (3.11), we have

0 < d(x1, x2) ≤ d(u1, u2) < qd
(
u1, T (x1, y1)

)
≤ qψ

(
d(x0, x1)

)
and

0 < d(y1, y2) ≤ d(v1, v2) < q′d
(
v1, T (y1, x1)

)
≤ q′ψ

(
d(y0, y1)

)
.

(3.12)

Since ψ is strictly increasing, we have

ψ
(
d(x1, x2)

)
< ψ

(
qψ
(
d(x0, x1)

))
and

ψ
(
d(y1, y2)

)
< ψ

(
q′ψ
(
d(y0, y1)

))
.

Put

q1 = ψ
(
qψ
(
d(x0, x1)

))/
ψ
(
d(x1, x2)

)
,

q′1 = ψ
(
q′ψ
(
d(y0, y1)

))/
ψ
(
d(y1, y2)

)
.

We also have

α(x0, x1) ≥ 1, d(x1, u1) = dist(U, V ) and d(x2, u2) = dist(U, V )

and

α(y0, y1) ≥ 1, d(y1, v1) = dist(U, V ) and d(y2, v2) = dist(U, V ).

Since T is an α-proximal admissible, α(x1, x2) ≥ 1 and α(y1, y2) ≥ 1. Thus
we have

d(x2, u2) = dist(U, V ), α(x1, x2) ≥ 1 and

d(y2, v2) = dist(U, V ), α(y1, y2) ≥ 1.
(3.13)

Assume that u2 /∈ T (x2, y2) and v2 /∈ T (y2, x2), for otherwise (x2, y2) is the
coupled best proximity point. From condition (4) and Definition 2.8, we have

ϕ
(

1, H
(
T (x1, y1), T (x2, y2)

))
≤ ϕ

(
α(x1, x2), H

(
T (x1, y1), T (x2, y2)

))
≤ F

(
1, ψ

(
d(x1, x2)

))
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=⇒ 0 < d
(
u2, T (x2, y2)

)
≤ H

(
T (x1, y1), T (x2, y2)

)
≤ ψ

(
d(x1, x2)

)
,

(3.14)

and

ϕ
(

1, H
(
T (y1, x1), T (y2, x2)

))
≤ ϕ

(
α(y1, y2), H

(
T (y1, x1), T (y2, x2)

))
≤ F

(
1, ψ

(
d(y1, y2)

))
=⇒ 0 < d

(
v2, T (y2, x2)

)
≤ H

(
T (y1, x1), T (y2, x2)

)
≤ ψ

(
d(y1, y2)

)
.

(3.15)

For q1, q
′
1 > 1, it follows from Lemma 2.5 that there exist u3 ∈ T (x2, y2) and

v3 ∈ T (y2, x2) such that

0 < d(u2, u3) < q1d
(
u2, T (x2, y2)

)
,

0 < d(v2, v3) < q′1d
(
v2, T (y2, x2)

)
.

(3.16)

From (3.14), (3.15) and (3.16) we have

0 < d(u2, u3) < q1d
(
u2, T (x2, y2)

)
≤ q1ψ

(
d(x1, x2)

)
= ψ

(
qψ
(
d(x0, x1)

)) (3.17)

and

0 < d(v2, v3) < q′1d
(
v2, T (y2, x2)

)
≤ q′1ψ

(
d(y1, y2)

)
= ψ

(
q′ψ
(
d(y0, y1)

))
.

(3.18)

As u3 ∈ T (x2, y2) ∈ V0, there exists x3 6= x2 ∈ U0 such that

d(x3, u3) = dist(U, V ), (3.19)

and as v3 ∈ T (y2, x2) ∈ V0, there exists y3 6= y2 ∈ U0 such that

d(y3, v3) = dist(U, V ), (3.20)

for otherwise (x2, y2) is the coupled best proximity point. As (U, V ) satisfies
the weak P -property, from (3.13), (3.19) and (3.20) we have

0 < d(x2, x3) ≤ d(u2, u3),

0 < d(y2, y3) ≤ d(v2, v3).
(3.21)
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From (3.17), (3.18) and (3.21) we have

0 < d(x2, x3) < q1d
(
u2, T (x2, y2)

)
≤ q1ψ

(
d(x1, x2)

)
= ψ

(
qψ
(
d(x0, x1)

)) (3.22)

and

0 < d(y2, y3) < q′1d
(
v2, T (y2, x2)

)
≤ q′1ψ

(
d(y1, y2)

)
= ψ

(
q′ψ
(
d(y0, y1)

))
.

(3.23)

Since ψ is strictly increasing, we have

ψ
(
d(x2, x3)

)
< ψ2

(
qψ
(
d(x0, x1)

))
and (3.24)

ψ
(
d(y2, y3)

)
< ψ2

(
q′ψ
(
d(y0, y1)

))
. (3.25)

Put

q2 = ψ2
(
qψ
(
d(x0, x1)

))/
ψ
(
d(x2, x3)),

q′2 = ψ2
(
q′ψ
(
d(y0, y1)

))/
ψ
(
d(y2, y3)).

We also have

α(x1, x2) ≥ 1, d(x2, u2) = dist(U, V ) and d(x3, u3) = dist(U, V )

and

α(y1, y2) ≥ 1, d(y2, v2) = dist(U, V ) and d(y3, v3) = dist(U, V ).

Since T is an α-proximal admissible, α(x2, x3) ≥ 1 and α(y2, y3) ≥ 1, respec-
tively. Thus we have

d(x3, u3) = dist(U, V ), α(x2, x3) ≥ 1 and

d(y3, v3) = dist(U, V ), α(y2, y3) ≥ 1.
(3.26)

Continuing in the same process, we get sequences {xn}, {yn} in U0 and {un},
{vn} in V0, where un ∈ T (xn−1, yn−1) and vn ∈ T (yn−1, xn−1) for each n ∈ N,
such that

d(xn+1, un+1) = dist(U, V ), α(xn, xn+1) ≥ 1 and

d(yn+1, vn+1) = dist(U, V ), α(yn, yn+1) ≥ 1,
(3.27)
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and

d(un+1, un+2) < ψn
(
qψ
(
d(x0, x1)

))
and

d(vn+1, vn+2) < ψn
(
q′ψ
(
d(y0, y1)

))
.

(3.28)

As un+2 ∈ T (xn+1, yn+1) ∈ V0, there exists xn+2 6= xn+1 ∈ U0 such that

d(xn+2, un+2) = dist(U, V ) (3.29)

and as vn+2 ∈ T (yn+1, xn+1) ∈ V0, there exists yn+2 6= yn+1 ∈ U0 such that

d(yn+2, vn+2) = dist(U, V ). (3.30)

Since (U, V ) satisfies the weak P -property, from (3.27), (3.29) and (3.30), we
have

d(xn+1, xn+2) ≤ d(un+1, un+2)

and
d(yn+1, yn+2) ≤ d(vn+1, vn+2).

Thus, from (3.28), we have

d(xn+1, xn+2) < ψn
(
qψ
(
d(x0, x1)

))
and

d(yn+1, yn+2) < ψn
(
q′ψ
(
d(y0, y1)

))
.

(3.31)

Now, we shall prove that {xn} and {yn} are Cauchy sequences in U . Let ε > 0

be fixed. Since
∞∑
n=1

ψn
(
qψ
(
d(x0, x1)

))
<∞ and

∞∑
n=1

ψn
(
q′ψ
(
d(y0, y1)

))
<∞,

there exist some positive integers ϕ = ϕ(ε) and ϕ′ = ϕ′(ε) such that
∞∑

k≥ϕ
ψk
(
qψ
(
d(x0, x1)

))
< ε

and
∞∑

k≥ϕ′
ψk
(
q′ψ
(
d(y0, y1)

))
< ε,

respectively. For m > n > ϕ, using the triangular inequality, we obtain

d(xn, xm) ≤
m−1∑
k=n

d(xk, xk+1)

≤
m−1∑
k=n

ψk
(
qψ
(
d(x0, x1)

))
≤
∞∑

k≥ϕ
ψk
(
qψ
(
d(x0, x1)

))
< ε

(3.32)
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and

d(yn, ym) ≤
m−1∑
k=n

d(yk, yk+1)

≤
m−1∑
k=n

ψk
(
q′ψ
(
d(y0, y1)

))
≤

∞∑
k≥ϕ′

ψk
(
q′ψ
(
d(y0, y1)

))
< ε,

(3.33)

respectively. Hence {xn} and {yn} are Cauchy sequences in U .
Similarly, we can show that {un} and {vn} are Cauchy sequences in V . Since

U and V are closed subsets of a complete metric space, there exists (r∗, s∗) in
U ×U such that xn → r∗, yn → s∗ as n→∞ and there exist u∗, v∗ in V such
that un → u∗, vn → v∗ as n→∞. By (3.29) and (3.30), we conclude that

d(r∗, u∗) = dist(U, V ), as n→∞ and

d(s∗, v∗) = dist(U, V ), as n→∞.
Since T is continuous and un ∈ T (xn−1, yn−1), we have u∗ ∈ T (r∗, s∗) and
vn ∈ T (yn−1, xn−1), we have v∗ ∈ T (s∗, r∗). Hence,

dist(U, V ) ≤ D
(
r∗, T (r∗, s∗)

)
≤ d(r∗, u∗)

= dist(U, V )

and

dist(U, V ) ≤ D
(
s∗, T (s∗, r∗)

)
≤ d(s∗, v∗)

= dist(U, V ).

Therefore, (r∗, s∗) is the coupled best proximity point of the mapping T . �

Remark 3.3. If we take ϕ(x, y) = xy and F (s, t) = st in Theorem 3.2, then
our result reduces to Theorem 2.4 in [21].

Theorem 3.4. Let U and V be two nonempty closed subsets of a complete
metric space (X, d) such that U0 is nonempty. Let α : U ×U → [0,∞) and let
T : U × U → K(V ) be a mapping satisfying the following conditions:

(1) T (x, y) ⊆ V0 for each (x, y) ∈ U0 × U0 and (U, V ) satisfies the weak
P -property;

(2) T is an α-proximal admissible map;
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(3) there exist elements (x0, y0), (x1, y1) in U0×U0 and u1 ∈ T (x0, y0), v1 ∈
T (y0, x0) such that

d(x1, u1) = dist(U, V ), α(x0, x1) ≥ 1 and

d(y1, v1) = dist(U, V ), α(y0, y1) ≥ 1;
(3.34)

(4) T is a continuous (F,ϕ, α, ψ)-proximal contraction.

Then there exists an element (r∗, s∗) ∈ U0 × U0 such that

D
(
r∗, T (r∗, s∗)

)
= dist(U, V ) and

D
(
s∗, T (s∗, r∗)

)
= dist(U, V ).

Theorem 3.5. Let U and V be two nonempty closed subsets of a complete
metric space (X, d) such that U0 is nonempty. Let α : U × U → [0,∞) and
let ψ ∈ Ψ be a strictly increasing map. Suppose that T : U × U → CL(V ) is a
mapping satisfying the following conditions:

(1) T (x, y) ⊆ V0 for each (x, y) ∈ U0 × U0 and (U, V ) satisfies the weak
P -property;

(2) T is an α-proximal admissible map;
(3) there exist elements (x0, y0), (x1, y1) in U0×U0 and u1 ∈ T (x0, y0), v1 ∈

T (y0, x0) such that

d(x1, u1) = dist(U, V ), α(x0, x1) ≥ 1 and

d(y1, v1) = dist(U, V ), α(y0, y1) ≥ 1;
(3.35)

(4) property (C) holds and T is an (F,ϕ, α, ψ)-proximal contraction.

Then there exists an element (x∗, y∗) ∈ U0 × U0 such that

D
(
x∗, T (x∗, y∗)

)
= dist(U, V ) and

D
(
y∗, T (y∗, x∗)

)
= dist(U, V ).

Proof. Similar to the proof of Theorem 3.2, there exist Cauchy sequences {xn}
and {yn} in U and Cauchy sequences {un} and {vn} in V such that

d(xn+1, un+1) = dist(U, V ), α(xn, xn+1) ≥ 1 and

d(yn+1, vn+1) = dist(U, V ), α(yn, yn+1) ≥ 1;
(3.36)

and xn → r∗ ∈ U , yn → s∗ ∈ U as n→∞ and un → u∗ ∈ V , vn → v∗ ∈ V as
n→∞.

From condition (C), there exist subsequences {xnk
} of {xn}, {ynk

} of {yn}
such that α(xnk

, r∗) ≥ 1, α(ynk
, s∗) ≥ 1 for all k. Since T is an (F,ϕ, α, ψ)-

proximal contraction, we have

ϕ
(

1, H
(
T (xnk

, ynk
), T (r∗, s∗)

))
≤ ϕ

(
α(xnk

, r∗), H
(
T (xnk

, ynk
), T (x∗, s∗)

))
≤ F

(
1, ψ

(
d(xnk

, r∗)
))
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=⇒ H
(
T (xnk

, ynk
), T (r∗, s∗)

)
) ≤ ψ

(
d(xnk

, r∗)
)

and

ϕ
(

1, H
(
T (ynk

, xnk
), T (s∗, r∗)

))
≤ ϕ

(
α(ynk

, s∗), H
(
T (ynk

, xnk
), T (y∗, r∗)

))
≤ F

(
1, ψ

(
d(ynk

, s∗)
))

=⇒ H
(
T (ynk

, xnk
), T (s∗, r∗)

)
) ≤ ψ

(
d(ynk

, s∗)
)

Letting k →∞ in the above inequalities, we get T (xnk
, ynk

)→ T (x∗, y∗) and
T (ynk

, xnk
) → T (y∗, x∗) respectively. By the continuity of the metric d, we

have

d(x∗, u∗) = lim
k→∞

d(xnk+1, unk+1) = dist(U, V ),

d(y∗, v∗) = lim
k→∞

d(ynk+1, vnk+1) = dist(U, V ).
(3.37)

Since unk+1 ∈ T (xnk
, ynk

), unk
→ u∗ and T (xnk

, ynk
) → T (x∗, y∗), u∗ ∈

T (x∗, y∗) and since vnk+1 ∈ T (ynk
, xnk

), vnk
→ v∗ and T (ynk

, xnk
)→ T (y∗, x∗),

v∗ ∈ T (y∗, x∗), we have

dist(U, V ) ≤ D
(
x∗, T (x∗, y∗)

)
≤ d(x∗, u∗)

= dist(U, V )

and

dist(U, V ) ≤ D
(
y∗, T (y∗, x∗)

)
≤ d(y∗, v∗)

= dist(U, V ).

Therefore, (x∗, y∗) is the coupled best proximity point of the mapping T . �

Remark 3.6. If we take ϕ(x, y) = xy and F (s, t) = st in Theorem 3.5, then
our result reduces to Theorem 2.6 in [21].

Theorem 3.7. Let U and V be two nonempty closed subsets of a complete
metric space (X, d) such that U0 is nonempty. Let α : U ×U → [0,∞) and let
T : U × U → K(V ) be a mapping satisfying the following conditions:

(1) T (x, y) ⊆ V0 for each (x, y) ∈ U0 × U0 and (U, V ) satisfies the weak
P -property;

(2) T is an α-proximal admissible map;
(3) there exist elements (x0, y0), (x1, y1) in U0×U0 and u1 ∈ T (x0, y0), v1 ∈

T (y0, x0) such that

d(x1, u1) = dist(U, V ), α(x0, x1) ≥ 1 and

d(y1, v1) = dist(U, V ), α(y0, y1) ≥ 1;
(3.38)
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(4) property (C) holds and T is an (F,ϕ, α, ψ)-proximal contraction.

Then there exists an element (x∗, y∗) ∈ U0 × U0 such that

D
(
x∗, T (x∗, y∗)

)
= dist(U, V ) and

D
(
y∗, T (y∗, x∗)

)
= dist(U, V ).

We give the following examples to support our main results.

Example 3.8. Let X = [0,∞) × [0,∞) be endowed with the usual metric
d. Let 2 < a ≤ 3 be any fixed real number, U = {(a, x) : 0 ≤ x <∞} and
V = {(0, x) : 0 ≤ x <∞}. Define T : U × U → CL(V ) by

T ((a, x), (a, y)) =
{

(0, b2) : 0 ≤ b ≤ max{x, y}
}
, (3.39)

and α : U × U → [0,∞) by

α ((a, x), (a, y)) =

1 if x = y = 0,
1

a(x+ y)
otherwise.

(3.40)

Let ϕ(x, y) = xy, F (s, t) = st and let ψ(t) =
t

2
for all t ≥ 0. Note that

U0 = U, V0 = V and T (x, y) ∈ V0 for each x, y ∈ U0. If w1 = (a, y1), w
′
1 =

(a, y′1), w2 = (a, y2), w
′
2 = (a, y′2) ∈ U with either y1 6= 0 or y2 6= 0 or both are

nonzero, we have

ϕ
(
α(w1, w2), H

(
T (w1, w

′
1), T (w2, w

′
2)
) )

=
1

a(y1 + y2)

∣∣y21 − y22∣∣
<

1

2
|y1 − y2|

= ψ (d(w1, w2))

= F
(

1, ψ (d(w1, w2))
)

for otherwise

ϕ
(
α(w1, w2), H

(
T (w1, w

′
1), T (w2, w

′
2)
) )

= 0 = F
(

1, ψ (d(w1, w2))
)
.

For x0 = (a,
1

2a
), x1 = (a,

1

4a2
), y0 = (a,

1

3a
) ∈ U0 and u1 = (0,

1

4a2
) ∈

T (x0, y0) such that d(x1, u1) = a = dist(U, V ) and α(x0, x1) =
4a

1 + 2a
> 1.

And for x1 = (a,
1

3a
), y1 = (a,

1

9a2
) ∈ U0 and v1 = (0,

1

9a2
) ∈ T (x1, y1) such

that d(y1, v1) = a = dist(U, V ) and α(y0, y1) =
9a

1 + 3a
> 1. Furthermore, one

can see that the remaining conditions of Theorem 3.2 also hold. Therefore, T
has the coupled best proximity point.
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Example 3.9. Let X = [0,∞) × [0,∞) be a product space endowed with
the usual metric d. Suppose that U =

{
(12 , x) : 0 ≤ x <∞

}
and V =

{(0, x) : 0 ≤ x <∞}.
Define T : U × U → CL(V ) by

T

(
(
1

2
, a), (

1

2
, b)

)
=

{{
(0, x2 ) : 0 ≤ x ≤ max{a, b}

}
if a, b ≤ 1,{

(0, x2) : 0 ≤ x ≤ max{a2, b2}
}

if a, b > 1,
(3.41)

and define α : U × U → [0,∞) by

α(x, y) =

{
1 if x, y ∈

{
(12 , a) : 0 ≤ a ≤ 1

}
,

0 otherwise.

Let ψ(t) =
t

2
for all t ≥ 0. Note that U0 = U, V0 = V , and T (x, y) ⊆ V0 for

each (x, y) ∈ U0 × U0. Also, the pair (U, V ) satisfies the weak P -property.

Let (x0, y0), (x1, y1) ∈
{

(12 , x) : 0 ≤ x ≤ 1
}2
. Then

T (x0, y0), T (x1, y1) ⊆
{

(0,
x

2
) : 0 ≤ x ≤ 1

}
.

Consider u1 ∈ T (x0, y0), u2 ∈ T (x1, y1) and w1, w2 ∈ U such that d(w1, u1) =
dist(U, V ) and d(w2, u2) = dist(U, V ). Then we have

w1, w2 ∈
{

(
1

2
, x) : 0 ≤ x ≤ 1

2

}
,

so α(w1, w2) = 1. And, for v1 ∈ T (y0, x0), v2 ∈ T (y1, x1) and w′1, w
′
2 ∈ U such

that d(w′1, v1) = dist(U, V ) and d(w′2, v2) = dist(U, V ). Then we have

w′1, w
′
2 ∈

{
(
1

2
, x) : 0 ≤ x ≤ 1

2

}
,

so α(w′1, w
′
2) = 1. Therefore, T is an α-proximal admissible map. For (x0, y0) =(

(12 , 1), (12 , 1)
)
∈ U0 × U0 and u1 = (0, 12) ∈ T (x0, y0), v1 = (0, 14) ∈ T (y0, x0)

in V0, we have

(x1, y1) =

(
(
1

2
,
1

2
), (

1

2
,
1

4
)

)
∈ U0 × U0

such that

d(x1, u1) = dist(U, V ), α(x0, x1) = α

(
(
1

2
, 1), (

1

2
,
1

2
)

)
= 1

and

d(y1, v1) = dist(U, V ), α(y0, y1) = α

(
(
1

2
, 1), (

1

2
,
1

4
)

)
= 1.
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Let ϕ(x, y) = xy and F (s, t) = st. If x, x′, y, y′ ∈
{

(12 , a) : 0 ≤ a ≤ 1
}2
.

Then we have

ϕ
(
α(x, y), H

(
T (x, x′), T (y, y′)

) )
=
|x− y|

2

=
1

2
d(x, y)

= F
(

1, ψ (d(x, y))
)
,

for otherwise

ϕ
(
α(x, y), H

(
T (x, x′), T (y, y′)

) )
≤ F

(
1, ψ (d(x, y))

)
.

Hence, T is an (Fϕ, α, ψ)-proximal contraction. Moreover, if {xn} is a se-
quence in U such that α(xn, xn+1) = 1 for all n and xn → x ∈ U as n → ∞,
then there exists a subsequence {xnk

} of {xn} such that α(xnk
, x) = 1 for all

k. Therefore, all the conditions of Theorem 3.5 hold and T has the coupled
best proximity point.
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