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Abstract. We approximate the common fixed point of two nonself operators satisfying

rational contractive conditions via Jungck-type iterative schemes in complex valued Banach

spaces. Moreover, we prove that the Jungck-CR iterative sequence is (S, T )-stable and

give some numerical examples to validate our analytical results. Furthermore, we apply

our results in solving certain mixed type Volterra-Fredholm functional nonlinear integral

equation.

1. Introduction

Fixed point theory became one of the most interesting area of research in the
last sixty years, for instance it has shown the importance of theoretical sub-
jects, which are directly applicable in different applied fields of science. Other
areas of applications include optimization problems, control theory, economics
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and a host of others. In particular, it plays an important role in the inves-
tigation of existence of solutions to differential and integral equations, which
direct the behaviour of several real life problems for which the existence of
solution is critical (see, e.g. [15], [44]). In 1922, Banach [7] provided a general
iterative method to construct a fixed point result and proved its uniqueness
under linear contraction in complete metric spaces.

The notion of complex valued metric spaces was introduced by Azam et al.
[6] in 2011. They established some fixed point theorems for a pair of map-
pings satisfying rational inequality. Their results is intended to define rational
expressions which are meaningless in cone metric spaces, hence results in this
direction cannot be generalized to cone metric spaces, but to complex val-
ued metric spaces. It is known that complex valued metric space is useful in
many branches of Mathematics, including number theory, algebraic geometry,
applied Mathematics as well as in physics including hydrodynamics, mechan-
ical engineering, thermodynamics and electrical engineering (see, e.g. [43]).
Several authors have obtained interesting and applicable results in complex
valued metric spaces (see, e.g. [2], [3], [6], [16], [32, 33], [37], [38], [43], [44]).

It is known that there is a close relationship between the problem of solving
a nonlinear equation and that of approximating fixed points of a correspond-
ing contractive type operator (see, e.g. [8], [9], [29], [31], [40]). Hence, there
is a practical and theoretical interests in approximating fixed points of several
contractive type operators. Since, the introduction of the notion of complex
valued metric spaces by Azam et al. [6] in 2011, most results obtained in
literature by many authors are existential in nature (see, e.g. [2], [3], [6], [12],
[16], [37], [38], [43], [44]). Consequently, there is a gap in literature with re-
spect to the approximation of the fixed point of several nonlinear mappings
in this type of space. Recently, Okeke [29] initiated the idea of approximating
the fixed point of nonlinear mappings in complex valued Banach spaces. It
is our purpose in the present study to continue in this research direction and
thereby filling this gap that exist in literature. We study the approximation
of fixed points of some mappings satisfying certain contractive conditions of
rational type in complex valued Banach spaces. We approximate the common
fixed point of two nonself operators satisfying rational contractive conditions
via Jungck-type iterative schemes in complex valued Banach spaces. More-
over, we prove that the Jungck-CR iterative sequence is (S, T )-stable and give
some numerical examples to validate our analytical results. Furthermore, we
apply our results in solving certain mixed type Volterra-Fredholm functional
nonlinear integral equation.

The theory of integral and differential equations is an important aspect of
nonlinear analysis and the most applied tool for proving the existence of the
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solutions of such equations is the fixed point technique (see, e.g. [7], [11], [13],
[30]). One of the most frequent and difficult problems faced by scientists in
mathematical sciences is nonlinear problems. This is because nature is intrin-
sically nonlinear (see, e.g. [13]). Solving nonlinear equations is cumbersome
but important to mathematicians and applied mathematicians such as engi-
neers and physicist. Some authors have used the fixed point iterative methods
in solving such equations (see, e.g. [11], [13], [30]).

In this paper, we apply our results in solving certain mixed type Volterra-
Fredholm functional nonlinear integral equation in complex valued Banach
spaces. Our results unify, generalize and extend several known results to
complex valued Banach spaces, including the results of [4], [5], [11], [13], [14],
[17], [25], [26], [27], [28], [30], [36] among others.

2. Preliminaries

The following symbols, notations and definitions which can be found in [6]
will be useful in this study.

Let C be the set of complex numbers and z1, z2 ∈ C. Define a partial order
- on C as follows:

z1 - z2 if and only if Re(z1) ≤ Re(z2), Im(z1) ≤ Im(z2).

It follows that z1 - z2 if one of the following conditions is satisfied:

(i) Re(z1) = Re(z2), Im(z1) < Im(z2),
(ii) Re(z1) < Re(z2), Im(z1) = Im(z2),

(iii) Re(z1) < Re(z2), Im(z1) < Im(z2),
(iv) Re(z1) = Re(z2), Im(z1) = Im(z2).

In particular, we will write z1 � z2 if z1 6= z2 and one of (i), (ii), and (iii) is
satisfied and we will write z1 ≺ z2 if only (iii) is satisfied.

Note that

(a) a, b ∈ R and a ≤ b =⇒ az - bz for all z ∈ C;
(b) 0 - z1 � z2 =⇒ |z1| < |z2|;
(c) z1 - z2 and z2 ≺ z3 =⇒ z1 ≺ z3.

Definition 2.1. ([6]) Let X be a nonempty set. Suppose that the mapping
d : X ×X → C satisfies:

(1) 0 - d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, y) - d(x, z) + d(z, y), for all x, y, z ∈ X.

Then d is called a complex valued metric on X, and (X, d) is called a complex
valued metric space.
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Recently, Okeke [29] defined a complex valued Banach space and proved
some interesting fixed point theorems in the framework of complex valued
Banach spaces.

Definition 2.2. ([29]) Let E be a linear space over a field K, where K = R
(the set of real numbers) or C (the set of complex numbers). A complex valued
norm on E is a complex valued function ‖.‖ : E → C satisfying the following
conditions:

(1) ‖x‖ = 0 if and only if x = 0, x ∈ E;
(2) ‖kx‖ = |k|.‖x‖ for all k ∈ K, x ∈ E;
(3) ‖x+ y‖ - ‖x‖+ ‖y‖ for all x, y ∈ E.

A linear space with a complex valued norm defined on it is called a complex
valued normed linear space, denoted by (E, ‖.‖). A point x ∈ E is called an
interior point of a set A ⊆ E if there exist 0 ≺ r ∈ C such that

B(x, r) = {y ∈ E : ‖x− y‖ ≺ r} ⊆ A.

A point x ∈ E is called a limit point of the set A whenever for each 0 ≺ r ∈
C, we have

B(x, r) ∩ (AnE) 6= ∅.
The set A is said to be open if each element of A is an interior point of A. A
subset B ⊆ E is said to be closed if it contains each of its limit point. The
family

F = {B(x, r) : x ∈ E, 0 ≺ r}
is a sub-basis for a Hausdorff topology τ on E.

Suppose {xn} is a sequence in E and x ∈ E. {xn} is called convergent to
x, if for every c ∈ C, with 0 ≺ c there exists n0 ∈ N such that for all n > n0,
‖xn − x‖ ≺ c. In this case, we denoted by xn → x or limn→∞ xn = x, and x
is called the limit of {xn}.
{xn} is called a Cauchy sequence in (E, ‖.‖), if for all c ∈ C, with 0 ≺ c

there exists n0 ∈ N such that for all n,m > n0, ‖xn − xm‖ ≺ c, If every
Cauchy sequence is convergent in (E, ‖.‖), then (E, ‖.‖) is called a complex
valued Banach space.

Example 2.3. ([29]) Let E = C be the set of complex numbers. Define
‖.‖ : C× C→ C by

‖z1 − z2‖ = |x1 − x2|+ i|y1 − y2|, ∀z1, z2 ∈ C,

where z1 = x1+iy1, z2 = x2+iy2. Clearly, (C, ‖.‖) is a complex valued normed
linear space.
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Example 2.4. ([29]) Let E = C be the set of complex numbers. Define a
mapping ‖.‖ : C× C→ C by

‖z1 − z2‖ = eik|z1 − z2|, ∀z1, z2 ∈ C,
where k ∈ [0, π2 ], z1 = x1 + iy1, z2 = x2 + iy2. Then (C, ‖.‖) is a complex
valued normed linear space.

Example 2.5. ([29]) Let (C[a, b], ‖.‖∞) be the space of all continuous complex
valued functions on a closed interval [a, b], endowed with the Chebyshev norm

‖x− y‖∞ = max
t∈[a,b]

|x(t)− y(t)|eik, x, y ∈ C[a, b], k ∈ [0,
π

2
].

Then (C[a, b], ‖.‖∞) is a complex valued Banach space, since the elements of
C[a, b] are continuous functions, and convergence with respect to the Cheby-
shev norm ‖.‖∞ corresponds to uniform convergence. We can easily show
that every Cauchy sequence of continuous functions converges to a continuous
function, i.e. an element of the space C[a, b].

The following lemma will be useful in this study.

Lemma 2.6. ([29]) Let (E, ‖.‖) be a complex valued Banach space and let {xn}
be a sequence in E. Then {xn} converges to x if and only if |‖xn − x‖| → 0
as n→∞.

Lemma 2.7. ([29]) Let (E, ‖.‖) be a complex valued Banach space and let
{xn} be a sequence in E. Then {xn} is a Cauchy sequence if and only if
|‖xn − xn+m‖| → 0 as n→∞.

Definition 2.8. ([9]) A function ψ : R+ → R+ is called a comparison function
if it satisfies the following conditions:

(i) ψ is monotone increasing;
(ii) limn→∞ ψ

n(t) = 0, ∀t ≥ 0.

Remark 2.9. Every comparison function satisfies ψ(0) = 0 (see, e.g. [36]).

Olatinwo [36] proved some strong convergence and stability results using
the following contractive conditions satisfying rational inequality.

Condition 2.10. ([36]) For two nonself mappings S, T : Y → E with T (Y ) ⊆
S(Y ), where S(Y ) is a complete subspace of E, there exist:

(1) a real number L ≥ 0, a sublinear comparison function ψ : R+ → R+

and a monotone increasing function ϕ : R+ → R+ such that ϕ(0) = 0
and for all x, y ∈ Y, we have

‖Tx− Ty‖ ≤ ϕ(‖Sx− Tx‖) + ψ(‖Sx− Sy‖)
1 + L‖Sx− Tx‖

; (2.1)
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(2) real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ such that ϕ(0) = 0 and for all x, y ∈ Y, we have

‖Tx− Ty‖ ≤
(
ϕ(‖Sx− Tx‖) + a‖Sx− Sy‖

1 + L‖Sx− Tx‖

)
ek‖Sx−Tx‖. (2.2)

Definition 2.11. Let S and T be self mappings of a nonempty set X.

(i) A point x ∈ X is said to be a fixed point of T if Tx = x.
(ii) A point x ∈ X is said to be a coincidence point of S and T if Sx = Tx

and point w is called a point of coincidence of S and T if w = Sx = Tx.
(iii) A point x ∈ X is said to be a common fixed point of S and T if

x = Sx = Tx.

In 1976, Jungck [19] introduced concept of commuting mappings as follows:

Definition 2.12. ([19]) Let X be a non-empty set. The mappings S and T
are commuting if TSx = STx for all x ∈ X.

The concept of weakly commuting mappings which are more general than
commuting mappings was introduced by Sessa [41] as follows:

Definition 2.13. ([41]) Let S and T be mappings from a metric space (X, d)
into itself. The mappings S and T are said to be weakly commuting if

d(STx, TSx) ≤ d(Sx, Tx)

for all x ∈ X.

Jungck [20] introduced the more generalized commuting mappings in metric
spaces, called compatible mappings, which also are more general than the
concept of weakly commuting mappings as follows:

Definition 2.14. ([20]) Let S and T be mappings from a metric space (X, d)
into itself. The mapping S and T are said to be compatible if

lim
n→∞

d(STxn, TSxn) = 0

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = z
for some z ∈ X.

Remark 2.15. Generally, commuting mappings are weakly commuting and
weakly commuting mappings are compatible, but the converses are not neces-
sarily true and some examples can be found in [19], [20], [21], [22].

In 1996, Jungck [23] introduced the concept of weakly compatible mappings
as follows:
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Definition 2.16. ([23]) Let S and T be self mappings of a nonempty set
X. The mappings S and T are said to be weakly compatible if STx = TSx
whenever Sx = Tx.

There exists weakly compatible mappings which are not compatible map-
pings in metric spaces (see, e.g. [24]).

Suppose that X is a Banach space, Y an arbitrary set, and S, T : Y → X
such that T (Y ) ⊆ S(Y ). For x0 ∈ Y, consider the following iterative process:

Sxn+1 = Txn, n = 0, 1, 2, · · · . (2.3)

The iterative process (2.3) is called Jungck iterative process and was intro-
duced in 1976 by Jungck [19]. If S = Id (identity mapping) and Y = X, then
the Jungck iteration process (2.3) becomes the Picard iterative process.

Given αn ∈ [0, 1], Singh et al. [42] defined the Jungck-Mann iterative pro-
cess as follows:

Sxn+1 = (1− αn)Sxn + αnTxn. (2.4)

For αn, βn, γn ∈ [0, 1], Olatinwo [34] defined the Jungck-Ishikawa and Olatinwo
[35] defined the Junck-Noor iterative processes, respectively as follows:{

Sxn+1 = (1− αn)Sxn + αnTyn
Syn = (1− βn)Sxn + βnTxn,

(2.5) Sxn+1 = (1− αn)Sxn + αnTyn
Syn = (1− βn)Sxn + βnTzn
Szn = (1− γn)Sxn + γnTxn.

(2.6)

In 2013, Hussain et al. [14] introduced the Jungck-CR iterative process,
which is the Jungck version of the CR iterative process introduced by Chugh
et al. [10]. The following is the Jungck-CR iterative process as defined in [14], Sxn+1 = (1− αn)Syn + αnTyn

Syn = (1− βn)Txn + βnTzn
Szn = (1− γn)Sxn + γnTxn.

(2.7)

Remark 2.17. If we put αn = 0 for all n ∈ N and αn = 0, βn = 1 for all n ∈ N
in Jungck-CR iterative process (2.7), then we obtain the Jungck versions of
Agarwal et al. [1] and Sahu and Petrusel [39], respectively as follows:{

Sxn+1 = (1− βn)Txn + βnTyn
Syn = (1− γn)Sxn + γnTxn,

(2.8){
Sxn+1 = Tyn
Syn = (1− γn)Sxn + γnTxn.

(2.9)

They proved analytically and with some numerical examples that the Jungck-
CR iterative process converges faster in the sense of Berinde [9] than all of
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Jungck-S iterative process, Jungck-Agarwal iterative process, Jungck-SP it-
erative process, Jungck-Noor iterative process and Jungck-Ishikawa iterative
process (see [14]).

In this paper, we approximate the common fixed point of two nonlinear
operators satisfying contractive conditions (2.1) and (2.2) in complex valued
Banach spaces via Jungck-CR iterative process and other Jungck-type itera-
tions.

Definition 2.18. ([9]) Let {an}∞n=0, {bn}∞n=0 be two sequences of positive
numbers that converge to a, respectively b. Assume there exists

l = lim
n→∞

|an − a|
|bn − b|

. (2.10)

(1) If l = 0, then it is said that the sequence {an}∞n=0 converges to a faster
than the sequence {bn}∞n=0 to b.

(2) If 0 < l < ∞, then we say that the sequences {an}∞n=0 and {bn}∞n=0

have the same rate of convergence.

Definition 2.19. ([42]) Let S, T : Y → X be nonself operators for an arbitrary
set Y such that T (Y ) ⊆ S(Y ) and p be a point of coincidence of S and T. Let
{Sxn}∞n=0 ⊂ X, be the sequence generated by an iterative procedure

Sxn+1 = f(T, xn), n = 0, 1, 2, · · · , (2.11)

where x0 ∈ X is the initial approximation and f is some function. Suppose
that {Sxn}∞n=0 converges to p. Let {Syn}∞n=0 ⊂ X be an arbitrary sequence
and set

εn = d(Syn, f(T, yn)), n = 0, 1, 2, · · · . (2.12)

Then, the iterative procedure (2.11) is said to be (S, T )-stable or stable if
limn→∞ εn = 0 then limn→∞ Syn = p.

Lemma 2.20. ([9]) If δ is a real number such that 0 ≤ δ < 1 and {εn}∞n=0 is a
sequence of positive numbers such that limn→∞ εn = 0, then for any sequence
of positive numbers {un}∞n=0 satisfying

un+1 ≤ δun + εn, n = 0, 1, 2, · · · ,
we have limn→∞ un = 0.

Lemma 2.21. ([18]) If ψ : R+ → R+ is a subadditive comparison function
and {εn}∞n=0 is a sequence of positive numbers such that limn→∞ εn = 0, then
for any sequence of positive numbers {un}∞n=0 satisfying

un+1 ≤
m∑
k=0

δkψ
k(un) + εn, n = 0, 1, 2, · · · ,
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where δ0, δ1, · · · , δm ∈ [0, 1] with 0 ≤
∑m

k=0 δk ≤ 1, we have limn→∞ un = 0.

3. Strong convergence theorems
in complex valued Banach spaces

In this section, we approximate the common fixed point of two generalized
operators satisfying contractive conditions(cf. Condition 2.10) of rational type
via some Jungck-type iterative processes. Our results unify, extend and gener-
alize several known results from real Banach spaces to complex valued Banach
spaces.

Theorem 3.1. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For all real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ such that ϕ(0) = 0 and for all x, y ∈ D, we have

‖Tx− Ty‖ -
(
ϕ(‖Sx− Tx‖) + a‖Sx− Sy‖

1 + L‖Sx− Tx‖

)
ek‖Sx−Tx‖. (3.1)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space and
Sx∗ = Tx∗ = p (say). For x0 ∈ D, let {Sxn}∞n=0 be the Jungck-CR iterative
process (2.7), where {αn}, {βn}, {γn} are sequences of positive numbers in [0, 1]
with {αn} satisfying

∑∞
n=0 αn = ∞. Then the Jungck-CR iterative process

{Sxn}∞n=0 converges strongly to p. Moreover, p will be the unique common
fixed point of S, T provided D = E, and S and T are weakly compatible.

Proof. We want to prove that the Jungck-CR iterative process (2.7) converges
strongly to p. Using (2.7) and (3.1), we have

‖Sxn+1 − p‖ = ‖(1− αn)Syn + αnTyn − p‖
- (1− αn)‖Syn − p‖+ αn‖Tyn − p‖
= (1− αn)‖Syn − p‖+ αn‖Tx∗ − Tyn‖
- (1− αn)‖Syn − p‖+ αn

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Syn‖

1+L‖Sx∗−Tx∗‖

)
× ek‖Sx

∗−Tx∗‖

= (1− αn)‖Syn − p‖+ αn

(
ϕ(‖0‖)+a‖Syn−p‖

1+L‖0‖

)
ek‖0‖

= (1− αn)‖Syn − p‖+ aαn‖Syn − p‖
= (1− αn(1− a))‖Syn − p‖. (3.2)

Next, we obtain the following estimate.

‖Sxn − p‖ = ‖(1− βn)Txn + βnTzn − p‖
- (1− βn)‖Txn − p‖+ βn‖Tzn − p‖
= (1− βn)‖Tx∗ − Txn‖+ βn‖Tx∗ − Tzn‖
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- (1− βn)
(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Sxn‖

1+L‖Sx∗−Tx∗‖

)
ek‖Sx

∗−Tx∗‖

+βn

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Szn‖

1+L‖Sx∗−Tx∗‖

)
ek‖Sx

∗−Tx∗‖

= (1− βn)
(
ϕ(‖0‖)+a‖Sxn−p‖

1+L‖0‖

)
ek‖0‖ + βn

(
ϕ(‖0‖)+a‖Szn−p‖

1+L‖0‖

)
ek‖0‖

= a(1− βn)‖Sxn − p‖+ aβn‖Szn − p‖. (3.3)

Similarly, we have the following estimate,

‖Szn − p‖ = ‖(1− γn)Sxn + γnTxn − p‖
- (1− γn)‖Sxn − p‖+ γn‖Txn − p‖
= (1− γn)‖Sxn − p‖+ γn‖Tx∗ − Txn‖
- (1− γn)‖Sxn − p‖

+γn

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Sxn‖

1+L‖Sx∗−Tx∗‖

)
ek‖Sx

∗−Tx∗‖

= (1− γn)‖Sxn − p‖+ γn

(
ϕ(‖0‖)+a‖Sxn−p‖

1+L‖0‖

)
ek‖0‖

= (1− γn)‖Sxn − p‖+ aγn‖Sxn − p‖
= (1− γn(1− a))‖Sxn − p‖. (3.4)

Using (3.4) in (3.3), we have

‖Syn − p‖ - a(1− βn)‖Sxn − p‖+ aβn(1− γn(1− a))‖Sxn − p‖
- (1− βn)‖Sxn − p‖+ aβn‖Sxn − p‖
= (1− βn(1− a))‖Sxn − p‖. (3.5)

Using (3.5) in (3.2), we have

‖Sxn+1 − p‖ - (1− αn(1− a))(1− βn(1− a))‖Sxn − p‖
- (1− αn(1− a))‖Sxn − p‖. (3.6)

Using the fact that (1 − αn(1 − a)) < 1, we obtain the following inequalities
from relation (3.6).

‖Sxn+1 − p‖ - (1− αn(1− a))‖Sxn − p‖,
‖Sxn − p‖ - (1− αn−1(1− a))‖Sxn−1 − p‖,
‖Sxn−1 − p‖ - (1− αn−2(1− a))‖Sxn−2 − p‖,

...
‖Sx1 − p‖ - (1− α0(1− a))‖Sx0 − p‖.

(3.7)

From relation (3.7), we have

‖Sxn+1 − p‖ - ‖Sx0 − p‖
n∏
k=0

(1− αk(1− a)), (3.8)

where (1−αk(1−a)) ∈ (0, 1), since αk ∈ [0, 1] for all k ∈ N. It is well known in
classical analysis that 1− x ≤ e−x for all x ∈ [0, 1]. Using these facts together
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with relation (3.8), we have

‖Sxn+1 − p‖ -
‖Sx0 − p‖

e(1−a)
∑n
k=0 αk

. (3.9)

Therefore,

lim
n→∞

|‖Sxn+1 − p‖| ≤
(
|‖Sx0 − p‖|
|e(1−a)

∑n
k=0 αk |

)
−→ 0 as n→∞. (3.10)

Using Lemma 2.6, this means that limn→∞ ‖Sxn+1 − p‖ = 0. Therefore,
{Sxn}∞n=0 converges strogly to p.

Next, we prove that p is the unique common fixed point of S and T .
Suppose that p∗ is another coincidence point of S and T. Then, there exists

y∗ ∈ D such that Sy∗ = Ty∗ = p∗. Using (3.1), we have

0 � ‖p− p∗‖ = ‖Ty − Ty∗‖
-

(
ϕ(‖Sy−Ty‖)+a‖Sy−Sy∗‖

1+L‖Sy−Ty‖

)
ek‖Sy−Ty‖

=
(
ϕ(‖0‖)+a‖Sy−Sy∗‖

1+L‖0‖

)
ek‖0‖

= a‖p− p∗‖. (3.11)

Therefore,

0 ≤ |‖p− p∗‖| ≤ |a‖p− p∗‖|. (3.12)

Since a ∈ [0, 1), by Lemma 2.6, we have p = p∗.
Since S and T are weakly compatible and p = Ty = Sy, so that Tp =

TTy = TSy = STy and hence Tp = Sp = p, and therefore p is the unique
common fixed point of S and T. The proof of Theorem 3.1 is completed. �

Remark 3.2. Theorem 3.1 extends and generalizes several known results
including the results of Hussain et al. [14] from real Banach spaces to complex
valued Banach spaces.

Next, we obtain the following corollaries as consequencies of Theorem 3.1.

Corollary 3.3. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For all real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ such that ϕ(0) = 0 and for all x, y ∈ D, we have

‖Tx− Ty‖ -
(
ϕ(‖Sx− Tx‖) + a‖Sx− Sy‖

1 + L‖Sx− Tx‖

)
ek‖Sx−Tx‖. (3.13)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space and
Sx∗ = Tx∗ = p (say). For x0 ∈ D, let {Sxn}∞n=0 be the iterative process (2.8),
where {βn} and {γn} are sequences of positive numbers in [0, 1] with {βn}
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satisfying
∑∞

n=0 βn = ∞. Then {Sxn}∞n=0 converges strongly to p. Moreover,
p will be the unique common fixed point of S, T provided D = E, and S and
T are weakly compatible.

Proof. The proof of Corollary 3.3 follows the same lines as in the proof of
Theorem 3.1. �

Corollary 3.4. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For all real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ such that ϕ(0) = 0 and for all x, y ∈ D, we have

‖Tx− Ty‖ -
(
ϕ(‖Sx− Tx‖) + a‖Sx− Sy‖

1 + L‖Sx− Tx‖

)
ek‖Sx−Tx‖. (3.14)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space
and Sx∗ = Tx∗ = p (say). For x0 ∈ D, let {Sxn}∞n=0 be the iterative process
(2.9), where {γn} is a sequence of positive number in [0, 1] with {γn} satisfying∑∞

n=0 γn =∞. Then {Sxn}∞n=0 converges strongly to p. Moreover, p will be the
unique common fixed point of S, T provided D = E, and S and T are weakly
compatible.

Proof. The proof of Corollary 3.4 follows the same lines as in the proof of
Theorem 3.1. �

Theorem 3.5. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For a real number L ≥ 0, a sublinear comparison function ψ : R+ → R+

and a monotone increasing function ϕ : R+ → R+ such that ϕ(0) = 0 and for
all x, y ∈ D, we have

‖Tx− Ty‖ - ϕ(‖Sx− Tx‖) + ψ(‖Sx− Sy‖)
1 + L‖Sx− Tx‖

. (3.15)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space and
Sz = Tz = p (say). For x0 ∈ D, let {Sxn}∞n=0 be the Jungck-Ishikawa iterative
process (2.5), where {αn} and {βn} are sequences of positive numbers in [0, 1]
with {αn} satisfying

∑∞
n=0 αn = ∞. Then {Sxn}∞n=0 converges strongly to p.

Moreover, p will be the unique common fixed point of S, T provided D = E,
and S and T are weakly compatible.
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Proof. We now prove that the Jungck-Ishikawa iterative process {Sxn}∞n=0

converges strongly to p. Using (2.5) and (3.15), we have

‖Sxn+1 − p‖ = ‖(1− αn)Sxn + αnTyn − p‖
- (1− αn)‖Sxn − p‖+ αn‖Tyn − p‖
= (1− αn)‖Sxn − p‖+ αn‖Tz − Tyn‖
- (1− αn)‖Sxn − p‖+ αn

(
ϕ(‖Sz−Tz‖)+ψ(‖Sz−Syn‖)

1+L‖Sz−Tz‖

)
= (1− αn)‖Sxn − p‖+ αn

(
ϕ(‖0‖)+ψ(‖p−Syn‖)

1+L‖0‖

)
= (1− αn)‖Sxn − p‖+ αnψ(‖Syn − p‖)
= (1− αn)‖Sxn − p‖+ αnψ(‖(1− βn)Sxn + βnTxn − p‖)
- (1− αn)‖Sxn − p‖+ αn(1− βn)ψ(‖Sxn − p‖)

+αnβnψ(‖Txn − p‖)
= (1− αn)‖Sxn − p‖+ αn(1− βn)ψ(‖Sxn − p‖)

+αnβnψ(‖Tz − Txn‖)
- (1− αn)‖Sxn − p‖+ αn(1− βn)ψ(‖Sxn − p‖)

+αnβnψ
(
ϕ(‖Sz−Tz‖)+ψ(‖Sz−Sxn‖)

1+L‖Sz−Tz‖

)
= (1− αn)‖Sxn − p‖+ αn(1− βn)ψ(‖Sxn − p‖)

+αnβnψ
(
ϕ(‖0‖)+ψ(‖p−Sxn‖)

1+L‖0‖

)
= (1− αn)‖Sxn − p‖+ αn(1− βn)ψ(‖Sxn − p‖)

+αnβnψ
2(‖Sxn − p‖).

(3.16)
From (3.16), set

rn = αn(1− βn)ψ(‖Sxn − p‖) + αnβnψ
2(‖Sxn − p‖). (3.17)

Hence, (3.16) becomes

‖Sxn+1 − p‖ - (1− αn)‖Sxn − p‖+ rn. (3.18)

Using the fact that (1 − αn) < 1, we obtain the following inequalities from
(3.18). 

‖Sxn+1 − p‖ - (1− αn)‖Sxn − p‖+ rn,
‖Sxn − p‖ - (1− αn−1)‖Sxn−1 − p‖+ rn−1,
‖Sxn−1 − p‖ - (1− αn−2)‖Sxn−2 − p‖+ rn−2,

...
‖Sx1 − p‖ - (1− α0)‖Sx0 − p‖+ r0.

(3.19)

Using relation (3.19), we derive

‖Sxn+1 − p‖ - ‖Sx0 − p‖
n∏
k=0

(1− αk) + rn, (3.20)
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where (1 − αk) ∈ (0, 1) and αk ∈ [0, 1] for each k ∈ N. It is well known in
classical analysis that 1− x ≤ e−x for all x ∈ [0, 1]. Using these facts together
with relation (3.20), we have

‖Sxn+1 − p‖ -
‖Sx0 − p‖
e
∑n
k=0 αk

+ rn. (3.21)

Hence,

|‖Sxn+1 − p‖| ≤
|‖Sx0 − p‖|
|e

∑n
k=0 αk |

+ |rn|. (3.22)

Therefore, using Lemma 2.6 and Lemma 2.21, we have that

lim
n→∞

|‖Sxn+1 − p‖| ≤
|‖Sx0 − p‖|
|e

∑n
k=0 αk |

+ |rn| −→ 0 as n→∞. (3.23)

By Lemma 2.6, we have

lim
n→∞

‖Sxn − p‖ = 0. (3.24)

This means that {Sxn}∞n=0 converges strongly to p.

Next, we prove that p is the unique common fixed point of S and T .
Suppose that p∗ is another coincidence point of S and T. Then, there exists

y∗ ∈ D such that Sy∗ = Ty∗ = p∗. Using (3.15), we have

0 - ‖p− p∗‖ = ‖Ty − Ty∗‖
- ϕ(‖Sy−Ty‖)+ψ(‖Sy−Sy∗‖)

1+L‖Sy−Ty‖
= ϕ(‖0‖)+ψ(‖Sy−Sy∗‖)

1+L‖0‖
= ψ(‖p− p∗‖). (3.25)

Therefore,

0 ≤ |‖p− p∗‖| ≤ |ψ(‖p− p∗‖)|. (3.26)

By Lemma 2.6 and Lemma 2.21, we have

0 ≤ |‖p− p∗‖| ≤ |ψ(‖p− p∗‖)| −→ 0 as n→∞, (3.27)

so that p = p∗ by Lemma 2.6. Since S and T are weakly compatible and
p = Ty = Sy, so that Tp = TTy = TSy = STy and hence Tp = Sp = p,
and therefore p is the unique common fixed point of S and T. The proof of
Theorem 3.5 is completed. �

Remark 3.6. Theorem 3.5 is the extension and generalization of several
known results from real Banach spaces to complex valued Banach spaces,
including the results of Olatinwo [36].

Next, we obtain the following corollary as a consequence of Theorem 3.5.
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Corollary 3.7. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For a real number L ≥ 0, a sublinear comparison function ψ : R+ → R+

and a monotone increasing function ϕ : R+ → R+ such that ϕ(0) = 0 and for
all x, y ∈ D, we have

‖Tx− Ty‖ - ϕ(‖Sx− Tx‖) + ψ(‖Sx− Sy‖)
1 + L‖Sx− Tx‖

. (3.28)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space and
Sz = Tz = p (say). For x0 ∈ D, let {Sxn}∞n=0 be the Jungck-Mann iterative
process (2.4), where {αn} is a sequence of positive number in [0, 1] with {αn}
satisfying

∑∞
n=0 αn = ∞. Then {Sxn}∞n=0 converges strongly to p. Moreover,

p will be the unique common fixed point of S, T provided D = E, and S and
T are weakly compatible.

Proof. The proof of Corollary 3.7 follows the same lines as in the proof of
Theorem 3.5. �

Next, we give the following numerical examples to validate our analytical
results.

Example 3.8. Let D = [0, 1] and define ‖.‖ : D → C by

‖x− y‖ = |x− y|e
iπ
3 .

Then (D, ‖.‖) is a complex valued Banach space. Next, we define the nonself
operators S, T : D → C by Sx = Tx = x

2 . Suppose {Sxn}∞n=0 is the Jungck-

CR iterative process (2.7) and choose {αn} = {βn} = {γn} = 1√
5
, for each

n = 0, 1, 2, 3, · · · . Suppose a = 1
2 , L = 4, ϕ = t2

2 for all t ∈ R+ and k = 1
3 .

Clearly, we see that 0 is the unique common fixed point of S and T. Define
{xn}∞n=0 = 1

n+1 , then Sx0 = 1
2 ∈ D. Hence, by relation (3.1) for all x, y ∈ D,

we have

‖Tx− Ty‖ -
(
ϕ(‖Sx−Tx‖)+a‖Sx−Sy‖

1+L‖Sx−Tx‖

)
ek‖Sx−Tx‖

=

(
ϕ(|Sx−Tx|e

iπ
3 )+ 1

2
|Sx−Sy|e

iπ
3

1+4|Sx−Tx|e
iπ
3

)
e

1
2
|Sx−Tx|e

iπ
3

=

(
ϕ(|0|)+ 1

2
|x
2
− y

2
|e
iπ
3

1+4|0|e
iπ
3

)
e0

= 1
4 |x− y|e

iπ
3 . (3.29)



426 G. A. Okeke and J. K. Kim

Using relation (3.6), we have

‖Sxn+1 − p‖ - (1− αn(1− a))‖Sxn − p‖
= (1− 1√

5
(1− 1

2)|12( 1
n+1)− 0|e

iπ
3

= (10−
√
5

10 )|12( 1
n+1)|e

iπ
3

= (10−
√
5

20 )| 1
n+1 |e

iπ
3

→ 0 as n→∞. (3.30)

Clearly, we see that all the conditions of Theorem 3.1 are satisfied and 0 is the
unique common fixed point of S and T.

Example 3.9. Let D = [0, 1] and define ‖.‖ : D → C by

‖x− y‖ = i|x− y|.
Then (D, ‖.‖) is a complex valued Banach space. Next, we define the nonself
operators S, T : D → C by Sx = Tx = x

4 . Suppose {Sxn}∞n=0 is the Jungck-

CR iterative process (2.7) and choose {αn} = {βn} = {γn} = 1√
7
, for each

n = 0, 1, 2, 3, · · · . Suppose a = 1
2 , L = 4, ϕ = t2

2 for all t ∈ R+ and k = 1
3 .

Clearly, we see that 0 is the unique common fixed point of S and T. Define
{xn}∞n=0 = 1

n+1 , then Sx0 = 1
2 ∈ D.

By similar computations as in Example 3.8, we see that all the conditions
of Theorem 3.1 are satisfied and 0 is the unique common fixed point of S and
T.

4. Some stability results in complex valued Banach spaces

We begin this section with the following stability results, which extends and
generalizes several known results from real Banach spaces to complex valued
Banach spaces, including the results of Hussain et al. [14].

Theorem 4.1. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For all real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ such that ϕ(0) = 0 and for all x, y ∈ D, we have

‖Tx− Ty‖ -
(
ϕ(‖Sx− Tx‖) + a‖Sx− Sy‖

1 + L‖Sx− Tx‖

)
ek‖Sx−Tx‖. (4.1)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space
and Sx∗ = Tx∗ = p (say). For x0 ∈ D and α ∈ (0, 1), let {Sxn}∞n=0 be the
Jungck-CR iterative process (2.7) converging to p, where {αn}, {βn}, {γn} are
sequences of positive numbers in [0, 1] with {αn} satisfying α ≤ αn for all
n ∈ N. Then the Jungck-CR iterative process {Sxn}∞n=0 is (S, T )-stable.
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Proof. Suppose that {Sgn}∞n=0 ⊂ D is an arbitrary sequence, set

εn = ‖Sgn+1 − (1− αn)Sbn − αnTbn‖, n = 0, 1, 2, · · · , (4.2)

where {
Sbn = (1− βn)Tgn + βnTcn
Scn = (1− γn)Sgn + γnTgn,

(4.3)

and let limn→∞ εn = 0. We want to prove that limn→∞ Sgn+1 = p. Using
relations (2.7) and (4.1), we have

‖Sgn+1 − p‖ - ‖Sgn+1 − (1− αn)Sbn − αnTbn‖
+‖(1− αn)Sbn + αnTbn − p‖

- εn + (1− αn)‖Sbn − p‖+ αn‖Tx∗ − Tbn‖
- εn + (1− αn)‖Sbn − p‖+ αn

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Sbn‖

1+L‖Sx∗−Tx∗‖

)
× ek‖Sx

∗−Tx∗‖

= εn + (1− αn)‖Sbn − p‖+ αn

(
ϕ(‖0‖)+a‖p−Sbn‖

1+L‖0‖

)
ek‖0‖

= εn + (1− αn)‖Sbn − p‖+ aαn‖Sbn − p‖
= (1− αn(1− a))‖Sbn − p‖+ εn. (4.4)

Next, we compute the following estimates:

‖Sbn − p‖ = ‖(1− βn)Tgn + βnTcn − p‖
- (1− βn)‖Tgn − p‖+ βn‖Tcn − p‖
= (1− βn)‖Tx∗ − Tgn‖+ βn‖Tx∗ − Tcn‖
- (1− βn)

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Sgn‖

1+L‖Sx∗−Tx∗‖

)
ek‖Sx

∗−Tx∗‖

+βn

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Scn‖

1+L‖Sx∗−Tx∗‖

)
ek‖Sx

∗−Tx∗‖

= (1− βn)
(
ϕ(‖0‖)+a‖p−Sgn‖

1+L‖0‖

)
ek‖0‖ + βn

(
ϕ(‖0‖)+a‖p−Scn‖

1+L‖0‖

)
ek‖0‖

= a(1− βn)‖Sgn − p‖+ aβn‖Scn − p‖. (4.5)

‖Scn − p‖ = ‖(1− γn)Sgn + γnTgn − p‖
- (1− γn)‖Sgn − p‖+ γn‖Tgn − p‖
= (1− γn)‖Sgn − p‖+ γn‖Tx∗ − Tgn‖
- (1− γn)‖Sgn − p‖+ γn

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Sgn‖

1+L‖Sx∗−Tx∗‖

)
× ek‖Sx

∗−Tx∗‖

= (1− γn)‖Sgn − p‖+ γn

(
ϕ(‖0‖)+a‖p−Sgn‖

1+L‖0‖

)
ek‖0‖

= (1− γn)‖Sgn − p‖+ aγn‖Sgn − p‖
= (1− γn(1− a))‖Sgn − p‖. (4.6)

Using (4.6) in (4.5), we have

‖Sbn − p‖ - a(1− βn)‖Sgn − p‖+ aβn(1− γn(1− a))‖Sgn − p‖
- (1− βn(1− a))‖Sgn − p‖. (4.7)
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Using (4.7) in (4.4), we have

‖Sgn+1 − p‖ - (1− αn(1− a))(1− βn(1− a))‖Sgn − p‖+ εn
- (1− αn(1− a))‖Sgn − p‖+ εn. (4.8)

Therefore, from relation (4.8), we have

|‖Sgn+1 − p‖| ≤ |(1− αn(1− a))‖Sgn − p‖+ εn|
≤ |(1− αn(1− a))‖Sgn − p‖|+ |εn|
→ 0 as n→∞. (4.9)

Since 0 < α ≤ αn and a ∈ [0, 1), we have (1−αn(1−a)) < 1. Hence, by Lemma
2.6 and Lemma 2.20, we have from relation (4.9) that limn→∞ Sgn+1 = p.

Conversely, suppose limn→∞ Sgn+1 = p. Then, using (2.7), (4.1) and trian-
gle inequality, we have

εn = ‖Sgn+1 − (1− αn)Sbn − αnTbn‖
- ‖Sgn+1 − p‖+ ‖p− (1− αn)Sbn − αnTbn‖
- ‖Sgn+1 − p‖+ (1− αn)‖p− Sbn‖+ αn‖p− Tbn‖
= ‖Sgn+1 − p‖+ (1− αn)‖Sbn − p‖+ αn‖Tx∗ − Tbn‖
- ‖Sgn+1 − p‖+ (1− αn)‖Sbn − p‖

+αn

(
ϕ(‖Sx∗−Tx∗‖)+a‖Sx∗−Sbn‖

1+L‖Sx∗−Tx∗

)
ek‖Sx

∗−Tx∗‖

= ‖Sgn+1 − p‖+ (1− αn)‖Sbn − p‖+ αn

(
ϕ(‖0‖)+a‖p−Sbn‖

1+L‖0‖

)
ek‖0‖

= ‖Sgn+1 − p‖+ (1− αn)‖Sbn − p‖+ aαn‖Sbn − p‖
= ‖Sgn+1 − p‖+ (1− αn(1− a))‖Sbn − p‖.

(4.10)
Using relation (4.7) in (4.10), we have

εn - ‖Sgn+1 − p‖+ (1− αn(1− a))(1− βn(1− a))‖Sgn − p‖
- ‖Sgn+1 − p‖+ (1− αn(1− a))‖Sgn − p‖. (4.11)

Therefore, from (4.11) we have

|εn| ≤ |‖Sgn+1 − p‖+ (1− αn(1− a))‖Sgn − p‖|
≤ |‖Sgn+1 − p‖|+ |(1− αn(1− a))‖Sgn − p‖|
→ 0 as n→∞.

(4.12)

Hence, by Lemma 2.6 and Lemma 2.20, we have

lim
n→∞

εn = 0. (4.13)

This means that the Jungck-CR iterative process {Sxn}∞n=0 is (S, T )-stable.
This completes the proof. �

Remark 4.2. Theorem 4.1 is the unification, extension and generalization of
the results in ([14], Theorem 13) from real Banach spaces to complex valued
Banach spaces.
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Next, we obtain the following corollaries as consequencies of Theorem 4.1.

Corollary 4.3. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For all real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ such that ϕ(0) = 0 and for all x, y ∈ D, we have

‖Tx− Ty‖ -
(
ϕ(‖Sx− Tx‖) + a‖Sx− Sy‖

1 + L‖Sx− Tx‖

)
ek‖Sx−Tx‖. (4.14)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space
and Sx∗ = Tx∗ = p (say). For x0 ∈ D and α ∈ (0, 1), let {Sxn}∞n=0 be
the iterative process defined by (2.8) converging to p, where {βn}, {γn} are
sequences of positive numbers in [0, 1] with {βn} satisfying β ≤ βn for all
n ∈ N. Then {Sxn}∞n=0 is (S, T )-stable.

Proof. The proof of Corollary 4.3 follows similar lines as in the proof of The-
orem 4.1. �

Corollary 4.4. Let D be a nonempty closed convex subset of a complex val-
ued Banach space (E, ‖.‖) and let S, T : D → E be nonself operators on D
satisfying the following contractive condition:

(C) For all real numbers k ≥ 0, L ≥ 0, a ∈ [0, 1) and a monotone increasing
function ϕ : R+ → R+ such that ϕ(0) = 0 and for all x, y ∈ D, we have

‖Tx− Ty‖ -
(
ϕ(‖Sx− Tx‖) + a‖Sx− Sy‖

1 + L‖Sx− Tx‖

)
ek‖Sx−Tx‖. (4.15)

Assume that T (D) ⊆ S(D), S(D) ⊆ E is a complex valued Banach space and
Sx∗ = Tx∗ = p (say). For x0 ∈ D and α ∈ (0, 1), let {Sxn}∞n=0 be the iterative
process defined by (2.9) converging to p, where {γn} is a sequence of positive
number in [0, 1] with {γn} satisfying γ ≤ γn for all n ∈ N. Then {Sxn}∞n=0 is
(S, T )-stable.

Proof. The proof of Corollary 4.4 follows similar lines as in the proof of The-
orem 4.1. �

We now give the following numerical examples to validate our analytical
results.

Example 4.5. Let D = [0, 1] and define ‖.‖ : D → C by

‖x− y‖ = i|x− y|.
Then (D, ‖.‖) is a complex valued Banach space. Next, we define the nonself
operators S, T : D → C by Sx = Tx = x

4 . Suppose {Sxn}∞n=0 is the Jungck-

CR iterative process (2.7) and choose {αn} = {βn} = {γn} = 1√
7
, for each
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n = 0, 1, 2, 3, · · · . Suppose a = 1
2 , L = 5, ϕ = t2

2 for all t ∈ R+ and k = 1
3 .

Clearly, we see that 0 is the unique common fixed point of S and T. Define
{gn}∞n=0 = 1

n+1 , then Sg0 = 1
2 ∈ D. Hence, by relation (4.1) ∀x, y ∈ D, we

have

‖Tx− Ty‖ -
(
ϕ(‖Sx−Tx‖)+a‖Sx−Sy‖

1+L‖Sx−Tx‖

)
ek‖Sx−Tx‖

=
(
ϕ(|Sx−Tx|i)+ 1

2
|Sx−Sy|i

1+5|Sx−Tx|i

)
e

1
2
|Sx−Tx|i

=
(
ϕ(|0|i)+ 1

2
|x
4
− y

4
|i

1+5|0|i

)
e0

= 1
8 |x− y|i. (4.16)

By relation (4.9), we have

‖Sgn+1 − p‖ - |(1− αn(1− a))‖Sgn − p‖|+ |εn|
= |(1− 1√

7
(1− 1

2))|14( 1
n+1)− 0|i|+ |εn|

= |(1− 1
2
√
7
)|14( 1

n+1)|i|+ |εn|
= |14−

√
7

56 ||
1

n+1 |+ |εn|
→ 0 as n→∞. (4.17)

Similarly, using (4.12), we obtain

|εn| ≤ ||14( 1
n+2)− 0|i|+ |(1− 1√

7
(1− 1

2))|14( 1
n+1)− 0|i|

= 1
4 |

1
n+2 |+ |

14−
√
7

56 ||
1

n+1 |
→ 0 as n→∞. (4.18)

Clearly, all the conditions of Theorem 4.1 are satisfied. Therefore, the Jungck-
CR iterative process {Sxn}∞n=0 is (S, T )-stable.

Example 4.6. Let D = [0, 1] and define ‖.‖ : D → C by

‖x− y‖ = |x− y|e
iπ
3 .

Then (D, ‖.‖) is a complex valued Banach space. Next, we define the nonself
operators S, T : D → C by Sx = Tx = x

2 . Suppose {Sxn}∞n=0 is the Jungck-

CR iterative process (2.7) and choose {αn} = {βn} = {γn} = 1√
11
, for each

n = 0, 1, 2, 3, · · · . Suppose a = 1
2 , L = 10, ϕ = t2

2 for all t ∈ R+ and k = 1
3 .

Clearly, we see that 0 is the unique common fixed point of S and T. Define
{gn}∞n=0 = 1

n+1 , then Sg0 = 1
2 ∈ D.

By similar computations as in Example 4.5, we see that all the condi-
tions of Theorem 4.1 are satisfied. Therefore, the Jungck-CR iterative process
{Sxn}∞n=0 is (S, T )-stable.
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5. Applications to a nonlinear integral equation

In this section, we show that the Jungck-Mann iterative process (2.4) con-
verges strongly to the solution of a mixed type Volterra-Fredholm functional
nonlinear integral equation in complex valued Banach spaces.

In 2011, Crăciun and Şerban [11] considered the following mixed type
Volterra-Fredholm functional nonlinear integral equation:

x(t) = F

(
t, x(t),

∫ t1

a1

· · ·
∫ tm

am

K(t, s, x(s))ds,

∫ b1

a1

· · ·
∫ bm

am

H(t, s, x(s))ds

)
,

(5.1)
where [a1; b1] × · · · × [am; bm] is an interval in Rm, K,H : [a1; b1] × · · · ×
[am; bm] × [a1; b1] × · · · × [am; bm] × R → R continuous functions and F :
[a1; b1]× · · · × [am; bm]× R3 → R. They established the following results.

Theorem 5.1. ([11]) We assume that:

(i) K,H ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]× R);
(ii) F ∈ C([a1, b1]× · · · × [am, bm]× R3);

(iii) there exist α, β, γ nonnegative constants such that

|F (t, u1, v1, w1)−F (t, u2, v2, w2)| ≤ α|u1−u2|+β|v1−v2|+γ|w1−w2|,
for all t ∈ [a1, b1]× · · · × [am, bm], u1, u2, v1, v2, w1, w2 ∈ R;

(iv) there exist LK and LH nonnegative constants such that

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|,

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|,
for all t, s ∈ [a1, b1]× · · · × [am, bm], u, v ∈ R;

(v) α+ (βLK + γLH)(b1 − a1) · · · (bm − am) < 1.

Then, the equation (5.1) has a unique solution x∗ ∈ C([a1, b1]×· · ·× [am, bm]).

Remark 5.2. ([11]) Let (B, |.|) be a Banach space. Then Theorem 5.1 remains
also true if we consider the mixed type Volterra-Fredholm functional nonlinear
integral equation (5.1) in the Banach space B instead of Banach space R.

Consequently, we obtain the following results in complex valued Banach
spaces.

Theorem 5.3. We assume that:

(A1) K,H ∈ C([a1, b1]× · · · × [am, bm]× [a1, b1]× · · · × [am, bm]× C);
(A2) F ∈ C([a1, b1]× · · · × [am, bm]× C3);
(A3) there exist α, β, γ nonnegative constants such that:

|F (t, u1, v1, w1)−F (t, u2, v2, w2)| ≤ α|u1−u2|+β|v1−v2|+γ|w1−w2|,
for all t ∈ [a1, b1]× · · · × [am, bm], u1, u2, v1, v2, w1, w2 ∈ C;



432 G. A. Okeke and J. K. Kim

(A4) there exist LK and LH nonnegative constants such that:

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|,
|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|,

for all t, s ∈ [a1, b1]× · · · × [am, bm], u, v ∈ C;
(A5) α+ (βLK + γLH)(b1 − a1) · · · (bm − am) < 1.

Suppose that the sequence {Sxn}∞n=0 is the Jungck-Mann iterative process de-
fined by

Sxn+1 = (1− λn)Sxn + λnTxn, (5.2)

where {λn}∞n=0 ⊂ [0, 1] is a real sequence satisfying
∑∞

n=0 λn = ∞. Then, the
equation (5.1) has a unique solution, say x∗ ∈ C([a1, b1]× · · · × [am, bm]) and
the Jungck-Mann iterative process (5.2) converges to x∗.

Proof. We consider the complex valued Banach space BC = C([a1, b1]× · · · ×
[am, bm], ‖.‖C), where ‖.‖C is the Chebyshev’s norm defined by

‖x− y‖C = |x− y|i, ∀x, y ∈ BC.

Let {Sxn}∞n=0 be an iterative sequence generated by the Jungck-Mann iterative
process (5.2) for the operators A1, A2 : BC → BC defined by

A1(x)(t) = A2(x)(t) (5.3)

= F

(
t, x(t),

∫ t1

a1

· · ·
∫ tm

am

K(t, s, x(s))ds,

∫ b1

a1

· · ·
∫ bm

am

H(t, s, x(s))ds

)
.

We want to show that Sxn −→ x∗ as n → ∞. Using relation (5.1), (5.2) and
assumptions (A1)− (A4), we have

‖Sxn+1 − x∗‖ = ‖(1− λn)A1xn + λnA2xn − x∗‖
- (1− λn)‖A1xn − x∗‖+ λn‖A2xn − x∗‖. (5.4)

Next, we compute the following estimates:

‖A1xn − x∗‖
= |A1(xn)(t)−A1(x

∗)(t)|i
= |F

(
t, xn(t),

∫ t1
a1
· · ·
∫ tm
am

K(t, s, xn(s))ds,
∫ b1
a1
· · ·
∫ bm
am

H(t, s, xn(s))ds
)

−F
(
t, x∗(t),

∫ t1
a1
· · ·
∫ tm
am

K(t, s, x∗(s))ds,
∫ b1
a1
· · ·
∫ bm
am

H(t, s, x∗(s))ds
)
|i
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- α|xn(t)− x∗(t)|i
+β|

∫ t1
a1
· · ·
∫ tm
am

K(t, s, xn(s))ds−
∫ t1
a1
· · ·
∫ tm
am

K(t, s, x∗(s))ds|i
+γ|

∫ b1
a1
· · ·
∫ bm
am

H(t, s, xn(s))ds−
∫ b1
a1
· · ·
∫ bm
am

H(t, s, x∗(s))ds|i
- α|xn(t)− x∗(t)|i+ βi

∫ t1
a1
· · ·
∫ tm
am
|K(t, s, xn(s))−K(t, s, x∗(s))|ds

+γi
∫ b1
a1
· · ·
∫ bm
am
|H(t, s, xn(s))−H(t, s, x∗(s))|ds

- α|xn(t)− x∗(t)|i+ βi
∫ t1
a1
· · ·
∫ tm
am

LK |xn(s)− x∗(s)|ds
+γi

∫ b1
a1
· · ·
∫ bm
am

LH |xn(s)− x∗(s)|ds
- [α+ (βLK + γLH)

∏m
i=1(bi − ai)] ‖Sxn − x∗‖.

(5.5)
Similarly, we have

‖A2xn − x∗‖ -

[
α+ (βLK + γLH)

m∏
i=1

(bi − ai)

]
‖Sxn − x∗‖. (5.6)

Using (5.5) and (5.6) in (5.4), we have

‖Sxn+1 − x∗‖ -

[
α+ (βLK + γLH)

m∏
i=1

(bi − ai)

]
‖Sxn − x∗‖. (5.7)

This implies that

|‖Sxn+1 − x∗‖| ≤

[
α+ (βLK + γLH)

m∏
i=1

(bi − ai)

]
|‖Sxn − x∗‖|. (5.8)

By assumption (A5), we have[
α+ (βLK + γLH)

m∏
i=1

(bi − ai)

]
< 1.

Therefore by Lemma 2.6 and Lemma 2.20, we obtain

|‖Sxn+1 − x∗‖| ≤ [α+ (βLK + γLH)
∏m
i=1(bi − ai)] |‖Sxn − x∗‖|

→ 0 as n→∞. (5.9)

Hence, we have
lim
n→∞

‖Sxn − x∗‖ = 0. (5.10)

This completes the proof. �
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