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Abstract. In this paper we study a nonlinear spectrum which is related to a similar spectrum

introduced recently by Furi, Vignoli, and the second author. We compare this spectrum with

other nonlinear spectra, study its analytical and topological properties, and briefly indicate

a possible application.

1. Introduction

In view of the eminent importance of spectral theory for linear operators
in both mathematics and physics, it is not surprising that various attempts
have been made to define and study some kind of spectrum also for nonlinear
operators. Meanwhile there is a large variety of spectra for different classes
of nonlinear operators, for a self-contained description of the state of the art
of nonlinear spectral theory we refer to the book [2] or the recent survey
article [1].

We point out, however, that not all of these spectra are suitable from the
viewpoint of applications to nonlinear problems. A pleasant exception is pro-
vided by the asymptotic spectrum defined by Furi, Martelli and Vignoli [10]
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in 1978, the global spectrum given by Feng [8] in 1997, and the local spectrum
introduced by Väth [19] in 2001. These three spectra, although being quite
different in nature, admit surprisingly strong applications, coincide for homo-
geneous operators and, as one should expect, reduce to the familiar spectrum
in the linear case. Let us mention, in particular, that Väth actually defines
two similar, but different spectra; in the sequel we will call them the large
Väth spectrum σV (f) and the small Väth spectrum σv(f), respectively.

Quite recently, a new notion called spectrum of a nonlinear operator at
some point has been defined by Calamai, Furi, and Vignoli [3]. The idea
of “localizing” the spectrum seems to be reasonable, since many concepts
in nonlinear analysis are in fact of local nature. (It suffices to mention the
derivative of a map at some point as a typical example.) This spectrum, which
we will call the CFV -spectrum σCFV (f) in what follows, has some natural
properties and in some cases may be calculated explicitly.

A scrutiny of the large Väth spectrum σV (f) and the Calamai-Furi-Vignoli
spectrum σCFV (f) reveals that they have not only many interesting features
in common, but that the latter may considered as a localization of the former.
So it seems to be a tempting idea to define yet another spectrum which may be
viewed as a localization of the small Väth spectrum σv(f). This is the purpose
of the present paper in which we introduce and study a spectrum called small
Calamai-Furi-Vignoli spectrum and denoted by σcfv(f).

This paper is organized as follows. In the first section we introduce some
unavoidable notation. Afterwards we recall basic definitions and facts from
nonlinear spectral theory; in particular, we discuss Väth’s spectra in some
detail and give some modifications which seem to be of independent interest.
The third section is concerned with the large Calamai-Furi-Vignoli spectrum
σCFV (f) and its new analogue σcfv(f). In the fourth section we discuss some
illustrative examples in more detail, with a particular emphasis on homoge-
neous operators (of any positive degree). Finally, in the last section we briefly
indicate an application to the eigenvalue problem for the p-Laplace operator
which arises in many fields of mechanics, physics, and engineering.

2. Prerequisites and notation

Throughout this paper, we denote by Br(p) := {x ∈ X : ‖x − p‖ < r} the
open ball of radius r > 0 centered at p ∈ X, where X is a real or complex
Banach space, by Br(p) the corresponding closed ball, and by Sr(p) = ∂Br(p)
the corresponding sphere. In case p = 0 we will use the shortcut Br := Br(0),
Br := Br(0), and Sr := Sr(0).

Given a set M ⊆ X with nonempty interior, we denote by OBC(M) the
family of all open, bounded, connected subsets of M containing 0. Moreover,
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for a bounded set M ⊂ X we write α(M) for the Hausdorff measure of non-
compactness of M , i.e., the infimum of all numbers ε > 0 such that M has a
finite ε-net in X. All maps considered in this paper are assumed to be con-
tinuous. Following the notation of [3], we will use in the sequel the following
characteristics for a map f : X → X and p ∈ X:

α(f) := inf {λ : α(f(M)) ≤ λα(M)}, ω(f) := sup {λ : α(f(M)) ≥ λα(M)}, (2.1)

αp(f) := lim
r→0

α(f |Br(p)), ωp(f) := lim
r→0

ω(f |Br(p)), (2.2)

|f | := lim sup
‖x‖→∞

‖f(x)‖
‖x‖ , d(f) := lim inf

‖x‖→∞
‖f(x)‖
‖x‖ , (2.3)

|f |p := lim sup
‖x‖→0

‖f(p + x)− f(p)‖
‖x‖ , dp(f) := lim inf

‖x‖→0

‖f(p + x)− f(p)‖
‖x‖ . (2.4)

In what follows, we will restrict ourselves to the special case p = 0; the general
case may be recovered by passing from f to the map fp defined by fp(x) =
f(p + x) − f(p). In fact, αp(f) = α0(fp), ωp(f) = ω0(fp), |f |p = |fp|0, and
dp(f) = d0(fp). The characteristic (2.1) plays a crucial role in Darbo’s fixed
point principle [4]: every operator f which leaves a convex closed bounded
subset of a normed space invariant and satisfies α(f) < 1 has a fixed point in
this set. This contains Schauder’s fixed point principle as a special case, since
α(f) = 0 if and only if f is compact.

In the following definition we collect some notions for maps which are de-
fined on the closure of an open, bounded, connected subset of X (typically, a
ball); these notions have been introduced in [11, 14, 18], see also Chapter 7 in
[2].

Definition 2.1. Let Ω ∈ OBC(X). A map f : Ω → X is called epi on Ω if
f(x) 6= 0 for x ∈ ∂Ω and the coincidence equation

f(x) = h(x) (2.5)

has a solution in Ω for any compact map h : Ω → X satisfying h(x) ≡ 0 for
x ∈ ∂Ω. More generally, f : Ω → X is called k-epi (k ≥ 0) on Ω if f(x) 6= 0
for x ∈ ∂Ω and the coincidence equation (2.5) has a solution in Ω for any map
h : Ω → X satisfying α(h) ≤ k and h(x) ≡ 0 for x ∈ ∂Ω. Moreover, f is called
strictly epi on Ω if

inf
x∈∂Ω

‖f(x)‖ > 0

and f is k-epi for some k > 0. Finally, f : Ω → X is called properly epi on Ω
if f is epi and ω(f |Ω) > 0.
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The following characteristic which was introduced in [18] gives a precise
measure for “how noncompact” the map g in (2.5) may be chosen. For Ω ∈
OBC(X) and f : Ω → X we put

ν(f ; Ω) := inf {k > 0 : f is not k-epi on Ω}. (2.6)

The problem of finding a map f which is epi but not strictly epi (i.e., is not
k-epi for any k > 0) was open for a long time. It was solved by Furi [9] who
showed that the map f : X → X defined by

f(x) = ‖x‖x (2.7)

has this property in any infinite dimensional Banach space X. Such a map
must necessarily satisfy ω(f) = 0 (see (2.1)); this follows from the following
quite remarkable theorem which was given by Väth in [21] and may be found
with a slightly different proof in [3].

Theorem 2.2. Let Ω ∈ OBC(X) and f : Ω → X be properly epi on Ω. Then
ν(f ; Ω) ≥ ω(f |Ω), and so f is strictly epi on Ω.

The map (2.7) has other interesting properties. It is a homeomorphism with
continuous inverse

f−1(y) =

{ ‖y‖−1/2y if y 6= 0,

0 if y = 0,

and so behaves quite well from the analytical viewpoint. Nevertheless, since
f is a bijection between the sphere Sr and the sphere Sr2 , it follows that

α0(f) = ω0(f) = |f |0 = d0(f) = 0, (2.8)

which shows that the topological characteristics (2.2) and (2.4) may be zero
even for very nice maps.

For further reference, we still introduce the notation

N(f ; r) := {x ∈ Br : f(x) = 0} (r > 0) (2.9)

for the set of zeros of a map f : X → X in the closed ball Br. Of course, in
case f(0) = 0 and d0(f) > 0 we have N(f ; r) = {0} for all sufficiently small
r > 0, and trivial examples show that the converse need not be true.

3. The large and small Väth spectra

Following [16, 20], we call a map f : X → X V-regular if there exists some
Ω ∈ OBC(X) such that f is properly epi on Ω. A certain modification of this
is given in the following

Definition 3.1. We call a map f : X → X locally V-regular (at zero) if for
all r > 0 there exists some Ω ∈ OBC(Br) such that f is properly epi on Ω.
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Clearly, local V -regularity implies V -regularity, but the converse is not true,
as the following elementary example shows.

Example 3.2. Let f : R → R be defined by f(x) := x + 1 for x < −1,
f(x) := 0 for −1 ≤ x ≤ 1, and f(x) := x− 1 for x > 1. Choosing Ω = (−r, r)
with r > 1, from the classical intermediate value theorem we immediately
conclude that f is V -regular. However, f cannot be locally V -regular, as may
be seen by choosing r < 1.

In [21] (see also Chapter 8 of [2]) the large Väth spectrum of f : X → X is
defined by

σV (f) := {λ ∈ K : λI − f is not V -regular}.
It is also shown there that V -regularity is stable under small perturbations
(in a suitable metric), which has the pleasant consequence that the spectrum
σV (f) is closed. However, for local V -regularity in the sense of Definition 3.1
this is not true, as the following example from [17] shows.

Example 3.3. Consider the space X = `1(R) of all absolutely summable
real sequences x = (ξn)n with the usual norm, and denote by en the canon-
ical basis element in X and by Pn the corresponding projection, that is,
Pn(ξ1, ξ2, ξ3, . . .) = ξn (n ∈ N). Let f : X → X be defined by

f(ξ1, ξ2, ξ3, . . . ) = (φ1(ξ1), φ2(ξ2), φ3(ξ3), . . .),

where

φn(s) :=





s + 2−n − 4−n if s ≤ −2−n,

2−ns if −2−n < s < 2−n,

s− 2−n + 4−n if s ≥ 2−n.

It is not hard to see that φn : R→ R is a continuous bijection with inverse

ψn(t) :=





t + 4−n − 2−n if t ≤ −4−n,

2nt if −4−n < t < 4−n,

t− 4−n + 2−n if t ≥ 4−n.

Consequently, f is a homeomorphism on X with inverse

f−1(η1, η2, η3, . . . ) = (ψ1(η1), ψ2(η2), ψ3(η3), . . .).

Below we will use the estimates

‖f(x)−f(x̃)‖ =
∞∑

k=1

|φk(ξk)−φk(ξ̃k)| ≤ ‖x− x̃‖ (x = (ξk)k, x̃ = (ξ̃k)k ∈ X)

and
∞∑

k=n

|ψk(ηk)− ψk(η̃k)| ≤ ‖y − ỹ‖+
1

2n−2
(y = (ηk)k, ỹ = (η̃k)k ∈ X) (3.1)
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which follow from the definition of φn and ψn. Choosing n = 1 in (3.1) we see
that ‖f−1(y) − f−1(ỹ)‖ ≤ ‖y − ỹ‖ + 2, and so both f and f−1 are bounded
operators on X.

We claim that the operator f is locally V -regular, but 2−nI − f is not
locally V -regular for any n ∈ N, and so this property is not stable w.r.t. small
perturbations.

First of all, let us show that f is properly epi on each ball Br. If h : Br → X
is any compact map satisfying h(x) ≡ 0 on Sr, then f−1 ◦ h is a compact
operator mapping Sr into Br (actually, into zero), and so there is some x̂ ∈ Br

with (f−1 ◦ h)(x̂) = x̂, i.e., a solution of (2.5).
Observe that, in contrast to f , the operator f−1 : X → X cannot satisfy

a Lipschitz condition near zero, because ‖4−nen‖ = 4−n, but ‖f−1(4−nen)‖ =
2−n. However, f−1 is α-nonexpansive on the whole space X, i.e., α(f−1) ≤ 1,
which may be seen as follows. Fix ŷ = (η̂n)n ∈ X and δ > 0, and choose
N ∈ N so large that 22−N ≤ δ. Consider the set

Ĥ := {(ξn)n ∈ X : ξn = ψn(η̂n) if n ≥ N + 1}.
Clearly, this set lies in a finite dimensional subspace of X, and so the set Ĥr :=
Ĥ∩f−1(Br(ŷ)) is precompact, since f−1 is a bounded operator. Consequently,
there exists a finite δ

2 -net {z1, . . . , zm} for Ĥr which means that for y ∈ Br(ŷ)
we may choose j ∈ {1, 2, . . . ,m} with

N∑

k=1

|Pkf
−1(y)− Pkzj | ≤ δ

2
.

Since zj ∈ Ĥ, hence Pnzj = ψn(η̂n) for n ≥ N + 1, this implies that

‖f−1(y)− zj‖ =
N∑

k=1

|Pkf
−1(y)− Pkzj |+

∞∑

k=N+1

|Pkf
−1(y)− Pkzj |

≤ δ

2
+

∞∑

k=N+1

|Pkf
−1(y)− Pkzj |

=
δ

2
+

∞∑

k=N+1

|ψk(ηk)− ψk(η̂k)|

≤ δ

2
+ ‖y − ŷ‖+

1
2N−1

≤ ‖y − ŷ‖+ δ ≤ r + δ,

where we have used (3.1). Since y ∈ Br(ŷ) was arbitrary, we conclude that

f−1(Br(ŷ)) ⊆
m⋃

j=1

Br+δ(zj).
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Now, if M ⊂ X is any bounded set with α(M) = r > 0, we may find a finite
(r + δ)-net {ŷ1, . . . , ŷk} for M in X. Using the same construction as above for
each of the points ŷ1, . . . , ŷk, we find then a finite (r+2δ)-net for f−1(M). Since
δ > 0 was arbitrary, we see that α(f−1) ≤ 1, hence ω(f) = α(f−1)−1 ≥ 1, and
so we have proved that f is indeed properly epi.

On the other hand, to see that 2−nI − f is not locally V -regular for any
n ∈ N is easy. In fact, given n ∈ N, r > 0 with r < 2−n, and Ω ∈ OBC(Br),
we may find t ∈ (0, 2−n] such that ten ∈ ∂Ω. For this element we have
(2−nI − f)(ten) = 0, and so 2−nI − f is not locally V -regular.

Example 3.3 shows that defining a “local” spectrum σloc
V (f) consisting of

all λ ∈ K such that λI − f is not locally V -regular would not be a good idea,
because such a spectrum would not be closed. Observe, however, that the map
2−nI − f in Example 2.3, although not being locally V -regular, is V -regular.
More generally, one can even show by means of a simple homotopy argument
that λI − f is V -regular for any |λ| < 1 in this example.

We pass now to the definition of the small Väth spectrum which was also
given in [21], see again Chapter 8 of [2]. A map f : X → X is called v-regular
if there exists some Ω ∈ OBC(X) such that f is strictly epi on Ω. Again, the
following is a local variant of this.

Definition 3.4. We call a map f : X → X locally v-regular (at zero) if for all
r > 0 there exists some Ω ∈ OBC(Br) such that f is strictly epi on Ω.

Similarly as before, local v-regularity implies v-regularity, but the converse
is not true, as Example 3.2 shows. Moreover, in contrast to v-regularity, local
v-regularity is again not stable under small perturbations, as Example 3.3
shows.

Now, the small Väth spectrum of f : X → X is defined in [21] (see also
Chapter 8 of [2]) by

σv(f) := {λ ∈ K : λI − f is not v-regular}.
It is also shown there that the small spectrum is always closed. We point
out that both Väth spectra σV (f) and σv(f) are bounded (hence compact) if
α(f) < ∞, see (2.1).

The following proposition which we state for further reference, is an imme-
diate consequence of Väth’s Theorem 2.2.

Proposition 3.5. Every V -regular map is v-regular, and every locally V -
regular map is locally v-regular. In particular, the inclusion

σv(f) ⊆ σV (f)

holds true.
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4. The large and small Calamai-Furi-Vignoli spectra

The following notion was introduced under a different name in [3]. We call
a map f : X → X CFV-regular (at zero) if d0(f) > 0, ω0(f) > 0, and f is epi
on Br for all sufficiently small r > 0 (i.e., for r ∈ (0, r0] with some suitable
r0 > 0). For example, a sufficient condition for a scalar map f : R → R to
be CFV -regular is given in terms of the upper and lower Dini derivatives of
f in [3, Remark 4.10]. More illuminating examples will be given in Section 4
below.

The large Calamai-Furi-Vignoli spectrum of a map f : X → X is defined in
[3] by

σCFV (f) := {λ ∈ K : λI − f is not CFV -regular}.
It is also shown in [3] that the spectrum σCFV (f) is always closed; in addition,
in case α0(f) < ∞ and |f |0 < ∞ it is also bounded, hence compact.

Suppose that f : X → X is CFV -regular. Then we may find r0 > 0 such
that ω(f |Br0

) > 0 and f is epi on Br for r ≤ r0. This implies that f is properly
epi on Br for r ≤ r0, and so also V -regular. In this way, we have proved the
following

Proposition 4.1. Every CFV -regular map is locally V -regular. In particular,
the inclusion

σV (f) ⊆ σCFV (f)
holds true.

Now we are going to introduce a new regularity notion and a corresponding
new spectrum. A detailed exposition of the following material is contained,
together with some more examples, in the thesis [17].

Definition 4.2. Let f : X → X be a map satisfying N(f ; r) = {0} for all
sufficiently small r > 0, where N(f ; r) is given by (2.9). We define

ν0(f) := lim
r→0

ν(f ;Br), (4.1)

with ν(f ; Br) as in (2.6), and call (4.1) the local measure of solvability of f
(at zero). Moreover, we call a map f : X → X cfv-regular (at zero) if both
d0(f) > 0 and ν0(f) > 0.

Since the map r 7→ ν(f ; Br) is decreasing in the setting of Definition 3.2,
the equality ν0(f) = 0 means that ν(f ;Br) = 0 for sufficiently small r > 0,
and so f cannot be strictly epi. However, f may be very well epi, as the map
(2.7) shows which obviously satisfies ν0(f) = 0.

Definition 4.3. For f : X → X we put

σcfv(f) := {λ ∈ K : λI − f is not cfv-regular}, (4.2)
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and call the set (4.2) the small Calamai-Furi-Vignoli spectrum of f .

The following proposition is parallel to Proposition 3.5 and Proposition 4.1.

Proposition 4.4. Every CFV -regular map is cfv-regular, and every cfv-
regular map is locally v-regular. In particular, the inclusions

σv(f) ⊆ σcfv(f) ⊆ σCFV (f) (4.3)

hold true.

Proof. Let f be CFV -regular, i.e., d0(f) > 0, ω0(f) > 0, and there exists
r1 > 0 such that f is epi on Br for each r ≤ r1. From ω0(f) > 0 it follows
that there exists r2 > 0 such that ω(f |Br) > 0 for each r ≤ r2. So Theorem
2.2 implies that ν(f |Br) ≥ ω(f |Br) for r ≤ min {r1, r2}. Passing to the limit
r → 0 we obtain ν0(f) ≥ ω0(f) > 0 which means that f is cfv-regular.

Now suppose that f is cfv-regular, hence d0(f) > 0 and ν0(f) > 0. Choose
r0 > 0 such that ‖f(x)‖ ≥ 1

2d0(f)‖x‖ for ‖x‖ ≤ r0, and f is 1
2ν0(f)-epi on Br

for all r ≤ r0. Then

inf
‖x‖=r

‖f(x)‖ ≥ r
d0(f)

2
> 0 (0 < r ≤ r0),

which means that f is strictly epi on Br for r ≤ r0, and hence locally v-
regular. ¤

The following Theorem shows that the spectrum (4.2) shares some natural
properties with the spectra introduced before.

Theorem 4.5. The spectrum σcfv(f) is always closed; in case α0(f) < ∞
and |f |0 < ∞ it is also bounded, hence compact.

We will prove Theorem 4.5 as a consequence of the following Rouché type
perturbation result for cfv-regular operators.

Lemma 4.6. Suppose that f1 : X → X is cfv-regular and f2 : X → X
satisfies

|f2|0 < d0(f1), α0(f2) < ν0(f1).

Then the map f1 + f2 is also cfv-regular.

Proof. Without loss of generality we may assume that f1(0) = f2(0) = 0.
In [3, Prop. 2.6 (5)] it was shown that d0(f1 + f2) ≥ d0(f1) − |f2|0, and so
d0(f1 + f2) > 0. It remains to prove that ν0(f1 + f2) > 0 as well.

Fix k with α0(f2) < k < ν0(f1). Since the map r 7→ ν(f |Br) is monotonically
decreasing, we find some r1 > 0 such that ν(f1|Br) > k for r ≤ r1. Likewise,
since the map r 7→ α(f |Br) is monotonically increasing, we find some r2 > 0
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such that α(f2|Br) < k for r ≤ r2. Finally, the inequality |f2|0 < d0(f1) implies
that

sup
‖x‖=r

‖f2(x)‖ < inf
‖x‖=r

‖f1(x)‖

for sufficiently small r > 0, i.e., for 0 < r ≤ r0 and some suitable r0 > 0. So
for 0 < r ≤ min {r0, r1, r2} we have

ν((f1 + f2)|Br) ≥ k − α(f2|Br) ≥ k − α(f2|Br2
),

by Lemma 7.4 in [2]. But this implies that also ν0(f1+f2) ≥ k−α(f2|Br2
) > 0,

and so f1 + f2 is in fact cfv-regular. ¤

Proof of Theorem 4.5. Given λ ∈ K\σcfv(f), we know that d0(λI−f) > 0
and ν0(λI−f) > 0. Choose µ ∈ K with |λ−µ| < min {d0(λI − f), ν0(λI − f)}.
Then all hypotheses of Lemma 4.6 are fulfilled for f1 := λI − f and f2 :=
(µ−λ)I, and so f1 +f2 = µI−f is cfv-regular. Consequently, µ ∈ K\σcfv(f)
which implies that K \ σcfv(f) is open and σcfv(f) is closed.

The fact that σcfv(f) is bounded, hence compact, in case α0(f) < ∞ and
|f |0 < ∞ follows from the fact that the spectrum σCFV (f) is bounded under
these conditions, and the second inclusion in (4.3). ¤

We remark that Lemma 4.6 has a consequence which seems to be of indepen-
dent interest. Suppose that f, g : X → X are two maps satisfying |f − g|0 = 0
and α0(f − g) = 0; then

σcfv(f) = σcfv(g). (4.4)

In fact, to see this it suffices to apply Lemma 4.6 to f1 := λI−f and f2 := f−g
with λ 6∈ σcfv(f). The equality (4.4) in turn implies that the small Calamai-
Furi-Vignoli spectrum shares an important property with the large Calamai-
Furi-Vignoli spectrum (cf. [3, Remark 4.10]).

Theorem 4.7. If f is Fréchet differentiable at 0, then the equality σcfv(f) =
σ(f ′(0)) holds, where σ(f ′(0)) is the familiar spectrum of the linear operator
f ′(0).

The proof of Theorem 4.7 follows immediately from (4.4) choosing g =
f ′(0). Of course, an analogous result holds for the small Calamai-Furi-Vignoli
spectrum at an arbitrary point p ∈ X: if f is Fréchet differentiable at p, then
this spectrum coincides with σ(f ′(p)).

Now we give two examples, the first one being elementary, the second one
(taken from the thesis [17]) quite sophisticated, which show that the converse
of Proposition 4.4 is not true.

Example 4.8. Let f : R → R be defined by f(x) := x sin 1
x2 . Then f is

locally v-regular, but not cfv-regular, since d0(f) = 0.
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Before stating our main example, we formulate and prove an auxiliary result
about the continuity and compactness behaviour of a special class of operators
in the space C[0, 1].

Lemma 4.9. Let X = C[0, 1] be equipped with the usual maximum norm,
let K ⊂ X be an arbitrary precompact set consisting of continuous functions
φ : [0, 1] → [0, 1], and let Φ : X → K be a map which associates to each x ∈ X
a function φx ∈ K. Suppose that the operator f : X → X defined by f(x)(s) =
x(φx(s)), is continuous. Then f is α-nonexpansive, i.e., α(f(M)) ≤ α(M) for
each bounded subset M of X.

Proof. Observe first that the continuity of Φ at some point x0 ∈ X implies the
continuity of f at this point. Given ε > 0, choose δ > 0 such that |s− t| ≤ δ
implies |x0(s) − x0(t)| ≤ ε, which is possible by the uniform continuity of x0

on [0, 1]. Since K is precompact, by assumption, we find φ1, . . . , φm ∈ K such
that K ⊂ Bδ(φ1) ∪ . . . ∪Bδ(φm). Fix r > 0 and choose any x ∈ Br(x0); since
Φ(X) ⊆ K we have Φ(x) = φx ∈ Bδ(φj) for some j ∈ {1, 2, . . . ,m}. Using the
inequality

|x(φx(t))− x0(φj(t))| ≤ |x(φx(t))− x0(φx(t))|+ |x0(φx(t))− x0(φj(t))|
and taking norms we arrive at

‖f(x)−x0 ◦φj‖ ≤ ‖x◦φx−x0 ◦φx‖+‖x0 ◦φx−x0 ◦φj‖ ≤ ‖x−x0‖+ε ≤ r+ε,

where we have used the fact that φx maps the interval [0, 1] into itself and
that ‖φx − φj‖ ≤ δ. Since x ∈ Br(x0) was arbitrary, we have proved that

f(Br(x0)) ⊆
m⋃

j=1

Br+ε(x0 ◦ φj),

which shows that f is indeed α-nonexpansive as claimed. ¤

Example 4.10. Let X = C[0, 1] be equipped with the usual maximum norm.
For any x ∈ X \ {0} we put γx := ‖Px‖/‖x‖, where P denotes the projection

Px(t) :=

{
x(1

2) if 0 ≤ t ≤ 1
2 ,

x(t) if 1
2 ≤ t ≤ 1.

To apply Lemma 4.9 we take as K the set of all Lipschitz continuous func-
tions φ : [0, 1] → [0, 1] with Lipschitz constant ≤ 1 and define Φ : X \{0} → K
by

Φ(x)(s) = φx(s) :=





s if s ≤ 1
2 ,

1
2s + 1

4 if s ≥ 1
2 and γx ≤ 1

2 ,

γxs + 1−γx

2 if γx ≥ 1
2

(4.5)
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and Φ(0) = 0. A straightforward calculation shows that φx admits a continu-
ous left inverse ψx : [0, 1] → [0, 1] which is given by

ψx(t) :=





t if t ≤ 1
2 ,

2t− 1
2 if 1

2 ≤ t ≤ 3
4 and γx ≤ 1

2 ,

1
γx

t− 1
2γx

+ 1
2 if 1

2 ≤ t ≤ γx+1
2 and γx ≥ 1

2 ,

1 otherwise.

(4.6)

Now we define an operator f : X → X as in Lemma 4.9, i.e.,

f(x)(s) :=

{
x(φx(s)) if x 6= 0,

0 if x = 0.

Since γτx ≡ γx, hence φτx = φx, we conclude that

f(τx) = τf(x) (τ > 0), (4.7)

which means that f is homogeneous (of degree 1). Moreover, f is bounded,
continuous, and even a weak isometry in the sense that ‖f(x)‖ = ‖x‖ for all
x ∈ X, which implies that d0(f) = 1. Finally, from Lemma 4.9 we conclude
that α(f) ≤ 1.

However, f is not proper on closed bounded sets. To see this, observe that
the (noncompact) set M of all functions x ∈ X which satisfy x(s) := 1 − 2s
for 0 ≤ s ≤ 3

4 , but take arbitrary values x(s) ∈ [−1
2 , 1

2 ] for 3
4 ≤ s ≤ 1, are

all mapped by f into the single function y = f(x) given by y(t) = 1 − 2t for
0 ≤ t ≤ 1

2 and y(t) = 1
2 − t for 1

2 ≤ t ≤ 1. Consequently, we have ω0(f) = 0 in
this example; in particular, f cannot be CFV -regular.

To show that f is cfv-regular, i.e., ν0(f) > 0, requires a more careful
scrutiny. We claim that f is surjective. In fact, given y ∈ X we define x ∈ X
by x(t) := y(ψy(t)). Since ψy leaves the intervals [0, 1

2 ] and [0, 1] invariant, we
have

γx =
max

{|y(ψy(t))| : 0 ≤ t ≤ 1
2

}

max {|y(ψy(t))| : 0 ≤ t ≤ 1} =
max

{|y(s)| : 0 ≤ s ≤ 1
2

}

max {|y(s)| : 0 ≤ s ≤ 1} = γy,

and so also ψx = ψy. Consequently,

f(x) = x ◦ φx = y ◦ ψy ◦ φx = y ◦ ψx ◦ φx = y

as claimed. Being surjective, the map f admits a right inverse g, which means
that f(g(y)) = y for all y ∈ X; moreover, ‖g(y)‖ = ‖y‖. Observe that the
map g may be explicitly calculated, in fact, g(y) = y ◦ ψy, with ψx given by
(4.6). To see this, we use the fact that φg(y) = φy and obtain

f(g(y)) = f(y ◦ ψy) = y ◦ ψy ◦ φg(y) = y ◦ ψy ◦ φy = y,
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since ψy is left inverse to φy. From the definition (4.6) it follows that the set
{ψx : x ∈ X} consists entirely of functions with Lipschitz constant ≤ 2, and so
this set is precompact, by the classical Arzelà-Ascoli criterion. From Lemma
4.9 we conclude that α(g) ≤ 1. But this implies that ν(f ; Br) ≥ 1 for r > 0
which may be seen as follows.

Let h : Br → X be a map satisfying α(h) < 1 and h(x) ≡ 0 for x ∈ Sr.
Putting x = g(y) we obtain h(g(y)) = 0 for y ∈ Sr, since g is a weak isometry.
This shows that the map h ◦ g maps the closed ball Br into itself and satisfies
α(h ◦ g) ≤ α(h)α(g) < 1. From Darbo’s fixed point theorem [4] it follows
that there is some ŷ ∈ Br with ŷ = h(g(ŷ)). Putting now x̂ := g(ŷ) we see
that f(x̂) = f(g(ŷ)) = ŷ = h(g(ŷ)) = h(x̂), which shows that x̂ satisfies the
coincidence equation (2.5). We conclude that ν(f ; Br) ≥ 1, hence ν0(f) ≥ 1 >
0, and so f is indeed cfv-regular.

5. Some interconnections and examples

In this section we illustrate our abstract results with some more examples
and indicate possible applications. First of all, we summarize Propositions
3.5, 4.1, and 4.4 with the following Table 1.

CFV -regular ⇒ locally V -regular ⇒ V -regular

⇓ ⇓ ⇓

cfv-regular ⇒ locally v-regular ⇒ v-regular

Table 1: A comparison of regularity properties

Observe that every locally V -regular [resp. v-regular] map f satisfying
d0(f) > 0 is CFV -regular [resp. cfv-regular]; thus, for maps with d0(f) > 0
some horizontal implications in Table 1 are actually equivalences. Similarly,
every cfv-regular [resp. locally v-regular resp. v-regular] map f satisfying
ω(f) > 0 is CFV -regular [resp. locally V -regular resp. V -regular]; conse-
quently, for maps with ω(f) > 0 all vertical implications in Table 1 are actually
equivalences. In particular, the “column regularities” are equivalent in finite
dimensional spaces, and the “row regularities” are equivalent for homogeneous
operators f satisfying d0(f) > 0.

Our counterexamples considered so far show that none of the implications
in Table 1 may in general be reversed. Example 3.2 shows that V -regularity
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does not imply local V -regularity, and v-regularity does not imply local v-
regularity either. Example 3.3 shows that local V -regularity does not imply
CFV -regularity, while Example 4.8 shows that local v-regularity does not
imply cfv-regularity. Finally, Example 4.10 shows that cfv-regularity does not
imply CFV -regularity, and local v-regularity does not imply local V -regularity
either. It remains to show that v-regularity does not imply V -regularity; for
the sake of completeness and the reader’s ease we briefly recall (without proof)
a corresponding counterexample, which is contained as Example 6.9 in the
monograph [2].

Example 5.1. Let X = C[0, 1] be equipped with the usual max norm, and
let f : X → X be defined by

f(x)(t) :=





x(1
2 t) if ‖x‖ ≤ 1

2 ,

x(‖x‖t) if 1
2 < ‖x‖ < 1,

x(t) if ‖x‖ ≥ 1.

Then f maps the (noncompact) set M := {x ∈ X : ‖x‖ ≤ 1
2 , x(t) ≡ 0 if 0 ≤

t ≤ 1
2} into 0, and so ω(f) = 0, i.e., f cannot be V -regular. On the other

hand, it is shown by a sophisticated homotopy argument in [2] that f is k-epi
for 0 ≤ k < 1

4 , and so f is in fact v-regular.

Observe that the operator f in Example 5.1 is constructed similarly as the
operator f in Example 4.10, but now by means of the auxiliary function

φx(t) :=





1
2 t if ‖x‖ ≤ 1

2 ,

‖x‖ if 1
2 < ‖x‖ < 1,

t if ‖x‖ ≥ 1.

In contrast to (4.5), for this function we have φτx 6= φx in general, and so the
operator f in Example 5.1 is not homogeneous.

From all these examples we conclude that all inclusions between the spectra
contained in the following Table 2 may in general be strict.

σv(f) ⊆ σV (f)

|∩ |∩

σcfv(f) ⊆ σCFV (f)

Table 2: A comparison of spectra
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It is interesting to check what the different kinds of regularity in Table 1
mean in case of a linear map. The following theorem shows that, in a certain
sense, these regularity definitions are rather natural.

Theorem 5.2. For L : X → X bounded and linear, the 6 regularity properties
from Table 1 are all mutually equivalent. Moreover, they are equivalent to the
fact that L is an isomorphism

Proof. As Table 1 shows, it suffices to prove that every v-regular linear map
is an isomorphism, and every isomorphism is CFV -regular.

So let first L : X → X be v-regular which means that L is strictly epi on the
closure Ω of some set Ω ∈ OBC(X). Then L must be injective, since otherwise
Lx = 0 for some x ∈ ∂Ω, contradicting the fact that L has no zeros on ∂Ω. But
L has to be surjective as well, since otherwise we find y0 ∈ X \ {0} such that
Lx 6= λy0 for all λ 6= 0. The map h : Ω → X defined by h(x) := dist(x, ∂Ω)y0

is continuous and compact and vanishes on ∂Ω. Since L is epi on Ω, there
exists a solution x̂ ∈ Ω of the equation Lx = h(x) = λy0 with λ = dist(x̂, ∂Ω).
But this implies that λ = 0, hence x̂ ∈ ∂Ω, contradicting the fact that x̂ ∈ Ω.
So we have proved that L is a bijection, hence a linear isomorphism, by the
closed graph theorem (or the bounded inverse theorem).

The fact that every linear isomorphism is CFV -regular has been proved in
[3, Prop. 4.3]. ¤

From Theorem 5.2 it follows, in particular, that all spectra given in Table 2
reduce to the familiar spectrum in the case of a bounded linear operator. This
is of course precisely what one should expect in nonlinear spectral theory.

In view of applications it is interesting to see which of the equivalences in
Theorem 5.2 still hold for homogeneous operators, see (4.7). As observed be-
fore, in this case CFV -regularity, local V -regularity and V -regularity are mu-
tually equivalent, and so are cfv-regularity, local v-regularity and v-regularity.
Moreover, since in the proof of surjectivity of a linear v-regular map L in The-
orem 5.2 we did not use the additivity of L, the same holds for homogeneous
maps. So in the homogeneous case we have

σV (f) = σCFV (f), σv(f) = σcfv(f),

while Example 4.10 shows that even in the homogeneous case the spectra
σCFV (f) and σcfv(f) may be different. Of course, in case of a homogeneous
operator f , the condition N(f ; r) = {0}, see (2.9), is independent of r > 0. As
was shown in [3, Prop. 2.9], in case of a homogeneous map f which satisfies
ω(f) > 0, this condition is actually equivalent to the apparently stronger
condition d(f) > 0. On the other hand, the simple example f(x) := ‖x‖e,
with some fixed element e ∈ S1, shows that a homogeneous map f may satisfy
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N(f ; r) ≡ {0} and d(f) > 0, but have the property that ω(f) = 0. We shall
return to this map in Example 5.5 below.

Here are some more examples, some of them in the scalar case X = R or
X = C, the last one in an arbitrary infinite dimensional Banach space.

Example 5.3. Let f, g : R→ R be defined by

f(x) :=
√
|x|, g(x) := (signx)

√
|x|,

respectively. Then

σCFV (f) = σcfv(f) = R, σV (f) = σv(f) = {0},
but

σCFV (g) = σcfv(g) = σV (g) = σv(g) = ∅.
So even a small modification of the map may change its spectra drastically.

Example 5.4. Let f : C → C be defined by f(z) := |z| + i Im z. In [3] it
is shown that σCFV (f) is the “kidney shaped” region bounded by the closed
curve Γ := {a + bi : (a, b) ∈ R2, (a− 1)2 + b2 = (a2 + b2 − a)2} in the complex
plane (see Fig. 1 in [3]). Since f is a homogeneous map in a finite dimensional
space, from our observations after Table 1 we conclude that all four spectra
from Table 2 coincide in this case.

Example 5.5. Let X be any infinite dimensional real Banach space, and let
f : X → X and g : X → X be defined by

f(x) = ‖x‖x, g(x) = ‖x‖e,
where e ∈ S1 is some fixed element. From (2.8) it follows that λ = 0 belongs
to all spectra given in Table 2. In fact, in [2] it is shown that σV (f) = σv(f) =
{0}. Since f admits a Fréchet derivative at zero, by [3, Cor. 4.23] and Theorem
4.7 we have σCFV (f) = σcfv(f) = σ(f ′(0)) = {0} as well.

Concerning the map g, we cannot apply Corollary 4.23 of [3], since g is
not differentiable at zero. On the other hand, in contrast to f , the map g is
compact which makes some calculations easier. For instance, it is clear that
ω(λI − g) = |λ|, and so λ = 0 again belongs to the spectra σV (g) and σv(g).
More precisely, one can show that

σV (g) = σv(g) = σCFV (g) = σcfv(g) = [−1, 1]. (5.1)

By Table 2, to prove this it suffices to show that [−1, 1] ⊆ σv(g) and
σCFV (g) ⊆ [−1, 1]. For r > 0, consider the map h : Br → X defined by
h(x) := (r − ‖x‖)e. Obviously, this map is compact and vanishes on Sr.
If x̂ ∈ Br is a solution of the coincidence equation λx − g(x) = h(x), then
λx̂ = re, and taking norms we obtain

r = ‖re‖ = ‖λx̂‖ < |λ|r,
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which yields a contradiction for |λ| ≤ 1. So λI − g cannot be epi and, in
particular, λ ∈ σv(g) for λ ∈ [−1, 1]. On the other hand, ω0(λI − g) = |λ| > 0
for λ 6= 0, and d0(λI − g) = |λ| − 1 > 0 for λ 6= [−1, 1]. Now let h : Br → X
be an arbitrary compact map satisfying h(x) ≡ 0 on Sr. Since the map λI is
epi on Br, by Schauder’s fixed point theorem, and for ‖x‖ = r and |λ| > 1 we
have the estimate

‖h(x) + ‖x‖e‖ = r < |λ|r = ‖λx‖,
from [3, Cor. 3.4] we conclude that λI − g is epi on Br for |λ| > 1, and so
λ 6∈ σCFV (g).

Of course, if X is a complex Banach space, the same reasoning shows that
(5.1) holds with the intervall [−1, 1] replaced by the closed unit disc {z ∈ C :
|z| ≤ 1}.

One could also ask if our results on homogeneous maps still hold true for
the larger class of θ-homogeneous maps f : X → X, i.e., maps which satisfy
instead of (4.7) the more general condition

f(τx) = τ θf(x) (τ > 0) (5.2)

for some θ > 0. The following example shows that this is not true.

Example 5.6. Given an infinite dimensional Banach space X and θ > 0,
consider the map f : X → X defined by

f(x) = ‖x‖θ−1x. (5.3)

Obviously, this map is homogeneous of degree θ, i.e., satisfies (5.2). Like
the map (2.7) (which is obtained from (5.3) for the special choice θ = 2), also
the map (5.3) is a homeomorphism on X with continuous inverse

f−1(y) =

{ ‖y‖−(θ−1)/θy if y 6= 0,

0 if y = 0,

which is homogeneous of degree 1/θ. Now, since f is a bijection between the
sphere Sr and the sphere Srθ , in case θ > 1 the equalities (2.8) still hold. In
case 0 < θ < 1 we have

ω(f) = |f | = d(f) = 0, α(f) = α0(f) = ω0(f) = |f |0 = d0(f) = ∞, (5.4)

while in case θ = 1 the map f is simply the identity, and so all characteristics
are equal to 1.

We claim that

σV (f) = σv(f) = σCFV (f) = σcfv(f) =

{ {0} if θ > 1,

∅ if θ < 1
(5.5)



530 J. Appell, A. Calamai and A. Schmied

for the map (5.3). Indeed, since f is not v-regular in case θ 6= 1, we have
{0} ⊆ σv(f). On the other hand, for λ 6= 0 the restriction of the map λI−f to
the ball B|λ|/2 is open, injective, epi, and satisfies d0(λI−f) = ω0(λI−f) > 0.
So λI − f is CFV-regular for λ 6= 0 which shows that σCFV (f) ⊆ {0}. From
Table 2 we conclude that the first chain of equalities in (5.5) is true. Observe
that for θ > 1 we could have deduced the equality σCFV (f) = σcfv(f) = {0}
also from the fact that f admits the Fréchet derivative f ′(0) = 0 and use
Theorem 4.7. The second chain of equalities in (5.5) follows from (5.4).

6. Concluding remarks

To conclude, let us make some comments on eigenvalues. As was pointed
out in [2], whenever one tries to define a new spectrum for some class of non-
linear operators, it is a useful device to introduce a corresponding notion of
eigenvalues, i.e., a point spectrum or an approximate point spectrum. For ex-
ample, in [3] the authors introduce and study the subset σo

CFV (f) of σCFV (f)
consisting of all scalars λ ∈ K satisfying d0(λI − f) = 0 or ω0(λI − f) = 0,
and call this set the approximate point spectrum of f (at zero). This name is
motivated and justified by the fact that, in case of a bounded linear operator
L, σo

CFV (L) clearly coincides with the familiar approximate point spectrum
σap(L) of all λ ∈ K for which there exists a sequence (xn)n in S1(X) such that
‖λxn − Lxn‖ → 0 as n →∞.

An appropriate notion of eigenvalues associated with our spectrum (4.2)
seems to be the following. Given a map f : X → X with f(0) = 0, let us
call the subset σo

cfv(f) of σcfv(f) consisting of all scalars λ ∈ K satisfying
d0(λI − f) = 0, the point spectrum of f (at zero). So by definition we have
λ ∈ σo

cfv(f) if and only if

lim inf
‖x‖→0

‖λx− f(x)‖
‖x‖ = 0.

Now, in rather the same way as in [2, Th. 8.10], one may show then that
every λ ∈ σcfv(f)\{0} actually belongs to σo

cfv(f), provided that f is compact,
odd (i.e., f(−x) = −f(x)), and θ-homogeneous (i.e., satisfies (5.2) for some
θ > 0). This generalizes the well-known result that every nonzero spectral
value of a compact linear operator is an eigenvalue.

We briefly sketch how this may be applied to the eigenvalue problem with
Dirichlet boundary condition of the form

{ −∆pu(x) = µ|u(x)|p−2u(x) in G,

u(x) ≡ 0 on ∂G.
(6.1)
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Here ∆p denotes, for 1 < p < ∞, the so-called p-Laplace operator defined
by

∆pu = div (|∇u|p−2∇u), (6.2)

G ⊂ RN is a sufficiently regular bounded domain, and µ ∈ R \ {0} is a scalar.
The eigenvalue problem (6.1) consists in finding those scalars µ for which there
exists a nontrivial solution u and arises in many fields of applied mathematics
and mechanics, see e.g. [13]. Of course, in case p = 2 this problem just reduces
to the classical linear eigenvalue problem for the Laplace operator −∆ which
has been studied over and over in the last 150 years.

It is well-known that the operator (6.2) acts from the Sobolev space X =
W 1,p

0 (G) to its dual, X∗ = W−1,p′(G), where p′ = p/(p − 1). More precisely,
if we denote by J the differential operator defined by −∆p in the weak form,
i.e.,

〈Ju, v〉 =
∫

Ω
|∇u(x)|p−2∇u(x)∇v(x) dx (u, v ∈ W 1,p

0 (G)), (6.3)

and by F the Nemytskij operator generated by the nonlinearity on the right
hand side of (6.1), also in weak form, i.e.,

〈Fu, v〉 =
∫

Ω
|u(x)|p−2u(x)v(x) dx (u, v ∈ W 1,p

0 (G)), (6.4)

we obtain two operators acting from X to its dual X∗. Now, since the operator
(6.3) is continuous, coercive, and strictly monotone between X and X∗, from
Minty’s celebrated existence theorem for monotone operators [15] it follows
that J is a homeomorphism. Consequently, the eigenvalue problem (6.1) may
be rewritten, for µ 6= 0 and λ = 1/µ, equivalently as operator equation

f(u) := J−1(F (u)) = λu. (6.5)

Since both operators (6.3) and (6.4) are odd and θ-homogeneous for θ =
p−1, i.e., J(τu) = τp−1J(u) and F (τu) = τp−1F (u), the map f defined in (6.5)
is homogeneous of degree 1, i.e., fulfills (4.7). Moreover, from Krasnosel’skij’s
theorem on Nemytskij operators between Lebesgue spaces [12] and standard
imbedding theorems for Sobolev spaces it follows that the operator (6.4) is
also compact.

So by what we have observed above, every nonzero spectral value of f is
actually an eigenvalue or, vice versa, any µ 6= 0 for which we have uniqueness
in (6.1) gives rise to a scalar which does not belong to any of the spectra
in Table 2. In this way, one may obtain some kind of nonlinear Fredholm
alternative for the problem (6.1) in the spirit of [5, 6, 7], but with stronger
regularity. Details will be given in a subsequent paper.
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