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Abstract. In this paper, we introduce a new class of linear operators for which cone linear

complementarity problem (LCP) is feasible. For feasible LCP, it is important to know, when

it is solvable. We give a result which feasibility implies solvability. We describe structure of

the solution set of the LCP with positive operator. Moreover, the class of linear operators

which are constant on the solution set of LCP is characterized.

1. Introduction

Let H be a real Hilbert space, K ⊆ H a cone and L : H → H an operator.
Given an arbitrary element q ∈ H, the linear complementarity problem defined
by L, K and q is

LCP(L,K, q) :

{
find x ∈ K such that
L(x) + q ∈ K∗ and 〈x, L(x) + q〉 = 0,

(1.1)

where K∗ = {y ∈ H : 〈y, x〉 > 0 for all x ∈ K} is the dual cone of K [7].
Given LCP(L,K, q), we write

FEA(L,K, q) = {x : x ∈ K,L(x) + q ∈ K∗}
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and

SOL(L,K, q) = {x : x ∈ K,L(x) + q ∈ K∗, 〈x, L(x) + q〉 = 0}.

These are the feasible set and solution set of LCP(L,K, q), respectively. Ob-
viously, we have SOL(L,K, q) ⊆ FEA(L,K, q) for each problem, but gener-
ally the converse is not true. For a given complementarity problem, when
SOL(L,K, q) 6= ∅ (resp. FEA(L,K, q) 6= ∅), the problem is said to be solvable
(resp. feasible).

Observe that LCP(L,K, q) defined in (1.1) has the following quadratic form:

minimize 〈x, L(x) + q〉
subject to L(x) + q ∈ K∗

x ∈ K.
(1.2)

This problem has extensive applications in engineering, economic, game the-
ory, and other fields [4, 7, 13, 15]. The LCP with an arbitrary linear operator is
difficult to solve. Observe that if q ∈ K∗, then LCP(L,K, q) is always solvable
with the zero vector being a trivial solution.

A key issue in cone linear complementarity problems is finding necessary
and sufficient conditions on the linear operator L that ensures nonemptyness
of the solution set.

This paper is organized as follows. In the next section, we express the basic
material about the Lorentz cone in a Hilbert space H and Jordan algebra
associated to the Lorentz cone in H and some of their basic properties are
described. In Section 3, we introduce the class of F -operators and show that
feasibility of the LCP on the selfdual cone is equivalent to the fact that the
linear operator is an F -operator. We consider some properties of solution set
of LCP with positive operator. Also, we give a characterization for the class
of linear operators which are constant on the solution set.

2. Notation and preliminaries

In this section, we briefly introduce some basic concepts in real Hilbert
space H, and review some basic materials. These concepts and materials play
important roles in subsequent analysis. More details and related results can
be found in [10, 12].

Let H be a real Hilbert space with the inner product 〈., .〉, and the norm
‖.‖. Let K be a cone in H with the vertex at 0. A cone K is said to be pointed
if K ∩ (−K) = {0}, and is solid if int(K) 6= ∅ where int is topological interior.
A cone K is said to be selfdual if K∗ = K.
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Proposition 2.1. ([6, Proposition 1.1.4]) For a nonempty closed convex cone
K in H:

int(K∗) = {y ∈ H : 〈y, x〉 > 0 for all x ∈ K \ {0}}.
Furthermore, the following properties are equivalent:

(i) K is pointed;
(ii) int(K∗) 6= ∅.

Consider a pointed, closed, convex cone K in H. This K induces a partial
order on H:

x > y ⇔ x− y ∈ K.
We use the notation x > y when x − y ∈ int(K) (if exists). Beside this, we
write z 6 0 when z ∈ −K.

Proposition 2.2. Let K be a nonempty closed convex selfdual cone in H.
Then x ∈ K if and only if 〈x, y〉 ≥ 0 holds for all y ∈ K. Moreover, x ∈ int(K)
if and only if 〈x, y〉 > 0 holds for all y ∈ K \ {0}.

Proof. It follows from the definition of K∗ and Proposition 2.1. �

For a closed convex cone K in H, let PK denote the metric projection onto
K [1]. For z ∈ H, z+ := PK(z) if and only if z+ ∈ K and ‖z − z+‖ 6 ‖z − y‖
for all y ∈ K. This is also equivalent to 〈z − z+, y − z+〉 6 0 for any y ∈ K.
Since K is a closed convex cone, z+ is unique, and is called positive part of z.
Similarly, z− means PK(−z), and is called negative part of z.

Let e be an unit vector in H (i.e., ‖e‖ =
√
〈e, e〉 = 1 ). In [10], the following

closed convex cone

K(e, r) = {z ∈ H : 〈z, e〉 > r‖z‖},
is considered, where r ∈ R with 0 < r < 1. It is easy to prove that K(e, r) is
pointed, i.e., K(e, r) ∩ (−K(e, r)) = {0}. Define the orthogonal complemen-
tarity space of {e} by

〈e〉⊥ := {x ∈ H : 〈x, e〉 = 0}.
For any element z ∈ H, we have the orthogonal decomposition z = x + λe
with unique x ∈ 〈e〉⊥ and λ ∈ R (in fact, λ = 〈z, e〉). With this, it can be
verified that

K(e, r) = {x+ λe : λ >
r√

1− r2
‖x‖}.

Proposition 2.3. ([11, Proposition 2.1]) For any e ∈ H with ‖e‖ = 1 and
0 < r < 1, the dual cone of K(e, r) can be written as

K∗(e, r) = {z ∈ H : 〈z, w〉 > 0, for all w ∈ K(e, r)} = K(e,
√

1− r2).
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Consequently, K(e, 1√
2
) is a selfdual closed convex cone.

From the above proposition, we may write

K

(
e,

1√
2

)
= {x+ λe ∈ H : x ∈ 〈e〉⊥ and λ ∈ R with λ > ‖x‖}. (2.1)

When H = Rn and e = (1, 0) ∈ R × Rn−1, the set K
(
e, 1√

2

)
coincides with

the Lorentz cone (also called second order cone) Kn in Rn. Hence, K
(
e, 1√

2

)
is called the Lorentz cone in H determined by e.

For the sake of simplicity, we denote K := K
(
e, 1√

2

)
.

Lemma 2.4. ([10, Lemma 2.2]) For any z = x + λe ∈ H with x ∈ 〈e〉⊥ and
λ ∈ R, the following results hold:

(a) If z > 0, z+ = z and z− = 0.
(b) If z 6 0, z+ = 0 and z− = −z.
(c) If z /∈ K and −z /∈ K, then

z+ =
‖x‖+ λ

2‖x‖
x+
‖x‖+ λ

2
e and z− =

λ− ‖x‖
2‖x‖

x+
‖x‖ − λ

2
e.

(d) For any z ∈ H, we have z+, z− ∈ K, z = z+ − z−, 〈z+, z−〉 = 0 and
‖z‖2 = ‖z+‖2 + ‖z−‖2.

Now, we introduce the concept of Jordan product in a Hilbert space H and
some related conclusions. For any z, w ∈ H with z = x+ λe and w = y + µe,
where x, y ∈ 〈e〉⊥ and λ, µ ∈ R, the Jordan product z·w of z and w is defined
by

z·w = µx+ λy + 〈z, w〉e = µx+ λy + (〈x, y〉+ λµ)e. (2.2)

Note that the Jordan product is not associative even in the finite dimen-
sional Euclidean spaces. It is easy to show that K is the cone of squares w.r.t.· multiplication. Thus, H becomes a Jordan algebra after introducing the

Jordan product (for more details see [6]).

Definition 2.5. For any z, w ∈ H, we say that z and w operator commute if
z·(w·u) = w·(z·u) holds for any u ∈ H.

Definition 2.6. A linear operator L : H → H is said to have the cross
commutative property if for any q ∈ H and any two solutions z1 and z2 of
LCP(L,K, q), it follows that z1 operator commutes with w2 and z2 operator
commutes with w1, where wi = L(zi) + q (i = 1, 2).

The following lemmas give the conditions and properties of operator com-
muting z and w.
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Lemma 2.7. ([11, Lemma 2.1]) Let z, w ∈ H with z = x + λe, w = y + µe,
x, y ∈ 〈e〉⊥ and λ, µ ∈ R. Then z and w operator commute if and only if there
is β ∈ R (depends on x and y) such that y = βx or x = βy. In particular,
if x 6= 0 (respectively, y 6= 0), then z and w operator commute if and only if
there is an α ∈ R such that y = αx (respectively, x = αy).

Lemma 2.8. ([11, Lemma 2.2]) Let z = x+ λe, w = y + µe with x, y ∈ 〈e〉⊥
and λ, µ ∈ R. Then the following two conditions are equivalent:

(a) z ∈ K, w ∈ K and 〈z, w〉 = 0;
(b) z ∈ K, w ∈ K and z·w = 0.

In each case, we may get that z and w operator commute.

Lemma 2.9. ([11, Lemma 2.3]) Let z, w ∈ K. If z and w operator commute,
then z·w ∈ K.

Given a linear operator L : H → H, the linear operator L∗ : H → H
denotes the adjoint of L, which is defined by 〈L(x), y〉 = 〈x, L∗(y)〉 for all
x, y ∈ H. A linear operator L is selfadjoint if L = L∗.

Definition 2.10. A linear operator L : H → H is called

(a) positive, if 〈z, L(z)〉 > 0 for all z ∈ H;
(b) strictly positive, if 〈z, L(z)〉 > 0 for all 0 6= z ∈ H;

3. Main results

Throughout this section, we assume that K is a nonempty, pointed, closed,
convex cone in H.

Properties of linear operator L play strong roles in the analysis of feasibility
of the LCP. Here, we introduce a class of linear operators related to the
feasibility of the LCP.

Definition 3.1. An operator L : H → H is called F -operator, if there exists
z ∈ H such that

z ∈ int(K) and L(z) ∈ int(K). (3.1)

The class of all F -operators is denoted by F .

Example 3.2. Clearly, every strictly positive operator is F -operator. But the
converse is not true. For example, consider L : R2 → R2 defined by

L(x, y) = (x+ 2y, x+ y).

Then z = (2, 1) ∈ int(K) and L(z) = (4, 3) ∈ int(K) (where, K is the Lorentz
cone of R2). However, by letting u = (−1, 1), 〈u, L(u)〉 = −1 < 0, we obtain
that L is not strictly positive.
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It should be noticed that, if L is a continuous linear operator, then (3.1) is
feasible if and only if

z ∈ K and L(z) ∈ int(K). (3.2)

Clearly, (3.2) is implied by (3.1). On the other hand, suppose a vector z ∈ K
is given such that L(z) ∈ int(K). Since L is continuous at z, it follows that
L(z + λu) ∈ int(K) for small enough λ > 0 (where u = (1, 1)). One can take
λ small enough to get z + λu ∈ int(K); we have (3.1).

Theorem 3.3. Let K be selfdual. Then the continuous linear operator L :
H → H is an F -operator if and only if the LCP(L,K, q) is feasible for all
q ∈ H.

Proof. Consider an arbitrary LCP(L,K, q) with L ∈ F . If z∗ satisfy in (3.1),
then L(z∗) ∈ int(K). Therefore, by Proposition 2.2, we have 〈x, L(z∗)〉 > 0
for all x ∈ K. Then for all q ∈ H, by Archimedean property of real numbers,
we find a large enough positive scalar t, such that

t〈x, L(z∗)〉 = 〈x, L(tz∗)〉 ≥ 〈x,−q〉,

and of course tz∗ ∈ int(K). Thus 〈x, L(tz∗) + q〉 ≥ 0 for all x ∈ K. Therefore,
L(tz∗) + q ∈ K by Proposition 2.2, and so tz∗ ∈ FEA(L,K, q).

Conversely, let d ∈ int(K). By assumption FEA(L,K,−d) 6= ∅, that is,
there exists x ∈ K such that y = L(x) − d ∈ K. From this we get L(x) =
y + d ∈ K + int(K) = int(K). Hence L ∈ F . �

Certainly, if a complementarity problem is solvable, then it is feasible. Given
a complementarity problem, it may be feasible but not solvable. Thus, it is
important to know under what conditions a feasible vector is a solution.

Theorem 3.4. Let L : H → H be a continuous linear operator, q ∈ H and
z ∈ FEA(L,K, q). If there exists an u ∈ K such that

〈u, L(z) + q〉 = 0, (3.3)

〈z − u, L(z) + q〉 ≤ 0. (3.4)

Then z ∈ SOL(L,K, q).

Proof. It follows from z ∈ FEA(L,K, q) that z ∈ K and L(z) + q ∈ K.
Thus 〈z, L(z) + q〉 ≥ 0. On the other hand by conditions (3.3) and (3.4)
we have 〈z, L(z) + q〉 ≤ 〈u, L(z) + q〉 = 0. Therefore 〈z, L(z) + q〉 = 0, i.e.,
z ∈ SOL(L,K, q). �

The following theorems describe properties of the solution set of the LCP
with a positive operator.
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Theorem 3.5. Let L : H → H be a positive operator and q ∈ H be arbitrary.
If LCP(L,K, q) has a solution, then SOL(L,K, q) equals to

C = {z ∈ K : L(z) + q ∈ K∗, 〈z − z∗, q〉 = 0, (L+ L∗)(z − z∗) = 0},
where z∗ is an arbitrary solution.

Proof. Let z∗ be a given solution and z an arbitrary solution. We have
〈z − z∗, L(z − z∗)〉 = 0, because L is positive and z∗ and z are solutions
of LCP(L,K, q). From this we obtain (L+ L∗)(z − z∗) = 0. Thus, we have

〈z, (L+ L∗)(z)〉 = 〈z, (L+ L∗)(z∗)〉,
and

〈z∗, (L+ L∗)(z∗)〉 = 〈z∗, (L+ L∗)(z)〉.
The last two equalities imply that 〈z, L(z)〉 = 〈z∗, L(z∗)〉. At the same time,
we have

0 = 〈z∗, L(z∗) + q〉 = 〈z, L(z) + q〉.
Consequently, 〈z, q〉 = 〈z∗, q〉 and so z ∈ C.

Conversely, suppose that z ∈ C. To prove that z solves LCP(L,K, q), it
suffices to show that 〈z, L(z) + q〉 = 0. From (L+ L∗)(z − z∗) = 0, by similar
argument we get 〈z, L(z)〉 = 〈z∗, L(z∗)〉. Therefore, as 〈(z − z∗), q〉 = 0, we
obtain 〈z, L(z) + q〉 = 〈z∗, L(z∗) + q〉 = 0, because z∗ is a given solution of
LCP(L,K, q). �

Theorem 3.6. Let L : H → H be a positive operator and q ∈ H be arbitrary.
If z1, z2 ∈ SOL(L,K, q), then

〈z1, L(z2) + q〉 = 〈z2, L(z1) + q〉 = 0. (3.5)

Proof. Let q ∈ H, and z1, z2 be two solutions of LCP(L,K, q). Define z :=
z1 − z2 and wi := L(zi) + q (i = 1, 2). We have

0 6 〈z, L(z)〉 = 〈z1 − z2, w1 − w2〉 = −(〈z1, w2〉+ 〈z2, w1〉) 6 0,

because L is positive and zi, wi ∈ K (i = 1, 2). Hence

〈z1, w2〉+ 〈z2, w1〉 = 0.

We have 〈z1, w2〉 = 〈z2, w1〉 = 0, because 〈z1, w2〉 > 0 and 〈z2, w1〉 > 0. �

From Lemma 2.8 and Theorem 3.6, we conclude that if a linear operator L
is positive, then L has cross commutative property.

It is interesting to note that in Theorem 3.5, the set SOL(L,K, q) is com-
pletely determined provided that one solution of LCP(L,K, q) is known. This
points out one particular feature of a positive LCP.

Theorem 3.5 shows that for positive LCP, the scalar 〈z, q〉 and the vector
(L+ L∗)(z) are constant for all z ∈ SOL(L,K, q).
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In the following theorem, we see that LCP(L,K, q) of selfadjoint positive
type has the property that L(z) is constant for all solutions z.

Theorem 3.7. Let L : H → H be a selfadjoint positive operator. Then L(z)
is constant for all z ∈ SOL(L,K, q).

Proof. The hypotheses of this theorem include those of Theorem 3.5. The
desired conclusion now follows from the selfadjointness assumption of L and
the condition (L+ L∗)(z − z∗) = 0 in the definition of the solution set C. �

The following theorem gives a characterization for the class of linear opera-
tors L with the property that L(z) is constant for all z ∈ SOL(L,K, q), where
K is the Lorentz cone in H determined by e.

Theorem 3.8. Let L : H → H be a continuous positive operator and L(K) ⊆
K. The following statements are equivalent:

(a) L(z) is constant for all z ∈ SOL(L,K, q).
(b) [ z and L(z) operator commute, z·L(z) 6 0 ] ⇒ L(z) = 0.

Proof. (a)⇒ (b): Suppose that z and L(z) operator commute and z·L(z) 6 0.

We aim to prove L(z) = 0. To this purpose, we consider the following three
cases:

Case I: z ∈ K: Set q̂ = L(z)+ − L(z+) = L(z)− − L(z−). We show that
z+, z− ∈ SOL(L,K, q̂). Clearly, z+, z− ∈ K, L(z+) + q̂ = L(z)+ ∈ K and
L(z−) + q̂ = L(z)− ∈ K. Now, we must show that complementarity condition
holds. By Lemma 2.4, z+ = z and z− = 0. By assumption, L(z) ∈ K. Thus,
L(z)+ = L(z) and L(z)− = 0. Hence, 〈z−, L(z)−〉 = 0. By Lemma 2.9, we
have z·L(z) ∈ K, i.e., z·L(z) > 0. Therefore, z·L(z) = 0. Thus, by Lemma

2.8, 〈z, L(z)〉 = 0. Hence, z+ and z− are two solutions of LCP(L,K, q̂). So,
by (a), we have L(z+) = L(z−). Therefore, L(z) = L(z+)− L(z−) = 0.

Case II: z ∈ −K: In a similar way, as in the case I, we can show that z+ and
z− are two solutions of LCP(L,K, q̂), with q̂ = L(z)+−L(z+) = L(z)−−L(z−),
and obtain the desired result.

Case III: z /∈ K, z /∈ −K: Let z = x+λe and L(z) = y+µe, where x, y ∈ 〈e〉⊥
and λ, µ ∈ R. We obtain that x 6= 0 and −‖x‖ < λ < ‖x‖. Since z and L(z)
operator commute, by Lemma 2.7, we get that there is an α ∈ R such that
y = αx. Note that

z·L(z) = µx+ λy + (〈x, y〉+ λµ)e 6 0.

It follows from the definition of K that −(〈x, y〉+λµ) > ‖µx+λy‖ > 0. This,
together with the positivity of L, imply that 〈x, y〉+λµ = 0 and µx+λy = 0.
By y = αx, it is easy to verify that µ = −αλ. This and 〈x, y〉+ λµ = 0 imply
that α = 0. Furthermore, we have L(z) = y + µe. Thus L(z) = 0.
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(b)⇒ (a): Suppose that z1 and z2 are two distinct solutions of LCP(L,K, q)
and wi = L(zi)+q (i = 1, 2). Define z := z1−z2. By Lemma 2.8 and Theorem
3.6, we conclude that z1 (resp. z2) operator commute with w2 (resp. w1). It
is easy to verify that z and L(z) are operator commute, and

z·L(z) = (z1 − z2)·(w1 − w2) = −(z1·w2 + z2·w1) 6 0.

Hence by (b), we have L(z) = 0, and so L(z1) = L(z2). �
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