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Abstract. In this paper, we propose and analyze the convergence of a new algorithm for

solving monotone and Lipschitz continuous multi-valued variational inequalities by using

proximal operator. By choosing suitable parameters of proximal steps and of subgradient

stepsizes, we show that the convergence of the algorithm does not require the prior knowledge

of Lipschitz continuous constant of cost operator.

1. Introduction

Let C be a nonempty, closed and convex subset of a finite dimensional
vector space Rs. Let F : Rs → 2R

s
be a multi-valued mapping and g : C →

R∪ {+∞} be a convex function.
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We consider a problem of the multi-valued generalized variational inequal-
ities in a general form: Find x∗ ∈ C,w∗ ∈ F (x∗) such that

〈w∗, x− x∗〉+ g(x)− g(x∗) ≥ 0, ∀x ∈ C. (1.1)

As usual, F is said to be a cost operator. In the case F is single-valued,
Problem (1.1) is the well-known general variational inequality problem, shortly
V I(C,F, g), which is an interesting problem of nonlinear analysis [3, 6, 7, 15,
28, 34].

Let g : C → R be proper, convex and lower semicontinuous. The proximal
mapping of g with parameter λ > 0 on C is formulated as follows:

proxλg(y) = argmin

{
λg(x) +

1

2
‖y − x‖2 : x ∈ C

}
.

An application of the proximal mapping is to solve the problem

min{f1(x) + f2(x) : x ∈ C},
where f1 : Rs → R∪ {+∞} is differentiable and convex, and f2 : Rs → R∪
{+∞} is proper, convex and lower semicontinuous. Under the restriction that

∇f1 is L̂−Lipschitz continuous, one of the most simple methods for solving
this problem is the proximal gradient method as the follows:

xk+1 = proxλkf2

[
xk − λk∇f1(xk)

]
,

where λk ∈
(

1, 2
L̂

)
.

The variational inequality theory is an important tool in studying a wide
class of obstacle of solution methods for equilibrium problems, mathematical
programs with equilibrium constraints arising in several branches of pure and
applied sciences [22, 29, 30]. Several numerical methods have been developed
for solving multi-valued mixed variational inequalities and related optimization
problems, see [11, 21, 33] and the references therein.

In the case g = 0, a popular solution method for solving the variational
inequalities V I(C,F, g) is the proximal method. Set h(x, y) = 〈F (x), y − x〉.
The iteration sequence of the method is defined by a projection

xk+1 = PrC(xk − λF (xk)),

where PrC is the metric projection onto C. Otherwise, it is well known that
the method is only convergent in the case that the cost operator F is strongly
monotone and Lipschitz continuous. In general, it is not convergent for mono-
tone variational inequalities. In order to avoid the hypothesis of the strongly
monotonicity of F , the extragradient method is first introduced by Korpelevich
in [23] and Antipin et al. later in [1, 2], which is extended to pseudomono-
tone and Lipschitz continuous variational inequalities for a finite dimensional
vector space. The iteration sequence {xk} is defined by
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{
yk = PrC(xk − λF (xk)),

xk+1 = PrC(xk − λF (yk)).

However, the extragradient method requires computing two proximal points,
which is computational expensive costs except when C has a special structure.

In 2011, in order to avoid the efforts for the second proximal point, Censor
et al. [12] proposed the subgradient extragradient method in a real Hilbert
space H, in here the second proximal point is given by a specific form which
is a projection onto a half-space Tk. The iterative sequence is defined as the
following:


yk = PrC(xk − λF (xk)),

Tk = {w ∈ H : 〈xk − λF (xk)− yk, w − yk〉 ≤ 0},
xk+1 = PrTk [xk − λF (xk)],

(1.2)

where λ > 0. Under the main assumption that the cost operator F is pseu-
domonotone and Lipschitz continuous on C, the sequence {xk} strongly con-
verges to a solution of V I(C,F ) in H.

In [26], Malitsky introduced a proximal extrapolated gradient method for
solving monotone and Lipschitz continuous problem V I(C,F, g) in Rs. In this
method, the main step is given as follows:{

yk = xk + τk(x
k − xk−1),

xk+1 = proxλkg(x
k − λkF (yk)),

(1.3)

where parameters τk, λk and yk are defined from local properties of F (yk).
Inspired of the subgradient method of Malitsky [26], Cho et al. in [16] intro-
duced a more general version of process (1.3) for solving the problem of finding
a common point of the equilibrium problem and the fixed point problem in
Rs.

Recently, Anh and Hieu in [3] proposed a multi-step proximal method for
solving the equilibrium problem: Find x ∈ C such that

f(x, y) ≥ 0, ∀y ∈ C, (1.4)

where f : C × C → R.
One is a variant of the gradient-type projection method and the proximal

method in a real Hilbert space H. They established sufficient conditions for
the convergence of the proposed methods and derived a new estimate of the
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rates of the convergence. The iteration sequence is given by the form:
yk = proxλkf(xk,·)(x

k),

zk = proxρkf(yk,·)(y
k),

tk = proxρkf(zk,·)(x
k),

xk+1 = αkx
k + (1− αk)tk,

(1.5)

where {λk} ⊂ (0, 1), {ρk} ⊂ (0, 1) and {αk} ⊂ (0, 1). Under pseudomonotone
and Lipschitz-type continuous assumptions of the bifunction f , the sequence
{xk} definded by (1.5) strongly converges to a solution x∗ ∈ C of (1.4). There
are several modifications of the proximal method for solving quasivariational
inequalities, equilibrium problem, fixed point problems and other related prob-
lems; see for instance [20, 24, 25, 31, 35].

Motivated by ideas of the proximal extrapolated gradient methods (1.3)
of Malitsky, the contraction and projection method of Dong et al. in [16],
and the proximal methods in [4, 5], our interest in this paper is to propose
a proximal-like subgradient algorithm and obtain its convergence for solving
Problem (1.1), when F is monotone and Lipschitz continuous.

Comparing with current methods such as the relaxed proximal point meth-
ods of Huebner and Tichatschke in [19], the proximal method of Cholamjiak
and Cholamjiak [14] and other [8], the fundamental difference here is that, our
algorithm is very simple, only requires one proximal-like step without strongly
monotone assumptions of the cost operator, where Lipschitz continuous con-
stant can be known or unknown.

The paper is organized as follows. In the next section, we present some lem-
mas which will be used in the main results. In Section 3, we give a proximal-like
subgradient algorithm for solving Problem (1.1) and the proof of its conver-
gence. Section 4 is devoted to an ergodic rate of convergence of the iteration
sequence by using the gap function for multi-valued mixed variational inequal-
ities.

2. Preliminaries

Let C be a nonempty, closed and convex subset of Rs. For each x ∈
Rs, there exists a unique solution of the strongly convex quadratic problem,
denoted by PrC(x),

min
{
‖x− y‖2 : y ∈ C

}
.

P rC is usually called the metric projection onto C. It is easy to see that
y = PrC(x) if and only if 〈v − y, x − y〉 ≤ 0 for all v ∈ C. An important
property of PrC is 1-inverse strongly monotone on Rs, i.e.,

‖PrC(x)− PrC(y)‖2 ≤ 〈PrC(x)− PrC(y), x− y〉, ∀x, y ∈ Rs.
A mapping F : C → 2R

s
is said to be



Proximal-like subgradient methods for solving multi-valued variational inequalities 441

(i) strongly monotone with constant β > 0, if

〈wx − wy, x− y〉 ≥ β‖x− y‖2 ∀x, y ∈ C,wx ∈ F (x), wy ∈ F (y);

(ii) monotone, if

〈wx − wy, x− y〉 ≥ 0 ∀x, y ∈ C,wx ∈ F (x), wy ∈ F (y).

Note that the Hausdorff distance of two sets A and B is defined as

ρ(A,B) := max{d(A,B), d(B,A)},

where d(A,B) := sup
a∈A

inf
b∈B
‖a− b‖ and d(B,A) := sup

b∈B
inf
a∈A
‖a− b‖.

Let T : C → 2R
s
. As usual, T is said to be Lipschitz continuous on C with

constant L > 0 if

ρ(T (x), T (y)) ≤ L‖x− y‖, ∀x, y ∈ C.

In the case L ∈ (0, 1), the mapping T is said to be contractive with constant
L on C.

To investigate the convergence of our algorithms, we recall the following
technical lemmas which will be used in the sequel.

Lemma 2.1. ([13], Lemma 2.1) Let {ak}, {bk} and {ck} be three sequences of
nonnegative real numbers satisfying the inequality

ak+1 ≤ (1 + bk)ak + ck, ∀k ≥ k0,

for some integer k0 ≥ 1, where
∑∞

k=k0
bk < ∞ and

∑∞
k=k0

ck < ∞. Then,
limk→∞ ak exists. In addition, if {ak} has a subsequence which converges to
zero, then limk→∞ ak = 0.

Lemma 2.2. ([10], Lemma 2.39) Let {xk} be a sequence in a real Hilbert
space H and let C be a nonempty subset of H. Suppose that, for every x ∈ C,
{‖xk − x‖} converges and that every weak sequential cluster point of {xk}
belongs to C. Then, {xk} converges weakly to a point in C.

3. Proximal-like subgradient algorithm

In this section, we introduce a new iteration algorithm and present its con-
vergence which is called proximal-like subgradient algorithm.

We assume that the cost operator F is monotone and Lipschitz continuous
with constant L > 0 in Rs. Note that the subdifferential ∂g(x) of g at x ∈ C
is defined by

∂g(x) := {wx ∈ Rs : g(y)− g(x) ≥ 〈wx, y − x〉 ∀y ∈ Rs}.
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Algorithm 3.1. Now we construct an algorithm as follows:

Step 0. Let the initial point x0 ∈ Rs. Parameters L̄, λk and γk satisfy the
following restrictions:

a ∈ (0, 1), L̄ > L, 0 < λk <
1
L̄
,
∞∑
k=0

λk <∞,

0 < γk < 2, 0 < lim inf
k→∞

γk ≤ lim sup
k→∞

γk < 2.
(3.1)

Step 1. (k = 0, 1, ...) Take uk ∈ F (xk). Compute

yk = proxλkg(x
k − λkuk).

If yk = xk then stop. Otherwise, go to Step 2.

Step 2. Choose vk ∈ F (yk) such that ‖uk − vk‖ ≤ L̄‖xk − yk‖.

xk+1 = xk − γkρkdk,

where dk = xk − yk − λk(uk − vk) and ρk = 1
‖dk‖2 〈x

k − yk, dk〉. Set k := k + 1

and return to Step 1.

Remark 3.2. (i) If dk = 0 then

‖xk − yk‖ = λk‖uk − vk‖ ≤ λkL̄‖xk − yk‖.

Using this and λk <
1
L̄

, we have

(1− λkL̄)‖xk − yk‖ ≤ 0⇒ xk = yk.

Thus, we also observe that dk 6= 0 and parameter ρk of Step 2 is defined.

(ii) For each uk ∈ F (xk). Set ūk = PrF (yk)(u
k). By the Lipschitz continuity

of F ,

‖uk − ūk‖ = d[uk, F (yk)] ≤ ρ[F (xk), F (yk)] ≤ L‖xk − yk‖ ≤ L̄‖xk − yk‖.

Thus, after taking uk ∈ F (xk) there exists vk ∈ F (yk) of Step 2 such that
vk := ūk.

Lemma 3.3. From the Algorithm 3.1, we have the following inequality.

ρk ≥
1− λkL̄
1 + λ2

kL̄
2
, ∀k ≥ 0.
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Proof. Since the assumption F is L−Lipschitz continuous, L < L̄ and the
Cauchy-Schwarz inequality, we get

φk :=〈xk − yk, dk〉

=‖xk − yk‖2 − λk〈xk − yk, uk − vk〉

≥‖xk − yk‖2 − λk‖xk − yk‖‖uk − vk‖

≥(1− λkL̄)‖xk − yk‖2. (3.2)

From the monotonicity of F , it follows that

〈vk − uk, yk − xk〉 ≥ 0

and hence

‖dk‖2 =‖xk − yk − λk(uk − vk)‖2

=‖xk − yk‖2 + λ2
k‖uk − vk‖2 − 2λk〈xk − yk, uk − vk〉

≤‖xk − yk‖2 + λ2
k‖uk − vk‖2

≤(1 + λ2
kL̄

2)‖xk − yk‖2.

Combining this and (3.2), we get the claim of Lemma 3.3 that

ρk =
1

‖dk‖2
φk

≥ 1

‖dk‖2
(1− λkL̄)‖xk − yk‖2

≥ 1

‖dk‖2
(1− λkL̄)

‖dk‖2

(1 + λ2
kL̄

2)

=
1− λkL̄
1 + λ2

kL̄
2
.

�

Lemma 3.4. Let (x∗, w∗) be a solution of Problem (1.1). Then,

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − 2ρkγk(2− γk)φk
and there exists the limit lim

k→∞
‖xk − yk‖ = 0.

Proof. Definition of yk yields

yk = proxλkg(x
k − λkuk)

= argmin

{
λk〈uk, y〉+ λkg(y) +

1

2
‖y − xk‖2 : y ∈ C

}
.
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There exists ξk ∈ ∂g(yk) such that

0 ∈ λkuk + λkξ
k + yk − xk +NC(yk),

where NC(yk) = {w ∈ Rs : 〈w, y−yk〉 ≤ 0, ∀y ∈ C} is the outer normal cone
of C at yk ∈ C. Then,

〈λkuk + λkξ
k + yk − xk, y − yk〉 ≥ 0, ∀y ∈ C.

Taking x∗ ∈ C, we get

λk〈ξk, x∗ − yk〉 ≥ 〈λkuk + yk − xk, yk − x∗〉.

From ξk ∈ ∂g(yk), it follows that

λk[g(x∗)− g(yk)] ≥ λk〈ξk, x∗ − yk〉.

Therefore,

λk[g(x∗)− g(yk)] ≥ 〈λkuk + yk − xk, yk − x∗〉. (3.3)

By the monotonicity of F , w∗ ∈ F (x∗) and vk ∈ F (yk), we have

〈λkvk − λkw∗, yk − x∗〉 ≥ 0. (3.4)

Since (x∗, w∗) is a solution of Problem (1.1) and yk ∈ C, we obtain

λk[〈w∗, yk − x∗〉+ g(yk)− g(x∗)] ≥ 0. (3.5)

Adding three inequalities (3.3)-(3.5), we have

〈dk, yk − x∗〉 = 〈xk − yk − λkuk + λkv
k, yk − x∗〉 ≥ 0. (3.6)

This implies that

‖xk+1 − x∗‖2 = ‖xk − x∗ − γkρkdk‖2

= ‖xk − x∗‖2 − 2γkρk〈xk − x∗, dk〉+ γ2
kρ

2
k‖dk‖2

= ‖xk − x∗‖2 − 2γkρk〈xk − yk, dk〉

− 2γkρk〈yk − x∗, dk〉+ γ2
kρ

2
k‖dk‖2

≤ ‖xk − x∗‖2 − 2γkρkφk + γ2
kρ

2
k‖dk‖2

= ‖xk − x∗‖2 − 2γk(2− γk)ρkφk.

So, ‖xk+1 − x∗‖ ≤ ‖xk − x∗‖ for all k ≥ 1 and there exists the limit

lim
k→∞

‖xk − x∗‖ = c <∞.
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Using the conditions λk ∈ (0, 1
L̄

), Lemma 3.3 and γk ∈ (0, 2), we obtain

φk ≤
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

2γk(2− γk)ρk

≤
1 + λ2

kL̄
2

2γk(2− γk)ρk
(‖xk − x∗‖2 − ‖xk+1 − x∗‖2). (3.7)

Combining (3.2) and(3.7), we obtain

‖xk − yk‖2 ≤ φk
1− λkL̄

≤
1 + λ2

kL̄
2

2(1− λkL̄)γk(2− γk)ρk
(‖xk − x∗‖2 − ‖xk+1 − x∗‖)

≤M(‖xk − x∗‖2 − ‖xk+1 − x∗‖2), (3.8)

where M = supk

{
1+λ2kL̄

2

2(1−λkL̄)γk(2−γk)ρk

}
∈ (0,∞). Then, we have

∞∑
k=1

‖xk − yk‖2 ≤M(‖x1 − x∗‖2 − c2) <∞,

and hence limk→∞ ‖xk − yk‖ = 0. This completes the proof. �

Lemma 3.5. If the sequence {xk} is bounded, then every its convergent point
belongs to Ω, where Ω denotes the solution set of Problem (1.1).

Proof. Since {xk} is bounded, there exists a subsequence {xki} of {xk} which
converges to x̄. Let Q : Rs → 2R

s
be defined by

Q(x) =

{
F (x) + ∂g(x) +NC(x), x ∈ C,
∅, x /∈ C.

Next, we show that Q−1(0) ⊆ Ω. Indeed, let x̂ ∈ Q−1(0) ⊆ C, i.e.,

0 ∈ F (x̂) + ∂g(x̂) +NC(x̂)

or equivalently there exist w1 ∈ F (x̂) and w2 ∈ ∂g(x̂) such that

〈w1 + w2, x− x̂〉 ≥ 0, ∀x ∈ C.

Using the definition of w2 ∈ ∂g(x̂) that g(x)− g(x̂) ≥ 〈w2, x− x̂〉, we get

〈w1, x− x̂〉+ g(x)− g(x̂) ≥ 0, ∀x ∈ C.

It means that x̂ ∈ Ω.
On the other hand, it is well known to see that Q is a maximal monotone

operator. Taking an arbitrary point (x,wx) ∈ graph(Q) := {(x, y) ∈ Rs×Rs :
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y ∈ Q(x)}. Then, we get wx−wF−wg ∈ NC(x), where wF ∈ F (x), wg ∈ ∂g(x)
and hence

〈wx − wF − wg, x− yk〉 ≥ 0. (3.9)

By the argument as (3.3) with λk > 0, we also have

g(x)− g(yk) +

〈
uk +

yk − xk

λk
, x− yk

〉
≥ 0. (3.10)

Replacing k in (3.9) and (3.10) by ki, and using the monotonicity of F , we
obtain

〈wx, x− yki〉 ≥ 〈wF + wgi , x− yki〉

≥ 〈wF + wgi , x− yki〉 − g(x) + g(yki)

−
〈
uki +

yki − xki
λki

, x− yki
〉

= 〈wgi , x− yki〉+ 〈wF − uki , x− yki〉 − g(x) + g(yki)

−
〈
yki − xki
λki

, x− yki
〉

≥ 〈wgi , x− yki〉 − g(x) + g(yki)−
〈
yki − xki
λki

, x− yki
〉

≥ −
〈
yki − xki
λki

, x− yki
〉
,

where wgi ∈ ∂g(yki) and the last inequality follows from the definition of wgi .
Let the limit as i→∞, we have

〈wx − 0, x− x̄〉 ≥ 0, ∀x ∈ C.

Since Q is maximal monotone, so x̄ ∈ Q−1(0). The proof is complete. �

Theorem 3.6. Let {xk} and {yk} be the sequences generated by Algorithm
3.1. Let F : Rs → 2R

s
be monotone and Lipschitz continuous, and g : C → R

be convex. Then, the sequences {(xk, uk)} and {(yk, vk)} converge to a solution
(x∗, u∗) of Problem (1.1). Moreover,

x∗ = lim
k→∞

PrΩ(xk).

Proof. Since Lemmas 2.2 and 3.5, we can suppose that {xk} converges to
x̄ ∈ Ω. Set

x̄k = PrΩ(xk).

Then it follows from (3.8) that

‖xk+1 − x̂‖ ≤ ‖xk − x̂‖, ∀x̂ ∈ Ω.
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Thus, {xk} is Fejér monotone with respect to Ω and hence the sequence {x̄k}
converges to some x∗ ∈ Ω. Note that Ω is convex when F is monotone.
Otherwise, using the definition of PrΩ and x̄ ∈ Ω, we have

〈x̄− x̄k, x̄k − xk〉 ≥ 0.

Letting the limit as k →∞, we get

〈x̄− x∗, x∗ − x̄〉 ≥ 0

and x̄ = x∗. By Lemma 3.4, we have ‖xk−yk‖ → 0 and yk ⇀ x∗. In Algorithm
3.1, ‖uk − vk‖ ≤ L̄‖xk − yk‖ → 0. Using the Lipschitz continuity of F , we get
that uk and vk converge to some point u∗ ∈ F (x∗). �

4. Rate of convergence

Now we consider the ergodic rate of convergence for the sequence {yk} for
Algorithm 3.1 via using the gap functions of Problem (1.1). There exist various
gap functions for variational inequalities that have been proposed and their
properties have been studied [10, 17]. Among them, the gap function

h(x) := max{〈F (x), x− y〉+ g(x)− g(y) : y ∈ dom(g)}

first introduced by Auslender [9], has the property that its minimum on C
coincides with a solution of Problem V I(C,F, g), and hence the problem can
be reformulated as the optimization problem

min{h(x) : x ∈ C}.

Based on this idea, Marcotte [27] proposed a descent algorithm for monotone
variational inequalities, Taji and Fukushima [32] have proposed a new regu-
larized gap function and a descent method for solving Problem V I(C,F, g)
using the regularized gap function.

In the sequel, we suppose that C ⊆ dom(g). Using the following error gap
function which also is said to be the dual gap function for Problem (1.1):

h(x,wx) = max {Φ(x, y) := 〈wx, y − x〉+ g(y)− g(x) : x ∈ C} ,

where wx ∈ F (x) and x ∈ C. It is clear that for each x ∈ C, Φ(x, x) = 0, so
h(x,wx) ≥ 0 for all wx ∈ F (x).

Lemma 4.1. ([18]) Point x∗ ∈ C is a solution of Problem (1.1) if and only if
x∗ ∈ dom(g) and h(x∗, wx∗) = 0.

To show the rate of convergence of {yk}, we recall the following classical
lemma for its proofs we refer to [10].
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Lemma 4.2. Let g : Rs → (−∞,+∞] be a convex function, x ∈ Rs. Then,
z = proxg(x) if and only if

〈z − x, y − z〉 ≥ g(z)− g(y), ∀y ∈ Rs.

Theorem 4.3. Let {yk} be the sequence generated by Algorithm 3.1. For any
N ≥ 1, define σN and ȳN as

σN =
N∑
k=1

λk, ȳN =
1

σN

N∑
k=1

λky
k.

Then,

Φ(x, ȳN ) ≤ K
√
M‖x1 − x∗‖
λ
√
N

,

where K := supk

{√
1 + λ2

kL̄
2‖yk − x‖

}
and M = supk

{
1+λ2kL̄

2

(1−λkL̄)2γk(2−γk)ρk

}
∈

(0,∞).

Proof. Applying Lemma 4.2 for yk = proxλkg(x
k − λkwk),

〈yk − xk + λku
k, x− yk〉 ≥ λkg(yk)− λkg(x), ∀x ∈ Rs.

Hence we have

〈yk − xk, x− yk〉 ≥ λk[〈uk, yk − x〉+ g(yk)− g(x)], ∀x ∈ Rs. (4.1)

Using (4.1), the convexity of g and the monotonicity of F , we have

Φ(x, ȳN ) =
〈
wx, ȳ

N − x
〉

+ g
(
ȳN
)
− g(x)

=
1

σN

N∑
k=1

λk〈wx, yk − x〉+ g

(
N∑
k=1

λk
σN

yk

)
− g(x)

≤ 1

σN

N∑
k=1

λk〈wx, yk − x〉+
1

σN

N∑
k=1

λkg(yk)− g(x)

=
1

σN

N∑
k=1

λk[〈wx, yk − x〉+ g(yk)− g(x)]

=
1

σN

N∑
k=1

λk〈wx − vk, yk − x〉+
1

σN

N∑
k=1

λk〈vk − uk, yk − x〉

+
1

σN

N∑
k=1

λk[〈uk, yk − x〉+ g(yk)− g(x)]
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≤ 1

σN

N∑
k=1

λk〈wx − vk, yk − x〉+
1

σN

N∑
k=1

λk〈vk − uk, yk − x〉

+
1

σN

N∑
k=1

〈yk − xk, x− yk〉

≤ 1

σN

N∑
k=1

λk〈vk − uk, yk − x〉+
1

σN

N∑
k=1

〈yk − xk, x− yk〉

=
1

σN

N∑
k=1

〈−λk(uk − vk) + xk − yk, yk − x〉

=
1

σN

N∑
k=1

〈dk, yk − x〉

≤ 1

σN

N∑
k=1

‖dk‖‖yk − x‖

≤ K

σN

N∑
k=1

‖xk − yk‖

≤ K

σN

√√√√N
N∑
k=1

‖xk − yk‖2

≤ K

σN

√
NM‖x1 − x∗‖

≤K
√
M‖x1 − x∗‖
λ
√
N

,

whereK := supk

{√
1 + λ2

kL̄
2‖yk − x‖

}
andM = supk

{
1+λ2kL̄

2

(1−λkL̄)2γk(2−γk)ρk

}
∈

(0,∞). �
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