Nonlinear Functional Analysis and Applications Vol. 25, No. 2 (2020), pp. 383-399 ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2020.25.02.14 http://nfaa.kyungnam.ac.kr/journal-nfaa Copyright © 2020 Kyungnam University Press

FURTHER INVESTIAGATION ON COUPLED BEST PROXIMITY POINT RESULTS OF SOME PROXIMAL CONTRACTIVE MULTIVALUED MAPPINGS

Jamnian Nantadilok¹ and Wichai Jisabuy²

¹Department of Mathematics, Lampang Rajabhat University Lampang, Thailand e-mail: jamnian2020@gmail.com

²Department of Mathematics, Rajabhat Mahasarakham University Mahasarakham, Thailand e-mail: wichai.jisabuy@gmail.com

Abstract. In this paper, we establish new coupled best proximity point theorems for $(F, \varphi, \alpha, \psi)$ -proximal contractive multimaps via *C*-class functions. Our results extend and generalized the results previously obtained in [21] as well as some known results in the literature. We provide examples to analyze and support our main results.

1. INTRODUCTION

Suppose U, V are nonempty subsets of a metric space (X, d). Let $T : U \to V$ be a given map. A point $x^* \in U$ is called to be a fixed point of T if $Tx^* = x^*$. Clearly, $T(U) \cap U \neq \emptyset$ is a necessary (but not sufficient) condition for the existence of a fixed point of T. If $T(U) \cap U = \emptyset$, then d(x, Tx) > 0 for all $x \in U$, that is the set $\{x : Tx = x\} = \emptyset$. In a such situation, one attempts to find an element x which is closest to Tx. Best proximity point theory have been developed in this direction. For more details on this approach, we refer the readers to [14, 15, 17, 22, 23, 24] and references therein.

⁰Received November 21, 2019. Revised January 29, 2020. Accepted February 5, 2020.

⁰2010 Mathematics Subject Classification: 47H10, 54H25.

⁰Keywords: Fixed point, coupled fixed point, coupled best proximity point, $(F, \varphi, \alpha, \psi)$ -proximal contractive multimaps.

⁰Corresponding author: W. Jisabuy(wichai.jisabuy@gmail.com).

One of the most remarkable and powerful tool in nonlinear analysis, due to Banach [11], is known as the Banach contraction principle. This principle has been generalized by a large number of mathematicians, in many different ways (see e.g. [2, 12, 13, 19, 27]). Recently, Samet *et al.* [25] introduced the class of α - ψ -contractive type mappings and established some fixed point results for such mappings within the framework of complete metric spaces.

More recently, Jleli and Samet [18] introduced the notion of α - ψ -proximal contractive type mappings and established certain best proximity point theorems. A number of researchers have obtained best proximity point theorems in many different settings; see e.g. [3, 5, 8, 9, 10, 16, 17, 20].

Abkar and Gbeleh [5] and Al-Thagafi and Shahzad [8] investigated best proximity points for multivalued mappings. The notion of coupled best proximity points was introduced by Sintunavarat and Kumam [26] and proved coupled best proximity point theorems for cyclic contractions in metric spaces.

Recently, Nantadilok [21] established the coupled best proximity point theorems for α - ψ -proximal contractive multimaps. Later, Ansari and Shukla [4] introduced the notions of ordered F- (F, φ) -contraction and subcontraction in the setting of partial metric spaces. Some fixed point theorems for ordered F- (F, φ) -contraction were obtained and proved.

In this paper, combining the ideas of Ansari *et al.* [4] and Nantadilok [21], we establish coupled best proximity point theorems for $(F, \varphi, \alpha, \psi)$ -proximal contractive multivalued mappings.

For the sake of completeness, let (X, d) be a metric space. For $U, V \subset X$, we use the following notations subsequently:

- dist $(U, V) = \inf \{ d(a, b) : a \in U, b \in V \},\$
- $D(x, V) = \inf \{ d(x, b) : b \in V \},\$
- $U_0 = \{a \in U : d(a, b) = \operatorname{dist}(U, V) \text{ for some } b \in V\},\$
- $V_0 = \{b \in V : d(a, b) = \operatorname{dist}(U, V) \text{ for some } a \in U\},\$
- $2^X \setminus \emptyset$ is the set of all nonempty subsets of X,
- CL(X) is the set of all nonempty closed subsets of X,
- K(X) is the set of all nonempty compact subsets of X.

For every $U, V \in CL(X)$, the map H which is called the generalized Hausdorff metric induced by d, is defined by

$$H(U,V) = \begin{cases} \max \left\{ \sup_{x \in U} d(x,V), \sup_{y \in V} d(y,U) \right\} & \text{if the maximum exists;} \\ \infty & \text{otherwise.} \end{cases}$$
(1.1)

A point $x^* \in X$ is said to be the best proximity point of a mapping $T : U \to V$ if $d(x^*, Tx^*) = \text{dist}(U, V)$. When U = V, the best proximity point is essentially the fixed point of the mapping T.

2. Preliminaries

We collect some definitions and results which will be necessary and useful in the sequel.

Definition 2.1. ([28]) Let (U, V) be a pair of nonempty subsets of a metric space (X, d) with $U_0 \neq \emptyset$. Then the pair (U, V) is said to have the weak *P*-property if for any $x_1, x_2 \in U$ and $y_1, y_2 \in V$,

$$\frac{d(x_1, y_1) = \operatorname{dist}(U, V)}{d(x_2, y_2) = \operatorname{dist}(U, V)} \} \qquad \Rightarrow \quad d(x_1, x_2) \le d(y_1, y_2).$$
(2.1)

Let Ψ denote the set of all functions $\psi : [0, \infty) \to [0, \infty)$ satisfying the following properties:

- (1) ψ is monotone nondecreasing;
- (2) $\sum_{n=1}^{\infty} \psi^n(t) < \infty$ for each t > 0.

Definition 2.2. ([6]) An element $x^* \in U$ is said to be the best proximity point of a multivalued nonself mapping T, if $D(x^*, Tx^*) = \text{dist}(U, V)$.

Definition 2.3. ([10]) Let U and V be two nonempty subsets of a metric space (X, d). A mapping $T : U \to 2^V \setminus \emptyset$ is called α -proximal admissible if there exists a mapping $\alpha : U \times U \to [0, \infty)$ such that

$$\left.\begin{array}{l} \alpha(x_1, x_2) \ge 1\\ d(u_1, y_1) = \operatorname{dist}(U, V)\\ d(u_2, y_2) = \operatorname{dist}(U, V) \end{array}\right\} \qquad \Rightarrow \quad \alpha(u_1, u_2) \ge 1, \quad (2.2)$$

where $x_1, x_2, u_1, u_2 \in U, y_1 \in Tx_1$ and $y_2 \in Tx_2$.

Definition 2.4. ([10]) Let U and V be two nonempty subsets of a metric space (X, d). A mapping $T: U \to \operatorname{CL}(V)$ is said to be an α - ψ -proximal contraction, if there exist two functions $\psi \in \Psi$ and $\alpha: U \times U \to [0, \infty)$ such that

$$\alpha(x,y)H(Tx,Ty) \leq \psi(d(x,y)), \quad \forall x,y \in U$$
(2.3)

Lemma 2.5. ([7]) Let (X, d) be a metric space and $V \in CL(X)$. Then for each $x \in X$ with d(x, V) > 0 and q > 1, there exists an element $b \in V$ such that

$$d(x,b) < qd(x,V). \tag{2.4}$$

(C) : If $\{x_n\}$ is a sequence in U such that $\alpha(x_n, x_{n+1}) \ge 1$ for all n and $x_n \to x \in U$ as $n \to \infty$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\alpha(x_{n_k}, x) \ge 1$ for all k.

Definition 2.6. ([1, 4]) We say that the function $\varphi \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ is a function of subclass of type I, if $x \ge 1$, then $\varphi(1, y) \le \varphi(x, y)$ for all $y \in \mathbb{R}^+$.

Example 2.7. ([1, 4]) Define $\varphi \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by:

(a) $\varphi(a,b) = a^n b, n \in \mathbb{N};$

(b) $\varphi(a,b) = \left[\frac{1}{n+1} \left(\sum_{i=0}^{n} a^{i}\right) + l\right]^{b}, l > 1, n \in \mathbb{N}$

for all $a, b \in \mathbb{R}^+$. Then each φ is a function of subclass of type I.

Definition 2.8. ([1, 4]) Let $\varphi, F \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$. Then we say that the pair (F, φ) is an upper class of type I, if φ is a function of subclass of type I and

- (i) $0 \le s \le 1 \Longrightarrow F(s,t) \le F(1,t);$
- (ii) $\varphi(1,y) \leq F(s,t) \Longrightarrow y \leq st$ for all $s,t,y \in \mathbb{R}^+$.

Example 2.9. ([1, 4]) Define $\varphi, F \colon \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}$ by:

- (a) $\varphi(a, b) = (b+l)^a, l > 1$ and F(s, t) = st + l;
- (b) $\varphi(a,b) = (a+l)^b, l > 1$ and $F(s,t) = (1+l)^{st}$;
- (c) $\varphi(a, b) = a^m b, m \in \mathbb{N}$ and F(s, t) = st;
- (d) $\varphi(a, b) = b$ and F(s, t) = t;
- (e) $\varphi(a,b) = \frac{1}{n+1} \left(\sum_{i=0}^{n} a^i \right) b, n \in \mathbb{N} \text{ and } F(s,t) = st;$

(f)
$$\varphi(a,b) = \left[\frac{1}{n+1}\left(\sum_{i=0}^{n} a^{i}\right) + l\right]^{b}, l > 1, n \in \mathbb{N} \text{ and } F(s,t) = (1+l)^{st}$$

for all $a, b, s, t \in \mathbb{R}^+$. Then the each pair (F, φ) is an upper class of type I.

We note that for the notion of (F, φ) where it is an upper class of type II, we refer the readers to [1, 4].

Definition 2.10. ([21]) Let U and V be two nonempty subsets of a metric space (X, d). A mapping $T: U \times U \to 2^V \setminus \emptyset$ is called α -proximal admissible if there exists a mapping $\alpha: U \times U \to [0, \infty)$ such that

$$\left.\begin{array}{l} \alpha(x_1, x_2) \geq 1\\ d(w_1, u_1) = \operatorname{dist}(U, V)\\ d(w_2, u_2) = \operatorname{dist}(U, V) \end{array}\right\} \qquad \Rightarrow \quad \alpha(w_1, w_2) \geq 1, \quad (2.5)$$

where $x_1, x_2, w_1, w_2, y_1, y_2 \in U, u_1 \in T(x_1, y_1)$ and $u_2 \in T(x_2, y_2)$, and

$$\begin{array}{c} \alpha(y_1, y_2) \ge 1 \\ d(w'_1, v_1) = \operatorname{dist}(U, V) \\ d(w'_2, v_2) = \operatorname{dist}(U, V) \end{array} \right\} \qquad \Rightarrow \quad \alpha(w'_1, w'_2) \ge 1,$$
 (2.6)

where $y_1, y_2, w'_1, w'_2, x_1, x_2 \in U, v_1 \in T(y_1, x_1)$ and $v_2 \in T(y_2, x_2)$.

Definition 2.11. ([21]) Let U and V be two nonempty subsets of a metric space (X, d). A mapping $T: U \times U \to \operatorname{CL}(V)$ is said to be an α - ψ -proximal contraction, if there exist two functions $\psi \in \Psi$ and $\alpha: U \times U \to [0, \infty)$ such that

$$\alpha(x,y)H(T(x,x'),T(y,y')) \leq \psi(d(x,y)), \quad \forall x,x',y,y' \in U.$$
(2.7)

Definition 2.12. ([21]) An element $(r^*, s^*) \in U \times U$ is said to be the coupled best proximity point of a multivalued nonself mapping T, if

$$D(r^*, T(r^*, s^*)) = \operatorname{dist}(U, V)$$

and

$$D(s^*, T(s^*, r^*)) = \operatorname{dist}(U, V).$$

The results concerning Definitions 2.10, 2.11, 2.12, one can refer [21]. Inspired and motivated by the recent results of Ansari and Shukla [1, 4], Ali *et al.* [10], we establish the coupled best proximity points for $(F, \varphi, \alpha, \psi)$ -proximal contractive multimaps. Our results extend the recent results of Nantadilok [21] and many others in the literature. We also give some examples to support our main results.

3. Main results

We begin this section by introducing the following definition.

Definition 3.1. Let U and V be two nonempty subsets of a metric space (X, d). A mapping $T: U \times U \to \operatorname{CL}(V)$ is said to be an $(F, \varphi, \alpha, \psi)$ -proximal contraction, if there exist two functions $\psi \in \Psi$ and $\alpha: U \times U \to [0, \infty)$ such that

$$\varphi\Big(\alpha(x,y), H(T(x,x'), T(y,y'))\Big) \le F\Big(1, \psi\big(d(x,y)\big)\Big), \ \forall x, x', y, y' \in U, \ (3.1)$$

where the pair (F, φ) is an upper class of type I.

Now we are in a position to introduce the main results.

Theorem 3.2. Let U and V be two nonempty closed subsets of a complete metric space (X, d) such that U_0 is nonempty. Let $\alpha : U \times U \rightarrow [0, \infty)$ and let $\psi \in \Psi$ be a strictly increasing map. Suppose that $T : U \times U \rightarrow CL(V)$ is a mapping satisfying the following conditions:

- (1) $T(x,y) \subseteq V_0$ for each $x,y \in U_0$ and (U,V) satisfies the weak *P*-property;
- (2) T is an α -proximal admissible map;

(3) there exist elements $(x_0, y_0), (x_1, y_1)$ in $U_0 \times U_0$ and $u_1 \in T(x_0, y_0), v_1 \in T(y_0, x_0)$ such that

$$d(x_1, u_1) = \text{dist}(U, V), \quad \alpha(x_0, x_1) \ge 1 \quad and \\ d(y_1, v_1) = \text{dist}(U, V), \quad \alpha(y_0, y_1) \ge 1;$$
(3.2)

(4) T is a continuous $(F, \varphi, \alpha, \psi)$ -proximal contraction. Then there exists an element $(r^*, s^*) \in U_0 \times U_0$ such that

$$D(r^*, T(r^*, s^*)) = \operatorname{dist}(U, V) \quad and$$

$$D(s^*, T(s^*, r^*)) = \operatorname{dist}(U, V).$$

Proof. From condition (3), there exist elements $(x_0, y_0), (x_1, y_1)$ in $U_0 \times U_0$ and $u_1 \in T(x_0, y_0), v_1 \in T(y_0, x_0)$ such that

$$d(x_1, u_1) = \text{dist}(U, V), \quad \alpha(x_0, x_1) \ge 1 \text{ and} d(y_1, v_1) = \text{dist}(U, V), \quad \alpha(y_0, y_1) \ge 1.$$
(3.3)

Assume that $u_1 \notin T(x_1, y_1), v_1 \notin T(y_1, x_1)$; for otherwise (x_1, y_1) is the coupled best proximity point. From condition (4) and Definition 2.8, we have

$$\varphi\Big(1, H\big(T(x_0, y_0), T(x_1, y_1)\big)\Big) \leq \varphi\Big(\alpha(x_0, x_1), H\big(T(x_0, y_0), T(x_1, y_1)\big)\Big) \\ \leq F\big(1, \psi\big(d(x_0, x_1)\big)\big) \\ \implies \quad 0 < d(u_1, T(x_1, y_1) \le H\big(T(x_0, y_0), T(x_1, y_1)\big) \\ \leq \psi\big(d(x_0, x_1)\big)\big) \tag{3.4}$$

and

$$\varphi\Big(1, H\big(T(y_0, x_0), T(y_1, x_1)\big)\Big) \leq \varphi\Big(\alpha(y_0, y_1), H\big(T(y_0, x_0), T(y_1, x_1)\big)\Big)$$

$$\leq F\big(1, \psi\big(d(y_0, y_1)\big)\big)$$

$$\implies 0 < d\big(v_1, T(y_1, x_1)\big) \leq H\big(T(y_0, x_0), T(y_1, x_1)\big)$$

$$\leq \psi\big(d(y_0, y_1)\big).$$
(3.5)

For q, q' > 1, it follows from Lemma 2.5 that there exist $u_2 \in T(x_1, y_1)$ and $v_2 \in T(y_1, x_1)$ such that

$$0 < d(u_1, u_2) < qd(u_1, T(x_1, y_1)) \text{ and } 0 < d(v_1, v_2) < q'd(v_1, T(y_1, x_1)).$$
(3.6)

From (3.4), (3.5) and (3.6), we have

$$0 < d(u_1, u_2) < qd(u_1, T(x_1, y_1)) \le q\psi(d(x_0, x_1))$$
(3.7)

and

$$0 < d(v_1, v_2) < q'd(v_1, T(y_1, x_1)) \le q'\psi(d(y_0, y_1)).$$
(3.8)

As $u_2 \in T(x_1, y_1) \subseteq V_0$, there exists $x_2 \neq x_1 \in U_0$ such that

$$d(x_2, u_2) = \operatorname{dist}(U, V) \tag{3.9}$$

and as $v_2 \in T(y_1, x_1) \subseteq V_0$, there exists $y_2 \neq y_1 \in U_0$ such that

$$d(y_2, v_2) = \operatorname{dist}(U, V),$$
 (3.10)

for otherwise (x_1, y_1) is the coupled best proximity point. As (U, V) satisfies the weak *P*-property, from (3.3), (3.9) and (3.10), we have

$$0 < d(x_1, x_2) \le d(u_1, u_2) \text{ and} 0 < d(y_1, y_2) \le d(v_1, v_2).$$
(3.11)

From (3.7), (3.8) and (3.11), we have

$$0 < d(x_1, x_2) \le d(u_1, u_2) < qd(u_1, T(x_1, y_1)) \le q\psi(d(x_0, x_1)) \quad \text{and} \\ 0 < d(y_1, y_2) \le d(v_1, v_2) < q'd(v_1, T(y_1, x_1)) \le q'\psi(d(y_0, y_1)).$$

$$(3.12)$$

Since ψ is strictly increasing, we have

$$\psi(d(x_1, x_2)) < \psi(q\psi(d(x_0, x_1))) \quad \text{and} \\ \psi(d(y_1, y_2)) < \psi(q'\psi(d(y_0, y_1))).$$

Put

$$q_{1} = \psi \Big(q \psi \big(d(x_{0}, x_{1}) \big) \Big) / \psi \big(d(x_{1}, x_{2}) \big),$$

$$q_{1}' = \psi \Big(q' \psi \big(d(y_{0}, y_{1}) \big) \Big) / \psi \big(d(y_{1}, y_{2}) \big).$$

We also have

$$\alpha(x_0, x_1) \ge 1, \ d(x_1, u_1) = \operatorname{dist}(U, V) \ \text{and} \ d(x_2, u_2) = \operatorname{dist}(U, V)$$

and

$$\alpha(y_0, y_1) \ge 1$$
, $d(y_1, v_1) = \operatorname{dist}(U, V)$ and $d(y_2, v_2) = \operatorname{dist}(U, V)$.

Since T is an α -proximal admissible, $\alpha(x_1, x_2) \ge 1$ and $\alpha(y_1, y_2) \ge 1$. Thus we have

$$d(x_2, u_2) = \text{dist}(U, V), \quad \alpha(x_1, x_2) \ge 1 \text{ and} d(y_2, v_2) = \text{dist}(U, V), \quad \alpha(y_1, y_2) \ge 1.$$
(3.13)

Assume that $u_2 \notin T(x_2, y_2)$ and $v_2 \notin T(y_2, x_2)$, for otherwise (x_2, y_2) is the coupled best proximity point. From condition (4) and Definition 2.8, we have

$$\varphi\Big(1, H\big(T(x_1, y_1), T(x_2, y_2)\big)\Big) \le \varphi\Big(\alpha(x_1, x_2), H\big(T(x_1, y_1), T(x_2, y_2)\big)\Big) \\\le F\big(1, \psi\big(d(x_1, x_2)\big)\big)$$

$$\implies 0 < d(u_2, T(x_2, y_2)) \le H(T(x_1, y_1), T(x_2, y_2)) \\ \le \psi(d(x_1, x_2)),$$
(3.14)

and

$$\varphi\Big(1, H\big(T(y_1, x_1), T(y_2, x_2)\big)\Big) \leq \varphi\Big(\alpha(y_1, y_2), H\big(T(y_1, x_1), T(y_2, x_2)\big)\Big)$$

$$\leq F\big(1, \psi\big(d(y_1, y_2)\big)\big)$$

$$\implies 0 < d\big(v_2, T(y_2, x_2)\big) \leq H\big(T(y_1, x_1), T(y_2, x_2)\big)$$

$$\leq \psi\big(d(y_1, y_2)\big).$$
(3.15)

For $q_1, q'_1 > 1$, it follows from Lemma 2.5 that there exist $u_3 \in T(x_2, y_2)$ and $v_3 \in T(y_2, x_2)$ such that

$$0 < d(u_2, u_3) < q_1 d(u_2, T(x_2, y_2)), 0 < d(v_2, v_3) < q'_1 d(v_2, T(y_2, x_2)).$$
(3.16)

From (3.14), (3.15) and (3.16) we have

$$0 < d(u_2, u_3) < q_1 d(u_2, T(x_2, y_2))$$

$$\leq q_1 \psi(d(x_1, x_2))$$

$$= \psi(q \psi(d(x_0, x_1)))$$
(3.17)

and

$$0 < d(v_2, v_3) < q'_1 d(v_2, T(y_2, x_2))$$

$$\leq q'_1 \psi(d(y_1, y_2))$$

$$= \psi(q' \psi(d(y_0, y_1))).$$
(3.18)

As $u_3 \in T(x_2, y_2) \in V_0$, there exists $x_3 \neq x_2 \in U_0$ such that

$$d(x_3, u_3) = \operatorname{dist}(U, V),$$
 (3.19)

and as $v_3 \in T(y_2, x_2) \in V_0$, there exists $y_3 \neq y_2 \in U_0$ such that

$$d(y_3, v_3) = \operatorname{dist}(U, V),$$
 (3.20)

for otherwise (x_2, y_2) is the coupled best proximity point. As (U, V) satisfies the weak *P*-property, from (3.13), (3.19) and (3.20) we have

$$\begin{array}{l}
0 < d(x_2, x_3) \le d(u_2, u_3), \\
0 < d(y_2, y_3) \le d(v_2, v_3).
\end{array}$$
(3.21)

From (3.17), (3.18) and (3.21) we have

0

$$< d(x_{2}, x_{3}) < q_{1}d(u_{2}, T(x_{2}, y_{2})) \leq q_{1}\psi(d(x_{1}, x_{2})) = \psi(q\psi(d(x_{0}, x_{1})))$$
(3.22)

and

$$0 < d(y_2, y_3) < q'_1 d(v_2, T(y_2, x_2))$$

$$\leq q'_1 \psi(d(y_1, y_2))$$

$$= \psi(q' \psi(d(y_0, y_1))).$$
(3.23)

Since ψ is strictly increasing, we have

$$\psi(d(x_2, x_3)) < \psi^2(q\psi(d(x_0, x_1)))$$
 and (3.24)

$$\psi(d(y_2, y_3)) < \psi^2(q'\psi(d(y_0, y_1))).$$
 (3.25)

 Put

$$\begin{split} q_2 &= \psi^2 \Big(q \psi \big(d(x_0, x_1) \big) \Big) \big/ \psi \big(d(x_2, x_3) \big), \\ q_2' &= \psi^2 \Big(q' \psi \big(d(y_0, y_1) \big) \Big) \big/ \psi \big(d(y_2, y_3) \big). \end{split}$$

We also have

$$\alpha(x_1, x_2) \ge 1, \ d(x_2, u_2) = \operatorname{dist}(U, V) \ \text{and} \ d(x_3, u_3) = \operatorname{dist}(U, V)$$

and

$$\alpha(y_1, y_2) \ge 1, \ d(y_2, v_2) = \operatorname{dist}(U, V) \ \text{and} \ d(y_3, v_3) = \operatorname{dist}(U, V)$$

Since T is an α -proximal admissible, $\alpha(x_2, x_3) \ge 1$ and $\alpha(y_2, y_3) \ge 1$, respectively. Thus we have

$$d(x_3, u_3) = \operatorname{dist}(U, V), \quad \alpha(x_2, x_3) \ge 1 \quad \text{and} \\ d(y_3, v_3) = \operatorname{dist}(U, V), \quad \alpha(y_2, y_3) \ge 1.$$
(3.26)

Continuing in the same process, we get sequences $\{x_n\}, \{y_n\}$ in U_0 and $\{u_n\}, \{v_n\}$ in V_0 , where $u_n \in T(x_{n-1}, y_{n-1})$ and $v_n \in T(y_{n-1}, x_{n-1})$ for each $n \in \mathbb{N}$, such that

$$d(x_{n+1}, u_{n+1}) = \operatorname{dist}(U, V), \quad \alpha(x_n, x_{n+1}) \ge 1 \quad \text{and} \\ d(y_{n+1}, v_{n+1}) = \operatorname{dist}(U, V), \quad \alpha(y_n, y_{n+1}) \ge 1,$$
(3.27)

and

$$d(u_{n+1}, u_{n+2}) < \psi^n \Big(q \psi \big(d(x_0, x_1) \big) \Big) \quad \text{and} \\ d(v_{n+1}, v_{n+2}) < \psi^n \Big(q' \psi \big(d(y_0, y_1) \big) \Big).$$
(3.28)

As $u_{n+2} \in T(x_{n+1}, y_{n+1}) \in V_0$, there exists $x_{n+2} \neq x_{n+1} \in U_0$ such that

$$d(x_{n+2}, u_{n+2}) = \operatorname{dist}(U, V)$$
 (3.29)

and as $v_{n+2} \in T(y_{n+1}, x_{n+1}) \in V_0$, there exists $y_{n+2} \neq y_{n+1} \in U_0$ such that

$$d(y_{n+2}, v_{n+2}) = \operatorname{dist}(U, V).$$
 (3.30)

Since (U, V) satisfies the weak *P*-property, from (3.27), (3.29) and (3.30), we have

$$d(x_{n+1}, x_{n+2}) \leq d(u_{n+1}, u_{n+2})$$

and

$$d(y_{n+1}, y_{n+2}) \leq d(v_{n+1}, v_{n+2}).$$

Thus, from (3.28), we have

$$d(x_{n+1}, x_{n+2}) < \psi^n \Big(q \psi \big(d(x_0, x_1) \big) \Big) \quad \text{and} \\ d(y_{n+1}, y_{n+2}) < \psi^n \Big(q' \psi \big(d(y_0, y_1) \big) \Big).$$
(3.31)

Now, we shall prove that $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in U. Let $\epsilon > 0$ be fixed. Since $\sum_{n=1}^{\infty} \psi^n \left(q \psi (d(x_0, x_1)) \right) < \infty$ and $\sum_{n=1}^{\infty} \psi^n \left(q' \psi (d(y_0, y_1)) \right) < \infty$, there exist some positive integers $\varphi = \varphi(\epsilon)$ and $\varphi' = \varphi'(\epsilon)$ such that

$$\sum_{k\geq\varphi}^{\infty}\psi^k\Big(q\psi\big(d(x_0,x_1)\big)\Big)<\epsilon$$

and

$$\sum_{k\geq\varphi'}^{\infty}\psi^k\Big(q'\psi\big(d(y_0,y_1)\big)\Big)<\epsilon,$$

respectively. For $m > n > \varphi$, using the triangular inequality, we obtain

$$d(x_n, x_m) \leq \sum_{k=n}^{m-1} d(x_k, x_{k+1})$$

$$\leq \sum_{k=n}^{m-1} \psi^k \Big(q \psi \big(d(x_0, x_1) \big) \Big)$$

$$\leq \sum_{k\geq\varphi}^{\infty} \psi^k \Big(q \psi \big(d(x_0, x_1) \big) \Big) < \epsilon$$

(3.32)

and

$$d(y_n, y_m) \leq \sum_{k=n}^{m-1} d(y_k, y_{k+1})$$

$$\leq \sum_{k=n}^{m-1} \psi^k \Big(q' \psi \big(d(y_0, y_1) \big) \Big)$$

$$\leq \sum_{k \geq \varphi'}^{\infty} \psi^k \Big(q' \psi \big(d(y_0, y_1) \big) \Big) < \epsilon,$$

(3.33)

respectively. Hence $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences in U.

Similarly, we can show that $\{u_n\}$ and $\{v_n\}$ are Cauchy sequences in V. Since U and V are closed subsets of a complete metric space, there exists (r^*, s^*) in $U \times U$ such that $x_n \to r^*$, $y_n \to s^*$ as $n \to \infty$ and there exist u^*, v^* in V such that $u_n \to u^*$, $v_n \to v^*$ as $n \to \infty$. By (3.29) and (3.30), we conclude that

$$d(r^*, u^*) = \operatorname{dist}(U, V), \text{ as } n \to \infty \quad \text{and} \\ d(s^*, v^*) = \operatorname{dist}(U, V), \text{ as } n \to \infty.$$

Since T is continuous and $u_n \in T(x_{n-1}, y_{n-1})$, we have $u^* \in T(r^*, s^*)$ and $v_n \in T(y_{n-1}, x_{n-1})$, we have $v^* \in T(s^*, r^*)$. Hence,

$$dist(U, V) \le D(r^*, T(r^*, s^*))$$
$$\le d(r^*, u^*)$$
$$= dist(U, V)$$

and

$$dist(U, V) \le D(s^*, T(s^*, r^*))$$
$$\le d(s^*, v^*)$$
$$= dist(U, V).$$

Therefore, (r^*, s^*) is the coupled best proximity point of the mapping T. \Box

Remark 3.3. If we take $\varphi(x, y) = xy$ and F(s, t) = st in Theorem 3.2, then our result reduces to Theorem 2.4 in [21].

Theorem 3.4. Let U and V be two nonempty closed subsets of a complete metric space (X, d) such that U_0 is nonempty. Let $\alpha : U \times U \rightarrow [0, \infty)$ and let $T : U \times U \rightarrow K(V)$ be a mapping satisfying the following conditions:

- (1) $T(x,y) \subseteq V_0$ for each $(x,y) \in U_0 \times U_0$ and (U,V) satisfies the weak *P*-property;
- (2) T is an α -proximal admissible map;

(3) there exist elements $(x_0, y_0), (x_1, y_1)$ in $U_0 \times U_0$ and $u_1 \in T(x_0, y_0), v_1 \in T(y_0, x_0)$ such that

$$d(x_1, u_1) = \text{dist}(U, V), \quad \alpha(x_0, x_1) \ge 1 \quad and \\ d(y_1, v_1) = \text{dist}(U, V), \quad \alpha(y_0, y_1) \ge 1;$$
(3.34)

(4) T is a continuous $(F, \varphi, \alpha, \psi)$ -proximal contraction.

Then there exists an element $(r^*, s^*) \in U_0 \times U_0$ such that

$$D(r^*, T(r^*, s^*)) = \operatorname{dist}(U, V) \quad and$$
$$D(s^*, T(s^*, r^*)) = \operatorname{dist}(U, V).$$

Theorem 3.5. Let U and V be two nonempty closed subsets of a complete metric space (X, d) such that U_0 is nonempty. Let $\alpha : U \times U \rightarrow [0, \infty)$ and let $\psi \in \Psi$ be a strictly increasing map. Suppose that $T : U \times U \rightarrow CL(V)$ is a mapping satisfying the following conditions:

- (1) $T(x,y) \subseteq V_0$ for each $(x,y) \in U_0 \times U_0$ and (U,V) satisfies the weak *P*-property;
- (2) T is an α -proximal admissible map;
- (3) there exist elements $(x_0, y_0), (x_1, y_1)$ in $U_0 \times U_0$ and $u_1 \in T(x_0, y_0), v_1 \in T(y_0, x_0)$ such that

$$d(x_1, u_1) = \text{dist}(U, V), \quad \alpha(x_0, x_1) \ge 1 \quad and \\ d(y_1, v_1) = \text{dist}(U, V), \quad \alpha(y_0, y_1) \ge 1;$$
(3.35)

(4) property (C) holds and T is an $(F, \varphi, \alpha, \psi)$ -proximal contraction. Then there exists an element $(x^*, y^*) \in U_0 \times U_0$ such that

$$D(x^*, T(x^*, y^*)) = \operatorname{dist}(U, V) \quad and$$
$$D(y^*, T(y^*, x^*)) = \operatorname{dist}(U, V).$$

Proof. Similar to the proof of Theorem 3.2, there exist Cauchy sequences $\{x_n\}$ and $\{y_n\}$ in U and Cauchy sequences $\{u_n\}$ and $\{v_n\}$ in V such that

$$d(x_{n+1}, u_{n+1}) = \operatorname{dist}(U, V), \quad \alpha(x_n, x_{n+1}) \ge 1 \quad \text{and} \\ d(y_{n+1}, v_{n+1}) = \operatorname{dist}(U, V), \quad \alpha(y_n, y_{n+1}) \ge 1;$$
(3.36)

and $x_n \to r^* \in U, y_n \to s^* \in U$ as $n \to \infty$ and $u_n \to u^* \in V, v_n \to v^* \in V$ as $n \to \infty$.

From condition (C), there exist subsequences $\{x_{n_k}\}$ of $\{x_n\}$, $\{y_{n_k}\}$ of $\{y_n\}$ such that $\alpha(x_{n_k}, r^*) \ge 1$, $\alpha(y_{n_k}, s^*) \ge 1$ for all k. Since T is an $(F, \varphi, \alpha, \psi)$ -proximal contraction, we have

$$\varphi\Big(1, H\big(T(x_{n_k}, y_{n_k}), T(r^*, s^*)\big)\Big) \le \varphi\Big(\alpha(x_{n_k}, r^*), H\big(T(x_{n_k}, y_{n_k}), T(x^*, s^*)\big)\Big) \\\le F\big(1, \psi\big(d(x_{n_k}, r^*)\big)\big)$$

$$\implies H(T(x_{n_k}, y_{n_k}), T(r^*, s^*))) \le \psi(d(x_{n_k}, r^*))$$

and

$$\varphi\Big(1, H\big(T(y_{n_k}, x_{n_k}), T(s^*, r^*)\big)\Big) \leq \varphi\Big(\alpha(y_{n_k}, s^*), H\big(T(y_{n_k}, x_{n_k}), T(y^*, r^*)\big)\Big)$$
$$\leq F\big(1, \psi\big(d(y_{n_k}, s^*)\big)\big)$$
$$\implies H\big(T(y_{n_k}, x_{n_k}), T(s^*, r^*)\big)) \leq \psi\big(d(y_{n_k}, s^*)\big)$$

Letting $k \to \infty$ in the above inequalities, we get $T(x_{n_k}, y_{n_k}) \to T(x^*, y^*)$ and $T(y_{n_k}, x_{n_k}) \to T(y^*, x^*)$ respectively. By the continuity of the metric d, we have

$$d(x^*, u^*) = \lim_{k \to \infty} d(x_{n_k+1}, u_{n_k+1}) = \operatorname{dist}(U, V),$$

$$d(y^*, v^*) = \lim_{k \to \infty} d(y_{n_k+1}, v_{n_k+1}) = \operatorname{dist}(U, V).$$

(3.37)

Since $u_{n_k+1} \in T(x_{n_k}, y_{n_k}), u_{n_k} \to u^*$ and $T(x_{n_k}, y_{n_k}) \to T(x^*, y^*), u^* \in T(x^*, y^*)$ and since $v_{n_k+1} \in T(y_{n_k}, x_{n_k}), v_{n_k} \to v^*$ and $T(y_{n_k}, x_{n_k}) \to T(y^*, x^*), v^* \in T(y^*, x^*)$, we have

$$dist(U, V) \le D(x^*, T(x^*, y^*))$$
$$\le d(x^*, u^*)$$
$$= dist(U, V)$$

and

$$dist(U, V) \le D(y^*, T(y^*, x^*))$$
$$\le d(y^*, v^*)$$
$$= dist(U, V).$$

Therefore, (x^*, y^*) is the coupled best proximity point of the mapping T. \Box

Remark 3.6. If we take $\varphi(x, y) = xy$ and F(s, t) = st in Theorem 3.5, then our result reduces to Theorem 2.6 in [21].

Theorem 3.7. Let U and V be two nonempty closed subsets of a complete metric space (X, d) such that U_0 is nonempty. Let $\alpha : U \times U \rightarrow [0, \infty)$ and let $T : U \times U \rightarrow K(V)$ be a mapping satisfying the following conditions:

- (1) $T(x,y) \subseteq V_0$ for each $(x,y) \in U_0 \times U_0$ and (U,V) satisfies the weak *P*-property;
- (2) T is an α -proximal admissible map;
- (3) there exist elements $(x_0, y_0), (x_1, y_1)$ in $U_0 \times U_0$ and $u_1 \in T(x_0, y_0), v_1 \in T(y_0, x_0)$ such that

$$d(x_1, u_1) = \operatorname{dist}(U, V), \quad \alpha(x_0, x_1) \ge 1 \quad and \\ d(y_1, v_1) = \operatorname{dist}(U, V), \quad \alpha(y_0, y_1) \ge 1;$$
(3.38)

(4) property (C) holds and T is an $(F, \varphi, \alpha, \psi)$ -proximal contraction. Then there exists an element $(x^*, y^*) \in U_0 \times U_0$ such that

$$D(x^*, T(x^*, y^*)) = \operatorname{dist}(U, V) \quad and$$
$$D(y^*, T(y^*, x^*)) = \operatorname{dist}(U, V).$$

We give the following examples to support our main results.

Example 3.8. Let $X = [0, \infty) \times [0, \infty)$ be endowed with the usual metric d. Let $2 < a \leq 3$ be any fixed real number, $U = \{(a, x) : 0 \leq x < \infty\}$ and $V = \{(0, x) : 0 \leq x < \infty\}$. Define $T : U \times U \to \operatorname{CL}(V)$ by

$$T((a,x),(a,y)) = \left\{ (0,b^2) : 0 \le b \le \max\{x,y\} \right\},$$
(3.39)

and $\alpha: U \times U \to [0,\infty)$ by

$$\alpha\left((a,x),(a,y)\right) = \begin{cases} 1 & \text{if } x = y = 0, \\ \frac{1}{a(x+y)} & \text{otherwise.} \end{cases}$$
(3.40)

Let $\varphi(x,y) = xy$, F(s,t) = st and let $\psi(t) = \frac{t}{2}$ for all $t \ge 0$. Note that $U_0 = U, V_0 = V$ and $T(x,y) \in V_0$ for each $x, y \in U_0$. If $w_1 = (a, y_1), w'_1 = (a, y'_1), w_2 = (a, y_2), w'_2 = (a, y'_2) \in U$ with either $y_1 \ne 0$ or $y_2 \ne 0$ or both are nonzero, we have

$$\varphi\Big(\alpha(w_1, w_2), H\left(T(w_1, w_1'), T(w_2, w_2')\right)\Big) = \frac{1}{a(y_1 + y_2)} |y_1^2 - y_2^2|$$

$$< \frac{1}{2}|y_1 - y_2|$$

$$= \psi\left(d(w_1, w_2)\right)$$

$$= F\Big(1, \psi\left(d(w_1, w_2)\right)\Big)$$

for otherwise

$$\varphi\Big(\alpha(w_1, w_2), H\left(T(w_1, w_1'), T(w_2, w_2')\right)\Big) = 0 = F\left(1, \psi\left(d(w_1, w_2)\right)\right).$$

For $x_0 = (a, \frac{1}{2a}), x_1 = (a, \frac{1}{4a^2}), y_0 = (a, \frac{1}{3a}) \in U_0 \text{ and } u_1 = (0, \frac{1}{4a^2}) \in T(x_0, y_0) \text{ such that } d(x_1, u_1) = a = \operatorname{dist}(U, V) \text{ and } \alpha(x_0, x_1) = \frac{4a}{1+2a} > 1.$
And for $x_1 = (a, \frac{1}{3a}), y_1 = (a, \frac{1}{9a^2}) \in U_0 \text{ and } v_1 = (0, \frac{1}{9a^2}) \in T(x_1, y_1) \text{ such that } d(y_1, v_1) = a = \operatorname{dist}(U, V) \text{ and } \alpha(y_0, y_1) = \frac{9a}{1+3a} > 1.$
Furthermore, one can see that the remaining conditions of Theorem 3.2 also hold. Therefore, T has the coupled best proximity point.

Example 3.9. Let $X = [0, \infty) \times [0, \infty)$ be a product space endowed with the usual metric d. Suppose that $U = \{(\frac{1}{2}, x) : 0 \le x < \infty\}$ and $V = \{(0, x) : 0 \le x < \infty\}$.

Define $T: U \times U \to \operatorname{CL}(V)$ by

$$T\left((\frac{1}{2},a),(\frac{1}{2},b)\right) = \begin{cases} \left\{(0,\frac{x}{2}): 0 \le x \le \max\{a,b\}\right\} & \text{if } a,b \le 1, \\ \left\{(0,x^2): 0 \le x \le \max\{a^2,b^2\}\right\} & \text{if } a,b > 1, \end{cases}$$
(3.41)

and define $\alpha: U \times U \to [0, \infty)$ by

$$\alpha(x,y) = \begin{cases} 1 & \text{if } x, y \in \left\{ \left(\frac{1}{2}, a\right) : 0 \le a \le 1 \right\}, \\ 0 & \text{otherwise.} \end{cases}$$

Let $\psi(t) = \frac{t}{2}$ for all $t \ge 0$. Note that $U_0 = U, V_0 = V$, and $T(x, y) \subseteq V_0$ for each $(x, y) \in U_0 \times U_0$. Also, the pair (U, V) satisfies the weak *P*-property.

Let $(x_0, y_0), (x_1, y_1) \in \left\{ (\frac{1}{2}, x) : 0 \le x \le 1 \right\}^2$. Then

$$T(x_0, y_0), T(x_1, y_1) \subseteq \left\{ (0, \frac{x}{2}) : 0 \le x \le 1 \right\}.$$

Consider $u_1 \in T(x_0, y_0), u_2 \in T(x_1, y_1)$ and $w_1, w_2 \in U$ such that $d(w_1, u_1) = dist(U, V)$ and $d(w_2, u_2) = dist(U, V)$. Then we have

$$w_1, w_2 \in \left\{ (\frac{1}{2}, x) : 0 \le x \le \frac{1}{2} \right\},$$

so $\alpha(w_1, w_2) = 1$. And, for $v_1 \in T(y_0, x_0), v_2 \in T(y_1, x_1)$ and $w'_1, w'_2 \in U$ such that $d(w'_1, v_1) = \text{dist}(U, V)$ and $d(w'_2, v_2) = \text{dist}(U, V)$. Then we have

$$w'_1, w'_2 \in \left\{ (\frac{1}{2}, x) : 0 \le x \le \frac{1}{2} \right\},$$

so $\alpha(w'_1, w'_2) = 1$. Therefore, T is an α -proximal admissible map. For $(x_0, y_0) = ((\frac{1}{2}, 1), (\frac{1}{2}, 1)) \in U_0 \times U_0$ and $u_1 = (0, \frac{1}{2}) \in T(x_0, y_0), v_1 = (0, \frac{1}{4}) \in T(y_0, x_0)$ in V_0 , we have

$$(x_1, y_1) = \left((\frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{4}) \right) \in U_0 \times U_0$$

such that

$$d(x_1, u_1) = \operatorname{dist}(U, V), \quad \alpha(x_0, x_1) = \alpha\left((\frac{1}{2}, 1), (\frac{1}{2}, \frac{1}{2})\right) = 1$$

and

$$d(y_1, v_1) = \operatorname{dist}(U, V), \quad \alpha(y_0, y_1) = \alpha\left((\frac{1}{2}, 1), (\frac{1}{2}, \frac{1}{4})\right) = 1.$$

Let $\varphi(x,y) = xy$ and F(s,t) = st. If $x, x', y, y' \in \left\{ \left(\frac{1}{2}, a\right) : 0 \le a \le 1 \right\}^2$. Then we have

$$\varphi\Big(\alpha(x,y), H\left(T(x,x'), T(y,y')\right)\Big) = \frac{|x-y|}{2}$$
$$= \frac{1}{2}d(x,y)$$
$$= F\Big(1, \psi\left(d(x,y)\right)\Big)$$

for otherwise

$$\varphi\Big(\alpha(x,y), H\left(T(x,x'), T(y,y')\right)\Big) \leq F\Big(1, \psi\left(d(x,y)\right)\Big).$$

Hence, T is an $(F\varphi, \alpha, \psi)$ -proximal contraction. Moreover, if $\{x_n\}$ is a sequence in U such that $\alpha(x_n, x_{n+1}) = 1$ for all n and $x_n \to x \in U$ as $n \to \infty$, then there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\alpha(x_{n_k}, x) = 1$ for all k. Therefore, all the conditions of Theorem 3.5 hold and T has the coupled best proximity point.

Acknowledgments: The second author is grateful to Rajabhat Mahasarakham University for financial support during the preparation of this manuscript and to the referees for useful comments.

References

- A.H. Ansari, Note on "α-admissible mappings and related fixed pointtheorems", The 2nd Regional Conference on Mathematics And Applications, Payame Noor University, Sept., (2014), 373-376.
- [2] A.D. Arvanitakis, A proof of the geralized Banach contraction conjecture, Proc. Am. Math. Soc. 131(12)(2003), 3647-3656.
- [3] A. Abkar and M. Gabeleh, Best proximity points asymptotic cyclic contraction mappings, Nonlinear Anal. 74(18) (2011), 7261-7268.
- [4] A.H. Ansari and S. Shukla, Some fixed point theorems for ordered F-(F, h)-contraction and subcontractions in 0-f-orbitally complete partial metric spaces, J. Adv. Math. Stud., 9(1) (2016), 37-53.
- [5] A. Abkar and M. Gabeleh, The existence of best proximity points for multivalued non-self mappings, Rev. R. Acad. Cienc. Exactas Fis. Nat., Ser. A Mat. 107(2) (2012), 319-325.
- [6] A. Abkar and M. Gabeleh, Best proximity points for cyclic mappings in ordered metric spaces, J. Optim. Theory Appl. 151(2) (2011), 418–424.
- [7] M.U. Ali and T. Kamran, On (α^{*}-ψ)-contractive multi-valued mappings, Fixed Point Theory Appl., 2013:137 (2013).
- [8] M.A. Al-Thagafi and N. Shahzad, Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear Anal., 70(3) (2009), 1209-1216.
- M.A. Alghamdi and N. Shahzad, Best proximity point results in geodesic metric spaces, Fixed Point Theory Appl., 2012:234 (2012).
- [10] M.U. Ali, T. Kamran and N. Shahzad, Best proximity point for α-ψ-proximal contractive multimaps, Abstr. Appl. Anal., 2014, Article ID 181598 (2014).

- [11] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fundam. Math. 3 (1922), 133-181.
- [12] D.W. Boyd and J.S.W. Wong, On nonlinear contractions, Proc. Amer. Math. 20 (1969), 458-464.
- [13] B.S. Choudhury and K.P. Das, A new contraction principle in Menger spaces, Acta Math. Sin., 24(8) (2008), 1379-1386.
- [14] M. De la Sen and A. Ibeas Fixed points and best proximity points in contractive cyclic self-maps satisfying constraints in closed integral form with some applications, Appl. Math. Comput., 219(10) (2013), 5410-5426.
- [15] C. Di Bari, T. Suzuki and C. Vetro, Best proximity points for cyclic Meir-Keeler contractions, Nonlinear Anal. 69 (2008), 3790-3794.
- [16] M. Derafshpour, S. Rezapour and N. Shahzad, Best proximity points of cyclic φcontractions in ordered metric spaces, Topol. Meth. Nonlinear Anal., 37(1) (2011), 193-202.
- [17] A.A. Eldred and P. Veeramani, Existence and convergence of best proximity points, J. Math. Anal. Appl., **323** (2006), 1001-1006.
- [18] M. Jleli and B. Samet, Best proximity points for (α-ψ)-proximal contractive type mappings and applications, Bull. Sci. Math., 137(8) (2013), 977-995.
- [19] E. Karapinar and B. Samet, Geralized α-ψ-contractive type mapings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012, Article ID 793486 (2012).
- [20] J. Markin and N. Shahzad, Best proximity points for relatively u-continuous mappings in Banach and hyperconvex spaces, Abstr. Appl. Anal., 2013, Article ID 680186 (2013).
- [21] J. Nantadilok, Coupled best proximity point theorems for α-ψ-proximal contractive multimaps, Fixed Point Theory Appl., 2015:30 (2015).
- [22] T. Suzuki, M. Kikkawa and C. Vetro, The existence of best proximity points in metric spaces with the property UC, Nonlinear Anal., 71 (2009), 2918-2926.
- [23] S. Sadiq Basha, Extensions of Banach's contraction principle, Numer. Funct. Anal. Optim., 31 (2010), 569-576.
- [24] S. Sadiq Basha, Best proximity point theorems generalizing the contraction principle Nonlinear Anal., 74 (2011), 5844-5850.
- [25] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal., 75(4) (2012), 2154-2165.
- [26] W. Sintunavarat and P. Kumam, Coupled best proximity point theorem in metric spaces, Fixed Point Theory Appl., 2012:93 (2012).
- [27] T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(5) (2008), 1861-1869.
- [28] J. Zhang, Y. Su and Q. Cheng, A note on 'A best proximity point theorem for Geraghtycontractions', Fixed Point Theory Appl., 2013:99, doi.org/10.1186/1687-1812-2013-99, (2013).