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Abstract. In this article, HIV protease inhibitor model with three intracellular delays is

considered and the stability analysis for the case of τ̄ = 0 where, τ̄ = τ + τ2 and τ1 6= 0

for the same model is examined. τ1, the delay corresponding to the loss of target cells is

viewed as a bifurcation parameter, a limit cycle bifurcation about the infected steady state

is scrutinized. Further, a mathematical model of HIV protease inhibitor model using control

terms is presented and analysed mathematically.

1. Introduction

One of the primary reasons for studying infectious diseases is to improve
control and ultimately to eradicate the infection from the population. Models
can be a powerful tool in this approach, allowing us to optimize the use of
limited resources or simply to target control measures more efficiently. In spite
of the improvement in sanitation, developments of antibiotics and vaccines,
infectious diseases still contribute significantly to deaths worldwide. While
the earlier recognized diseases like cholera or the plague still sometimes create
problems in underdeveloped countries erupting occasionally in epidemics, in
the developed countries hazardous diseases are emerging like AIDS (1981),
hepatitis C or E (1989-1990).
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Although the correlates of immune protection in HIV infection remain
largely unknown, our knowledge of viral replication dynamics and virus-specific
immune responses has grown. Concurrent with these advances, there has been
an abundance of mathematical models that attempt to describe these phe-
nomena. Consequently, many mathematical models have been developed to
describe the relationships between the Human Immunodeficiency Virus (HIV),
etiological agent for AIDS, and CD4+T cells which are the target for the virus
[1, 2, 12, 21, 22]. These models are utilized to explore optimal chemotherapy
treatment to avoid an excessive use of drugs [13, 14, 15, 17, 26].

Delay differential equations (DDEs), are the subject of active research for
more than 60 years and has been studied by many different mathematicians.
Delay differential equations are equations which have a delayed argument [16,
27]. These equations constitute a large and important class of dynamical
systems. Time delays are natural components of the dynamic processes of
biology, ecology, physiology, economics, epidemiology and mechanics and so a
realistic model of these processes must include time delays. Delay differential
equations arise in situations where some hereditary function appears in the
ordinary differential equation. Detailed studies of the real world compel us to
take account of the fact that the rate of change of physical systems depends
not only on their present state, but also on their past history [3].

In many real world phenomena, the initial conditions or boundary condi-
tions are not enough to predict the future behaviour of the function. Hence
to deal with such complexities, it is necessary to have some knowledge of the
earlier behaviour of the function.

In the mathematical theory of bifurcations, a Hopf bifurcation is a critical
point where a system’s stability switches and a periodic solution arises [10,
18, 25]. More accurately, it is a local bifurcation in which a fixed point of a
dynamical system loses stability, as a pair of complex conjugate eigenvalues - of
the linearisation around the fixed point - crosses the complex plane imaginary
axis. Under reasonably generic assumptions about the dynamical system, a
small-amplitude limit cycle branches from the fixed point.

A Hopf bifurcation is also known as a PoincarAndronovHopf bifurcation,
named after Henri Poincar, Aleksandr Andronov and Eberhard Hopf. Optimal
control theory is another area of mathematics that is used extensively in con-
trolling the spread of infectious diseases. Optimal control has a long history
of being applied to problems in biomedicine, particularly, to models for cancer
chemotherapy. It is a powerful mathematical tool that can be used to make
decisions involving complex biological situation [19]. It is often used in the
control of the spread of most diseases for which either vaccine or treatment is
available.
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For example, [8] applied optimal control theory to a set of epidemiological
models in their attempt to find the most effective control strategy to minimize
the number of individuals who become infected in the course of an epidemic
using both treatment and vaccination as control measures. Also, the work by
[15] used optimal control theory to determine the optimal treatment strategy
for the administration of antiretroviral drug (Reverse Transcriptase Inhibitors)
in HIV positive individuals. In [6], also used optimal control theory to deter-
mine the condition for the elimination of tumor cells in an individuals under
treatment for Cancer.

2. Basic HIV model

The simplest mathematical model to study virus dynamics [23] describes
the changes in the density of susceptible target cells (T ), infected cells (T ∗)
and free viruses (V ) with differential equations. Target cells constantly enter
the system at rate s. These cells die at a natural death rate dT and become
infected at rate k. Upon infection, cells move into the T ∗ class and have a
potentially increased death rate δ. Infected cells produce viruses at rate N .
Viruses are removed from the system at rate c. Flow diagrams are a useful
tool to illustrate these dynamics. By either solving the system of equations
analytically when possible or using numerical methods, we can predict the
behavior of densities of viruses and target cells. Stafford et al. [24] used this
model to estimate the model parameters by fitting the model to viral load
data of 10 HIV patients. The basic HIV model is as follows:

dT

dt
= s− dTT − kTV,

dT ∗

dt
= kTV − δT ∗, (2.1)

dV

dt
= NδT ∗ − cV.

2.1. The model with protease inhibitors. In [23], the authors constructed
the HIV - 1 model with protease inhibitor therapy together with three intra-
celluar delay. An analysis about the model is done in the same article. The
protease inhibitor model is as follows:

Ṫ (t) = s− dTT (t)− kT (t)VI(t),

Ṫ ∗(t) = kT (t)VI(t)− δT ∗(t), (2.2)

V̇I(t) = Nδ(1− εp)T ∗(t)− cVI(t),
˙VNI(t) = NδεpT

∗(t)− cVNI(t),
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where εp is the efficacy of the protease inhibitor scaled such that εp = 1
corresponds to a completely effective drug that results only in the production
of non-infectious virions VNI . The parameters used here are described in Table
1.

Table 1:
In Vitro Model Parameters

Notation Description
s Rate at which new target cells are generated
dT Specific death rate of target cells
k Constant rate that characterizing target cell infection.
δ Over all death rate of target cells
N New virus particles
c Clearance rate of virion

The model (2.2), is oblivious of intracellular delay and without any proof it
comes to an assumption that the infected cells becomes productive promptly.
To conquer this limitations we considered the protease inhibitor model with
delay. Thus arrives a sub - section here.

2.2. Protease inhibitor model with intracellular delays. In article [23],
a model of HIV-1 infection with a protease inhibitor therapy and three delays
was constructed. This model involves the concentrations of uninfected target
cells, T , infected cells that are producing virus, T ∗, and virus, V . After
protease inhibitors are given, virus is classified as either infectious, VI , i.e.,
not influenced by the protease inhibitor, or as non-infectious, VNI , due to
the action of the protease inhibitor which prevents virion maturation into
infectious particles. The model is

Ṫ (t) = s− dTT (t)− kT (t)VI(t),

Ṫ ∗(t) = kT (t)VI(t)− δT ∗(t), (2.3)

V̇I(t) = Nδ(1− εp)T ∗(t)− cVI(t),
V̇NI(t) = NδεpT

∗(t)− cVNI(t),

where εp is the efficacy of the protease inhibitor scaled such that εp = 1
corresponds to a completely effective drug that results only in the production
of non-infectious virions VNI . The parameters used here are described same
as the above Table 1.
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Next, we consider the delay model

Ṫ (t) = s− dTT (t)− ke−mτ1T (t− τ1)VI(t− τ1),

Ṫ ∗(t) = ke−mτT (t− τ)VI(t− τ)− δT ∗(t), (2.4)

V̇I(t) = Nδ(1− εp)e−ντ2T ∗(t− τ2)− cVI(t),
˙VNI(t) = Nδεpe

−ντ2T ∗(t− τ2)− cVNI(t),

where τ is the total intracellular delay, τ1 is the delay corresponding to the loss
of target cells by infection, considered in [5], and τ2 is the delay representing
the time necessary for a newly infected virus to become mature and then
infectious.

The steady states of the system (2.4) has been computed in [23]. The system
(2.4) has two steady states the infection free steady state

Sv = (T̂ , T̂ ∗, V̂I , V̂NI) = (s/dT , 0, 0, 0)

and the infected steady state

Si = (T̄ , T̄ ∗, V̄I , V̄NI),

=

(
s

dTRp
,
dT ce

mτ1evτ2

(1− εp)skN
(Rp − 1),

dT
k
emτ1(Rp − 1),

dT εpe
mτ1

(1− εp)k
(Rp − 1)

)
.

Also, the local stability analysis of the system (2.4) about the steady states
are examined in [23]. Also, the sensitivity analysis of the system and further
extension of the model by considering the nature factor humoral immunity
was studied in [4].

3. Estimation of model parameters using discretization

In this section, our aim is to estimate all parameters of HIV-1 infection
protease inhibitor model (2.3). Clinically all the variables in model (2.3), can
be measured. Since the cost of quantifying the infected cells is much higher,
we are going to omit variable T ∗, initially. For this, let x1 = T , x2 = VI and
x3 = VNI . After some calculations, model (2.3) can be changed to:

ẋ1 = α1 + α2x1 + α3x1x2, (3.1)

ẍ2 = α4ẋ2 + α5x2 + α6x1x2, (3.2)

ẍ3 = α4ẋ2 + α5x3 + α7x1x2 (3.3)
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where,

α =



α1

α2

α3

α4

α5

α6

α7


=



s
−dT
−k
−c− δ
cδ

Nδk(1− εp)
Nδkεp


.

The vector α defines a one-to-one map for k 6= 0, δ 6= c and εp 6= 1. Therefore
the identification of the original parameters of model (2.3) is equivalent to the
identification of α. In this model, it is known that k 6= 0 and δ < c [28], also
εp 6= 1 is assumed [23]. In this case we can define the inverse map as follows:



s

dT

k

c

δ

N

εp



=



α1

−α2

−α3

−α4 +
√
α2

4 − 4α5

2

−α4 −
√
α2

4 − 4α5

2

2(α6 + α7)

α3(α4 +
√
α2

4 − 4α5)

α7

α6 + α7



.

Since there are three unknown parameters in each of equation (3.1) and (3.2),
it is necessary to generate at least two other equations based on each of them.
This will be achieved by differentiating (3.1) and (3.2) more times, and pro-
duce upper derivatives of x1 and x2. So one can conclude that at least four
measurements of x1, target cell count and five measurements of x2, viral load,
are needed for a complete determination of the model (2.3) parameter.

We have calculated that

α1 + α2x
i
1 + α3x

i
1x
i
2 =

xi+1
1 − xi1
di+1

, i = 0, 1, 2, (3.4)
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xi+1
2 −xi2
di+2

α4+α5x2+α6x1x2 =
1

di+1

(
xi+2

2 −xi+1
2

di+2
−x

i+1
2 −xi2
di+1

)
, i = 0, 1, 2,(3.5)

and

xi+1
2 −xi2
di+2

α4+α5x3+α7x1x2 =
1

di+1

(
xi+2

3 −xi+1
3

di+2
−x

i+1
3 −xi3
di+1

)
, i = 0, 1, 2.(3.6)

We can also write the above equations in matrix forms as follows:


1 x0

1 x0
1x

0
2

1 x1
1 x1

1x
1
2

1 x2
1 x2

1x
2
2



α1

α2

α3

 =



x1 − x0

d1

x2 − x1

d2

x3 − x2

d3


. (3.7)

Similarly, equations (3.5) and (3.6) can be written in matrix form. Thus,
the variables αi, i = 1, 2, · · · , 7 and then from (2.3), all the basic parameters
can be estimated.

4. Bifurcation analysis

In dynamical systems, a bifurcation occurs when a small smooth change,
made to the parameter values (the bifurcation parameters) of a system causes a
sudden “qualitative” or topological change in its behavior. Before moving into
the concept of observing, the conditions for Hopf-bifurcation [11] are satisfied

by yielding the required periodic solutions that is
(
dRe(P)
dτ1

)∣∣∣
τ1=τ∗1

> 0, we go

in depth about the basic concepts of the infected steady state analysis of the
model (2.4). In [23], the local stability of the model [23] is studied when τ̄ 6= 0
(where τ̄ = τ + τ2) and τ1 = 0. Theorem with the case, τ̄ vanishes and τ1 > 0
is left unstudied in [23].

Definition 4.1. System (2.3) is said to satisfy the Poincare-Bendixson prop-
erty if any nonempty compact Γ limit set of (2.3) that contains no equilibria
is a closed orbit.

Definition 4.2. The autonomous system (2.3) is said to be competitive in Γ, if
for some diagonal matrix M = diag(δ1, δ2, · · · , δn) where each j = (1, 2, ..., n)

is either 1 or −1, M ∂f
∂XM has non positive off diagonal elements for all X ∈ Γ.
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Theorem 4.3. System (2.3) is a competitive system.

Proof. By looking at the Jacobian of the matrix of the system (2.3) and choos-
ing the matrix M as

M =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .
We see that system (2.3), is competitive in Γ, with respect to the partial order
defined by the orthant K = {(T, T ∗, VI , VNI) ∈ R4 : T ≥ 0, T ∗ ≥ 0, VI ≥
0 & VNI ≥ 0}. By simple calculation, we obtain that

M =


−dT − kVI 0 −kT 0

kVI −δ kT 0
0 Nδ(1− εp) −c 0
0 Nδεp 0 −c

 .
The system (2.4) satisfies the Poincare - Bendixson Property, since Γ is convex
and system (2.4) is competitive in Γ. �

Now, considering that we have proved the following theorem.

Theorem 4.4.

(i) If τ̄ vanishes and τ1 > 0, then the system (2.4) is locally asymptotically
stable at the infected steady state Si when τ1 < τ∗1 .

(ii) Suppose Rp > 1, the following result can be obtained. The infected
steady state Si is stable when τ1 ∈ [0, τ∗1 ) and unstable when τ1 > τ∗1 .
τ1 is the Hopf Bifurcation value, which means that periodic solutions
will bifurcate from this infected steady state as τ1 passes through the
critical value τ∗1

Proof. Linearising the system of equation (2.4), about the infected steady
state Si and determining the characteristic equation by solving the following
determinant,∣∣∣∣∣∣∣∣∣∣∣∣

−dT − dT eλτ1(Rp − 1)− λ 0 −ske
mτ1e−λτ1

dTRp
0

dT e
−mτe−mτ1e−λτ (Rp − 1) −δ − λ ce−λτeντ2

N(1− εp)
0

0 Nδ(1− εp)e−ντ2e−λτ2 −c− λ 0
0 Nδεpe

−ντ2e−λτ2 0 −c− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.
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Thus the characteristic equation for the infected stead state is

(λ+ c)(λ+ dT )
(

(λ+ δ)(λ+ c)δce−λτ̄
)

−dT (Rp − 1)(λ+ c)(λ+ δ)(λ+ c)e−λτ1 = 0, (4.1)

where τ̄ = τ + τ2. For τ1 > 0 and τ̄ = 0 in the (4.1), we get the following
equation

(λ4 + k1λ
3 + k2λ

2 + k3λ+ k4)− (m1λ
3 +m2λ

2 +m3λ+m4)e−λτ1 = 0, (4.2)

where,

k1 = 2c+ dT + δ,

k2 = c2 + 2cdT + 2cδ + dT δ,

k3 = c2dT + c2δ + 2cδdT ,

k4 = dT δc
2,

m1 =
dT (Rp − 1)

δc
,

m2 =
dT (Rp − 1)

δc
(2c+ δ),

m3 =
dT (Rp − 1)

δc
(c2 + 2cδ),

m4 = dT c(Rp − 1)δc.

Suppose if equation (4.2), has imaginary roots, say λ = iω∗ (ω∗ > 0) is a root
of (4.2), then we have

((iω∗)4 + k1(iω∗)3 + k2(iω∗)2 + k3(iω∗) + k4)

−(m1(iω∗)3 +m2(iω∗)2 +m3(iω∗) +m4)e−iω
∗τ1 = 0. (4.3)

Separating the real and imaginary parts of equation (4.3), we have

ω∗4−k2ω
∗2+k4 = (m1ω

∗3−m3ω
∗) sin(ω∗τ1)− (m2ω

∗2−m4) cos(ω∗τ1) (4.4)

and

k3ω
∗ − k1ω

∗3 = (m1ω
∗3 −m3ω

∗) cos(ω∗τ1) + (m2ω
∗2 −m4) sin(ω∗τ1). (4.5)

Squaring and adding equations (4.4) and (4.5), We obtain the following equa-
tion

ω∗8 + (k2
1m

2
1 − 2k2)ω∗6 + (k2

2 −m2
2 + 2k4 + 2m1m3 − 2k1k3)ω∗4

+(2m1m4 −m2
3 + 2k2k4)ω∗2 + k2

4 +m2
4 = 0. (4.6)

Substituting ω∗2 = h, in (4.6), we procure the following equation

F (h) = h4 +B1h
3 +B2h

2 +B3h+B4 = 0, (4.7)
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where,

B1 = k2
1 −m2

1 − 2k2,

B2 = k2
2 −A2

2 + 2k4 + 2m1m2 − 2k1k3,

B3 = 2m1m4 −m2
3,

B4 = k2
4 −m2

4.

Derivative of equation (4.7) with respect to h, is given below

Ḟ (h) = 4h3 + 3B1h
2 + 2B2h+B3 = 0. (4.8)

Since Rp > 1, (if Rp < 1, then the infected steady state is negative, which
makes no sense and for Rp = 1, the infected steady state is same as the viral
free steady state), the co- efficients of the above equation (4.8) are all positive

and Ḟ (h) > 0.
Now, we assume that B4 < 0, by using Descartes rule of signs, equation

(4.7) has positive root h and from this we come to know that equation (4.6)
has a couple of purely imaginary roots iω∗. From equations (4.4) and (4.5),
we examine

τ∗1 =
1

ω∗
arccos

(
(ω∗4 − k2ω

∗2 + k4)(m4 −m2ω
∗2)

(m1ω∗3 −m3ω∗)2 + (m4 −m2ω∗2)2

+
(k3ω

∗ − k1ω
∗3)(m1ω

∗3 −m3ω
∗)

(m1ω∗3 −m3ω∗)2 + (m4 −m2ω∗2)2

)
+

2jπ

ω∗
,

where j = 0, 1, 2, · · · . From the above examination, we conclude that all the
roots of characteristic equation have negative real parts for any τ1 ∈ [0, τ∗1 ).

Here, we verify the sign

(
dRe(λ)

dτ1

)∣∣∣∣
τ1=τ∗1

, where sign is the signum function

and Re(λ) is the real part of P . Further, using a quantity of mathematical
calculations, we are about to say that the infected steady state of model (2.4),
is stable for τ1 < τ∗1 and Hopf bifurcation occurs when τ1 = τ∗1 .

Here the τ1 is the key parameter in the model that plays an effective role to
define HIV-1 dynamics behaviour, so we consider τ1 as a bifurcation parameter,
to find conditions for preservation of instability or stability of the system.
When τ, τ1 and τ2 are zero, the system (2.4) as follow,

Ṫ (t) = s− dTT (t)− kT (t)VI(t),

Ṫ ∗(t) = kT (t)VI(t)− δT ∗(t), (4.9)

V̇I(t) = Nδ(1− εp)T ∗(t)− cVI(t),
˙VNI(t) = NδεpT

∗(t)− cVNI(t).
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Let us define Γ = {(T, T ∗, VIVNI) ∈ R4 : 0 < T (t) ≤ A1, 0 < T ∗(t) ≤
A1, 0 < VI(t) ≤ A2, 0 < VNI ≤ A3}. Obviously Γ is convex. From Definition
(4.2) and Theorem 4.3, we examined that there are no trivial periodic orbits
observed for the system (2.4). Here, we will show that a positive delay τ1 is
able to destabilize the infected steady state of the model (2.4) and for τ1 > 0,
we discuss the existence of bifurcating periodic solutions. We observe that the
conditions for Hopf Bifurcation [11] are satisfied yielding the required periodic

solutions that is

(
dRe(λ)

dτ1

)∣∣∣∣
τ1=τ∗1

> 0.

For the purely imaginary roots of λ = iω∗0 in the characteristic equation of
the infected steady state (4.2), for τ̄ = 0 and τ1 > 0, we have

|P (iω∗0)| = |Q(iω∗0)|,

where, P (λ) = λ4+k1λ
3+k2λ

2+k3λ+k4 and Q(λ) = m1λ
3+m2λ

2+m3λ+m4.
Differentiating (4.2) with respect to τ1, we have the following,

{(4λ3 + 3k1λ
2 + 2k2λ+ k3)− e−λτ1(3m1λ

2 + 2m2λ+m3)

+ τ1e
−λτ1(m1λ

3 +m2λ
2 +m3λ+m4)} dλ

dτ1

= λe−λτ1(m1λ
3 +m2λ

2 +m3λ+m4),

which implies that

(
dλ

dτ1

)−1

=
(4λ3 + 3k1λ

2 + 2k2λ+ k3)− e−λτ1(3m1λ
2 + 2m2λ+m3)

λe−λτ1(m1λ3 +m2λ2 +m3λ+m4)

+
τ1e
−λτ1(m1λ

3 +m2λ
2 +m3λ+m4)

λe−λτ1(m1λ3 +m2λ2 +m3λ+m4)

=
(4λ3 + 3k1λ

2 + 2k2λ+ k3)

λe−λτ1(m1λ3 +m2λ2 +m3λ+m4)

− (3m1λ
2 + 2m2λ+m3)

λ(m1λ3 +m2λ2 +m3λ+m4)
+
τ1

λ

=
(4λ3 + 3k1λ

2 + 2k2λ+ k3)

λ(λ4 + k1λ3 + k2λ2 + k3λ+ k4)

− (3m1λ
2 + 2m2λ+m3)

λ(m1λ3 +m2λ2 +m3λ+m4)
+
τ1

λ

=
(3λ4 + 2k1λ

3 + k2λ
2 − k4)

λ2(λ4 + k1λ3 + k2λ2 + k3λ+ k4)

− (2m1λ
3 +m2λ

2 −m4)

λ2(m1λ3 +m2λ2 +m3λ+m4)
+
τ1

λ
.
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Thus we have

Ω = sign

{
Re

(
(3λ4 + 2k1λ

3 + k2λ
2 − k4)

λ2(λ4 + k1λ3 + k2λ2 + k3λ+ k4)

− (2m1λ
3 +m2λ

2 −m4)

λ2(m1λ3 +m2λ2 +m3λ+m4)
+
τ1

λ

)}
λ=iω∗

0

= sign

{
Re

(
(3(iω0)∗4 + 2k1(iω0)∗3 + k2(iω0)∗2 − k4)

(iω0)∗2((iω0)∗4 + k1(iω0)∗3 + k2(iω0)∗2 + k3iω∗0 + k4)

− (2m1(iω0)∗3 +m2(iω0)∗2 −m4)

(iω0)∗2(m1(iω0)∗3 +m2(iω0)∗2 +m3iω∗0 +m4)
+

τ1

iω∗0

)}
= sign

{
Re

(
(3ω∗40 − k2ω

∗2
0 − k4)− i2k1ω

∗3
0

ω∗20 ((ω∗40 + k2ω∗20 − k4) + i(k1ω∗30 − k3ω∗0))

− (m2ω
∗2
0 +m4)− i2m1ω

∗3
0

ω∗20 ((m4 −m2ω∗2) + i(m3ω∗0 −m1ω∗30 ))
+

τ1

iω∗0

)}
=

1

ω∗20

sign

{
(k4 + k2ω

∗2
0 + 3ω∗40 )(ω∗40 + k2ω

∗2
0 − k4) + 2k1ω

∗3
0 (k1ω

∗3
0 − k3ω

∗
0)

(ω∗40 + k2ω∗20 − k4)2 + (k1ω∗30 − k3ω∗0)2

+
(m2ω

∗2
0 +m4)(m2ω

∗2
0 −m4) + 2m1ω

∗3
0 (m3ω∗0 −m1ω

∗3
0 )

(m4 −m2ω∗20 )2 + (m3ω∗0 −m1ω∗30 )2

}
=

1

ω∗20

sign

{
(k4 + k2ω

∗2
0 + 3ω∗40 )(ω∗40 + k2ω

∗2
0 − k4) + 2k1ω

∗3
0 (k1ω

∗3
0 − k3ω

∗
0)

(m4 −m2ω∗20 )2 + (m3ω∗0 −m1ω∗30 )2

+
(m2ω

∗2
0 +m4)(m2ω

∗2
0 −m4) + 2m1ω

∗3
0 (m3ω∗0 −m1ω

∗3
0 )

(m4 −m2ω∗20 )2 + (m3ω∗0 −m1ω∗30 )2

}
=

1

ω∗20

sign

{
3ω∗80 + (2m2

1 − 2k2
1)ω∗60 + (m2

2 + 2k1k3 − k2
1 − k4 − 2m1m3)ω∗40

(m4 −m2ω∗20 )2 + (m3ω∗0 −m1ω∗30 )2

+
(m1m2 +m2m4 − k2k4)ω∗20 + k2

4 +m2
4

(m4 −m2ω∗20 )2 + (m3ω∗0 −m1ω∗30 )2

}
and this determines a set of possible eigenvalues of ω∗0. We focused to de-
termine the direction of motion of λ as τ1 is varied, that is, we examined
that

Ω = sign

{(
dRe(λ)

dτ1

)}
τ1=iω∗

0

= sign

{
Re

(
d(λ)

dτ1

)−1
}
τ1=iω∗

0

.

As 2m2
1−2k2

1, m2
2 +2k1k3−k2

1−k4−2m1m3, m1m2 +m2m4−k2k4 and k2
4 +m2

4

are positive by virtue of equation (4.6), we have

(
dRe(λ)

dτ1

)∣∣∣∣
ω∗=ω∗

0 ,τ1=τ∗1

>

0. Thus, the solution curve of the characteristic equation (4.6) crosses the
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imaginary axis. This shows that a Hopf Bifurcation occurs at 0 < τ1 = τ∗1 .
By continuity the infected steady state is locally asymptotically stable when
τ1 < τ∗1 . �

5. Optimal control of HIV protease inhibitor model

We consider the mathematical model for HIV-1 infection with protease in-
hibitors and intracellular delay. The dynamics of this model are governed by
the equations in the system (2.4).

We introduce the controls u1 and u2 which measure the efficiency of infected
target cells and protease inhibitors. Hence, (2.4) becomes,

Ṫ (t) = s− dTT (t)− (1− u1(t))ke−mτ1T (t− τ1)VI(t− τ1),

Ṫ ∗(t) = (1− u1(t))ke−mτT (t− τ)VI(t− τ)− δT ∗(t), (5.1)

V̇I(t) = (1− u2(t))Nδ(1− εp)e−ντ2T ∗(t− τ2)− cVI(t),
V̇NI(t) = (1− u2(t))Nδεpe

−ντ2T ∗(t− τ2)− cVNI(t).
The control functions, u1(t) and u2(t) are bounded, Lebesgue integrable func-
tions. The control u2(t) represents the efficiency of drug therapy in inhibit-
ing viral production, such that the virion production rate under therapy are
(1 − u2(t))Nδ(1 − εp) and (1 − u2(t))Nδεp for infectious and non-infectious
virus particles respectively.

If u2 = 1, the inhibition is 100% effective, whereas if u2 = 0, there is no
inhibition.

The control u1(t) represents the efficiency of drug therapy in blocking new
infection, so that infection rate in the presence of drug is (1− u1(t))k.

Let C = C([−τmax, 0],R4) be the Banach space of continuous functions,
from interval [−τmax, 0] into R4 with the topology of uniform convergence,
where τmax = max{τ, τ1, τ2}. It is easy to show that there exists a unique so-
lution (T (t), T ∗(t), VI(t), VNI(t)) of system (5.1) with initial data (T 0, T ∗0, VI

0,
VNI

0) ∈ C.

In addition, for biological reasons, we assume that the initial data for system
(5.1) satisfy

T 0(s) ≥ 0, T ∗0(s) ≥ 0, VI
0(s) ≥ 0, VNI

0(s) ≥ 0, s ∈ [−τmax, 0]. (5.2)

5.1. The optimal control problems. The problem is to maximize the ob-
jective functional

J(u1, u2) =

∫ tf

t0

{
T (t) + VI(t)−

[L1

2
u2

1(t) +
L2

2
u2

2(t)
]}

, (5.3)

where the parameters L1 ≥ 0 and L2 ≥ 0 are based on the benefits and costs
of the treatment. Our target is to maximize the objective functional defined
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in (5.3) by increasing the number of the uninfected cells, maximizing the effi-
cacy of the protease inhibitors which prevents the virus becomes productively
infectious, decreasing the viral load, and minimizing the cost of treatment. In
other words, we are seeking optimal control pair (u∗1, u

∗
2) such that

J(u∗1, u
∗
2) = max{J(u1, u2) : (u1, u2) ∈ U}, (5.4)

where U is the control set defined by

U = {u = (u1, u2) : ui measurable, 0 ≤ ui(t) ≤ 1, t ∈ [0, tf ], i = 1, 2} . (5.5)

5.1.1. Existence of optimal control pair. The existence of the optimal
control pair can be obtained using a result by Fleming and Rishel [7] and
Lukes [20].

Theorem 5.1. There exists an optimal control pair (u∗1, u
∗
2) ∈ U such that

J(u∗1, u
∗
2) = max

(u1,u2)∈U
J(u1, u2). (5.6)

Proof. To use an existence result in [14], we must check the following proper-
ties.

(1) The set of controls and corresponding state variables is nonempty.
(2) The control set U is convex and closed.
(3) The right-hand side of the state system is bounded by a linear function

in the state and control variables.
(4) The integrand of the objective functional is concave on U.
(5) There exists constants c1, c2 > 0, and β > 1 such that the integrand

L(T, VI , u1, u2) of the objective functional satisfies

L(T, VI , u1, u2) ≤ c2 − c1

(
|u1|2 + |u2|2

)β/2
. (5.7)

In order to verify these conditions, we use a result by Lukes [20] to give the
existence of solutions of system (5.3) with bounded coefficients, which gives
condition (1). We note that the solutions are bounded. Our control set satisfies
condition (2). Since our state system is bilinear in u1, u2, the right hand side
of system satisfies condition (3), using the boundedness of the solutions. Note
that the integrand of our objective functional is concave.

Also we have the last condition needed

L(T, VI , u1, u2) ≤ c2 − c1

(
|u1|2 + |u2|2

)
, (5.8)

where c2 depends on the upper bound on T and VI , and c1 > 0. Since
M1,M2 > 0, we conclude that there exists an optimal control pair. �
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5.2. Optimality system. Pontryagins minimum principle with delay given
in [9] provides necessary conditions for an optimal control problem. This prin-
ciple converts (2.4), (5.3) and (5.4) into a problem of maximizing an Hamil-
tonian H with

H(t, T, T ∗, VI , VNI , Tτ , VI(τ), Tτ1 , VI(τ1), T
∗
τ2 , u1, u2, λ)

=
L1

2
u2

1 +
L2

2
u2

2 − T − VI

+λ1[s− dTT − (1− u1)ke−mτ1Tτ1VI(τ1)]

+λ2[(1− u1)ke−mτTτVI(τ) − δT ∗]
+λ3[(1− u2)Nδe−ντ2(1− εp)T ∗τ2 − cVI ]
+λ4[(1− u2)Nδe−ντ2εpT

∗
τ2 − cVNI ].

By applying Pontryagins minimum principle with delay in state [9], we
obtain the following theorem.

Theorem 5.2. Given optimal controls u∗1, u
∗
2 and solutions T̄ , T̄ ∗, V̄I and V̄NI

of the corresponding state system (5.1), there exists adjoint variables, λ1, λ2, λ3

and λ4 satisfying the equations

λ′1(t) = 1 + λ1(t)dT + ke−mτ1χ[0,tf−τ1](t)λ1(t+ τ1)(u1(t+ τ1)− 1)V̄I(t)

−ke−mτχ[0,tf−τ ](t)λ2(t+ τ)(u1(t+ τ)− 1)V̄I(t),

λ′2(t) = −χ[0,tf−τ2](t)[λ3Nδ(1− εp)e−ντ2(u2(t+ τ2)− 1)

+λ4(t)Nδεpe
−ντ2(u2(t+ τ2)− 1)],

λ′3(t) = 1 + ke−mτ1χ[0,tf−τ1](t)λ1(t+ τ1)(u1(t+ τ1)− 1)T̄ (t)

−ke−mτχ[0,tf−τ ](t)λ2(t+ τ)(u1(t+ τ)− 1)T̄ (t) + cλ3(t),

λ′4(t) = cλ4(t), (5.9)

with transversality condition

λi(tf ) = 0, i = 1, · · · , 4.

Moreover, the optimal control is given by

u∗1(t) = min

(
1,max

(
0,

k

L1

[
λ2(t)e−mτ T̄ (t− τ)V̄I(t− τ)

−λ1(t)e−mτ1 T̄ (t− τ1)V̄I(t− τ1)
]))

,

u∗2(t) = min

(
1,max

(
0,
Nδ

L2

[
e−ντ2 T̄ ∗(t−τ2)((1−εp)λ3(t)+εpλ4)

]))
.(5.10)
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Proof. The adjoint equations and transversality conditions can be obtained by
using Pontryagins minimum principle with delay in state [9] such that

λ′1(t) = −∂H
∂T

(t)− χ[0,tf−τ ](t)
∂H

∂Tτ
(t+ τ)

−χ[0,tf−τ1](t)
∂H

∂Tτ1
(t+ τ1), λ1(tf ) = 0,

λ′2(t) = − ∂H
∂T ∗

(t)− χ[0,tf−τ2](t)
∂H

∂T ∗τ2
(t+ τ2), λ2(tf ) = 0,

λ′3(t) = − ∂H
∂VI

(t)− χ[0,tf−τ ](t)
∂H

∂VI(τ)
(t+ τ)

−χ[0,tf−τ1](t)
∂H

∂VI(τ1)
(t+ τ1), λ3(tf ) = 0,

λ′4(t) = − ∂H

∂VNI
(t), λ4(tf ) = 0. (5.11)

The optimal control u∗1 and u∗2 can be solved from the optimality conditions

∂H

∂u1
= 0,

∂H

∂u2
= 0, (5.12)

which implies that

∂H

∂u1
= L1u1 + ke−mτ1λ1T (t− τ)VI(t− τ) + ke−mτλ2T (t− τ1)VI(t− τ1)

= 0,

∂H

∂u2
= L2u2 − λ3Nδe

−ντ2(1− εp)T ∗(t− τ2)− λ4Nδe
−ντ2εpT

∗(t− τ2)

= 0. (5.13)

By the bounds in U of the controls, it is easy to obtain u∗1 and u∗2 in the form
of (5.11), respectively.

Suppose if we substitute u∗1 and u∗2 in the system (2.4) and (5.9), we obtain
the following optimality system

Ṫ#(t) = s− dTT#(t)− (1− u∗1(t))ke−mτ1T#(t− τ1)V #
I (t− τ1),

Ṫ ∗
#

(t) = (1− u∗1(t))ke−mτT#(t− τ)V #
I (t− τ)− δT ∗#(t),

V̇ #
I (t) = (1− u∗2(t))Nδ(1− εp)e−ντ2T ∗#(t− τ2)− cV #

I (t),

V̇ #
NI(t) = (1− u∗2(t))Nδεpe

−ντ2T ∗#(t− τ2)− cV #
NI(t),
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λ′1(t) = 1 + λ1(t)dT + ke−mτ1χ[0,tf−τ1](t)λ1(t+ τ1)(u1(t+ τ1)− 1)V̄I(t)

−ke−mτχ[0,tf−τ ](t)λ2(t+ τ)(u1(t+ τ)− 1)V̄I(t),

λ′2(t) = −χ[0,tf−τ2](t)[λ3Nδ(1− εp)e−ντ2(u2(t+ τ2)− 1)

+λ4(t)Nδεpe
−ντ2(u2(t+ τ2)− 1)],

λ′3(t) = 1 + ke−mτ1χ[0,tf−τ1](t)λ1(t+ τ1)(u1(t+ τ1)− 1)T̄ (t)

−ke−mτχ[0,tf−τ ](t)λ2(t+ τ)(u1(t+ τ)− 1)T̄ (t) + cλ3(t),

λ′4(t) = cλ4(t),

u∗1(t) = min

(
1,max

(
0,

k

L1
[λ2(t)e−mτ T̄ (t− τ)V̄I(t− τ)

−λ1(t)e−mτ1 T̄ (t− τ1)V̄I(t− τ1)]

))
,

u∗2(t) = min

(
1,max

(
0,
Nδ

L2

[
e−ντ2 T̄ ∗(t− τ2)((1− εp)λ3(t) + εpλ4)

]))
,

λi(tf ) = 0, i = 1, · · · , 4. (5.14)

�

6. Conclusion

In this article, we pondered HIV protease inhibitor model with three in-
tracellular delays. By a pedantic analysis, we have examined that the model
has a threshold dynamics. In [23], the two positive steady states of the model
thus considered was derived and named as viral free steady states and infected
steady state accordingly. Also, the local stability analysis of model about these
steady states are accomplished. But, in the case of infected steady state, an
analysis for τ̄ = 0, where τ̄ = τ + τ2 and τ1 6= 0 is left undone. Thus, in this
article we incorporated the study of thus case and by the result, the delay τ1

as a bifurcation parameter, a sufficient condition is derived for the infected
steady state. By this, we have obtained that τ1, the delay corresponding to
the loss of target cells,has effect on the infected steady state of model (2.4),
to stabilize the system under a small delay in the loss of target cells and leads
to Hopf bifurcation with small level of delay value. In the optimal control
section, we gave a delay mathematical model with two controls that describe
HIV infection with Protease inhibitor during therapy. Currently, there is no
effective therapy for HIV infection and the cost of treatment is beyond reach
of many infected patients. Hence, we presented an optimal therapy in order to
minimize the cost of treatment, reduce the viral load, and improve the therapy
response.
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