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Abstract. The aim of this paper is to introduce and solve the p-radical functional equation
related to cubic functional equation
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where f is a mapping from R into a vector space and p is an odd integer. We also establish

the hyperstability results in the senses of Gâvruta-Ulam -Rassiass for the considered equation

in non-Archimedean Banach spaces, by using an analogue version of theorem of J. Brzdȩk

in [12].

1. Introduction

A classical question in the theory of functional equation is the following:
“When is it true that a function which approximately satisfies a functional
equation must be close to an exact solution of equation”. If the answer is
affirmative, we say that the equation is stable.
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In 1940, Ulam, when he discussed a number of important unsolved problems
in his talk at the university of wisconsin(see [33]), he asked the following
question concerning the stability of group homomorphisms, this question, seem
to be the starting point of studying the stability of functional equations, as
follows:

Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric d(., .).
Given ε > 0, does there exists a δ > 0 such that if a mapping h : G1 → G2

satisfies the inequality

d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
(
h(x), H(x)

)
< ε

for all x ∈ G1?

Since then, this question has attracted the attention of many researchers.
The first partial answer was raised by Hyers [24] in 1941 under the assumption
that G1 and G1 are Banach spaces for the additive functional equation as
follows:

Theorem 1.1. ([24]) Let E1 and E2 be two Banach spaces and f : E1 → E2

be a function such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ

for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive function such
that

‖f(x)−A(x)‖ ≤ δ

for all x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1,
then the function A is linear.

Later, Aoki [9] and Bourgin [10] considered the problem of stability with
unbounded Cauchy differences. In 1978, Rassias [30] attempted to weaken the
condition for the bound of the norm of Cauchy difference

‖f(x+ y)− f(x)− f(y)‖

and proved a generalization of Theorem 1.1 by using a direct method(cf. The-
orem 1.2):
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Theorem 1.2. ([30]) Let E1 and E2 be two Banach spaces. If f : E1 → E2

satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
for some θ ≥ 0, for some p ∈ R with 0 ≤ p < 1, and for all x, y ∈ E1, then
there exists a unique additive function A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 2θ

2− 2p
‖x‖p

for each x ∈ E1. If, in addition, f(tx) is continuous in t for each fixed x ∈ E1,
then the function A is linear.

After then, Rassias ([31], [32]) motivated Theorem 1.2 as follows:

Theorem 1.3. ([31], [32]) Let E1 be a normed space, E2 be a Banach space,
and f : E1 → E2 be a function. If f satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
(1.1)

for some θ ≥ 0, for some p ∈ R with p 6= 1, and for all x, y ∈ E1 − {0E1},
then there exists a unique additive function A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 2θ

|2− 2p|
‖x‖p (1.2)

for each x ∈ E1 − {0E1}.

Note that Theorem 1.3 reduces to Theorem 1.1 when p = 0. For p = 1, the
analogous result is not valid. Also, Brzdȩk [11] showed that estimation (1.2)
is optimal for p ≥ 0 in the general case.

In 1994, Gâvruta [23] provided a further generalization of Rassias theorem
in which he replaced the bound θ (‖x‖p + ‖y‖p) in (1.1) by a general control
function φ(x, y) for the existence of a unique linear mapping.

Recently, Brzdȩk [15] showed that Theorem 1.3 can be significantly im-
proved; namely, in the case p < 0, each f : E1 → E2 satisfying (1.1) must
actually be additive, this result is called the hyperstability of Cauchy func-
tional equation. However, the term of hyperstability was introduced for the
first time probably in [28], and it was developed with fixed point theorem of
Brzdȩk in [12] and there after, the hyperstability of a several functional equa-
tion have been studied by many authors (for example see [2, 3, 7, 15, 28]).

In 2013, Brzdȩk [14] improved, extended and complemented several earlier
classical stability results concerning the additive Cauchy equation (in par-
ticular Theorem 1.3). Over the last few years, many mathematicians have
investigated various generalizations, extensions and applications of the Hyers-
Ulam stability of a number of functional equations (see, for instance, [16],
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[17] and references therein); in particular, the stability problem of the radical
functional equations in various spaces was proved in [6, 7, 8, 19, 20, 25, 27].

Jun and Kim [26] introduced the following cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x), x, y ∈ R, (1.3)

where f : R → X, and they established the general solution and the gen-
eralized Hyers-Ulam-Rassias stability for the functional equation (1.3). It is
easy to see that the function f(x) = cx3 is a solution of the above functional
equation. Thus, it is natural that equation (1.3) is called a cubic functional
equation and every solution of the cubic functional equation is said to be a
cubic function.

Now we introduce the following functional equation

f
(

p
√

2xp + yp
)

+ f
(

p
√

2xp − yp
)

= 2f
(

p
√
xp + yp

)
+ 2f

(
p
√
xp − yp

)
+ 12f(x),

(1.4)

for all x, y ∈ R where p is an odd integer and f : R→ X which is the p-radical
cubic functional equation related to equation (1.3).

The main purpose of this article is to achieve the general solution of the
functional equation (1.4) and establish some hyperstability in the spirit of
Gǎvruta-Ulam -Rassiass of the considered equation in non-Archimedean Ba-
nach space. We also provide some corollaries and outcomes concerning the
hyperstability results for the inhomogeneous of p-radical functional equation.

Throughout this paper, we will denote the set of natural numbers by N, the
set of real numbers by R, R+ = [0,∞) the set of non negative real numbers
and R0 = R\{0}. By Nm0 , m0 ∈ N, we will denote the set of all natural
numbers greater than or equal to m0.

Let us recall(see, for instance, [25]) some basic definitions and facts con-
cerning non-Archimedean normed spaces.

Definition 1.4. By a non-Archimedean field we mean a field K equipped with
a function (valuation) | · | : K→ [0,∞) such that for all r, s ∈ K, the following
conditions hold:

(1) |r| = 0 if and only if r = 0,
(2) |rs| = |r||s|,
(3) |r + s| ≤ max

{
|r|, |s|

}
.

The pair (K, |.|) is called a valued field.

In any non-Archimedean field we have |1| = | − 1| = 1 and |n| ≤ 1 for
n ∈ N0. In any field K the function | · | : K→ R+ given by
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|x| :=
{

0, x = 0,
1, x 6= 0,

is a valuation which is called trivial, but the most important examples of
non-Archimedean fields are p-adic numbers which have gained the interest of
physicists for their research in some problems coming from quantum physics,
p-adic strings and superstrings.

Definition 1.5. Let X be a vector space over a scalar field K with a non-
Archimedean non-trivial valuation | · |. A function || · ||∗ : X → R is a non-
Archimedean norm (valuation) if it satisfies the following conditions:

(1) ‖x‖∗ = 0 if and only if x = 0,
(2) ‖rx‖∗ = |r| ‖x‖∗ (r ∈ K, x ∈ X),
(3) The strong triangle inequality (ultrametric); namely :
‖x+ y‖∗ ≤ max

{
‖x‖∗, ‖y‖∗

}
x, y ∈ X.

Then (X, ‖ · ‖∗) is called a non-Archimedean normed space or an ultrametric
normed space.

Definition 1.6. Let {xn} be a sequence in a non-Archimedean normed space
X.

(1) A sequence {xn}∞n=1 in a non-Archimedean space is a Cauchy sequence
if the sequence {xn+1 − xn}∞n=1 converges to zero.

(2) The sequence {xn} is said to be convergent if, there exists x ∈ X such
that, for any ε > 0, there is a positive integer N such that ‖xn−x‖∗ ≤
ε, for all n ≥ N . Then the point x ∈ X is called the limit of the
sequence {xn}, which is denoted by limn→∞ xn = x.

(3) If every Cauchy sequence in X converges, then the non-Archimedean
normed space X is called a non-Archimedean Banach space or an utra-
metric Banach space.

In this paper, we make non-Archimedean versions of results in [16]. Indeed,
by using the fixed point method derived from [11] and [16], we present some
hyperstability results for the p-radical functional equation related to cubic
mapping in non-Archimedean Banach spaces. Before proceeding to the main
results, we state Theorem 1.7 which is useful for our purpose. To present it,
we introduce the following three hypotheses:

(H1) X is a nonempty set, Y is an non-Archimedean Banach space over a
non-Archimedean field, f1, ..., fk : X −→ X and L1, ..., Lk : X −→ R+

are given.
(H2) T : Y X −→ Y X is an operator satisfying the inequality∥∥∥T ξ(x)− T µ(x)

∥∥∥
∗
≤ max

1≤i≤k

{
Li(x)

∥∥∥ξ(fi(x)
)
− µ

(
fi(x)

)∥∥∥
∗

}
,
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for ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : RX
+ −→ RX

+ is a linear operator defined by

Λδ(x) := max
1≤i≤k

{
Li(x)δ

(
fi(x)

)}
, δ ∈ RX

+ , x ∈ X.

Thanks to a result due to Brzdȩk and Ciepliñski [13, Remark 2], we state
an analogue of the fixed point theorem [13, Theorem 1] in non-Archimedean
Banach space. We use it to assert the existence of a unique fixed point of
operator T : Y X −→ Y X .

Theorem 1.7. Let hypotheses (H1)-(H3) be valid and functions ε : X −→ R+

and ϕ : X −→ Y fulfil the following two conditions

‖T ϕ(x)− ϕ(x)‖∗ ≤ ε(x), x ∈ X,

lim
n→∞

Λnε(x) = 0, x ∈ X.

Then there exists a unique fixed point ψ ∈ Y X of T with

‖ϕ(x)− ψ(x)‖∗ ≤ sup
n∈N0

Λnε(x), x ∈ X.

Moreover

ψ(x) := lim
n→∞

T nϕ(x), x ∈ X.

2. Solution and hyperstability of equation (1.4)

Note that Jun and Kim in [26] are solved the cubic functional equation
(1.3) and every solution of (1.3) is given as follows : f(x) = B(x, x, x) where
B : E1 × E1 × E1 → E2 defined by

B(x, y, z) =
1

24
{f(x+y+z)+f(x+y+z)+f(x−y−z)−f(x+y−z)−f(x−y+z)}

and B is symmetric for fixed one variable and B is additive for fixed two
variables, where E1, E2 are two vector spaces.

The following theorem give the general solution of Eq. (1.4).

Theorem 2.1. Let X be a linear space and p be an odd integer. A function
f : R → X is solution of the functional equation (1.4) if and only if f(x) =
Q(xp) for all x ∈ R, such that Q is a solution of a cubic functional equation
(1.3).
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Proof. It’s not hard to see that if f(x) = B(xp, xp, xp), then f is solution of
the equation (1.4).
On the other hand, if f is solution of Eq. (1.4), then for all x, y ∈ R :

Q(2x+ y) +Q(2x− y) =f

(
p

√
2 p
√
xp + p

√
yp
)

+ f

(
p

√
2 p
√
xp − p

√
yp
)

=2f

(
p

√
p
√
xp + p

√
yp
)

+ 2f

(
p

√
p
√
xp − p

√
yp
)

+ 12f( p
√
x)

=2Q(x+ y) + 2Q(x− y) + 12Q(x).

�

Next, we examine the hyperstability of Eq. (1.4) in non-Archimedean Ba-
nach space, by using as a basic tool, Theorem 1.7.

Theorem 2.2. Let p be an odd integer, Xbe a non-Archimedean Banach space
and h1, h2 : R0 → R+ be two functions such that

U :=
{
n ∈ N : αn = max{λ1(n+ 1)λ2(n+ 1), λ1(3n+ 2)λ2(3n+ 2),

λ1(−n)λ2(−n), λ1(4n+ 3)λ2(4n+ 3)} < 1
}
6= φ,

is an infinite set, where

λi(m) = inf {t ∈ R+ : hi(mx) ≤ t hi(x), x ∈ R0} ,
for all m ∈ N, where i = 1, 2 such that

lim
m→∞

λ1(m+ 1)λ2(2m+ 1) = 0. (2.1)

Assume that f : R→ X satisfies the inequality∥∥∥f ( p
√

2xp + yp
)

+f
(

p
√

2xp − yp
)
f
(

p
√
xp + yp

)
−2f

(
p
√
xp − yp

)
−12f(x)

∥∥∥
∗

≤ h1(xp)h2(yp), (2.2)

for all x, y ∈ R0 such that x 6= y, x 6= −y, y 6= p
√

2 x and y 6= − p
√

2x. Then
f is a solution of Eq. (1.4) on R0.

Proof. Replacing x by p
√
m+ 1 x and y by p

√
2m+ 1 x in inequality (2.2), we

get∥∥12f
(

p
√
m+ 1x

)
+2f

(
p
√

3m+ 2x
)
+2f

(
p
√
−mx

)
−f

(
p
√

4m+ 3x
)
−f(x)

∥∥
∗

≤ h1((m+ 1)xp)h2((2m+ 1)xp), (2.3)

for all x ∈ R0. For each m ∈ N, we define operators Tm : XR0 → XR0 by

Tmξ(x) = 12ξ
(

p
√
m+ 1 x

)
+2ξ

(
p
√

3m+ 2 x
)
+2ξ

(
p
√
−m x

)
−ξ
(

p
√

4m+ 3 x
)
,
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for all ξ ∈ XR0 , x ∈ R0 and εm : R0 → R+ by

εm(x) = h1((m+ 1)xp)h2((2m+ 1)xp), m ∈ N, x ∈ R0,

we observe that

εm(x) ≤ λ1(m+ 1)λ2(2m+ 1)h1(x
p)h2(x

p), (2.4)

for all x ∈ R0 and all m ∈ U . Then the inequality (2.3) become as∥∥Tmf(x)− f(x)
∥∥
∗ ≤ εm(x), x ∈ R0.

Furthermore, the operator Λm : RR0
+ → RR0

+ defined by

Λmδ(x) = max{δ
(

p
√
m+ 1 x

)
, δ
(

p
√

3m+ 2 x
)
, δ
(

p
√
−m x

)
, δ
(

p
√

4m+ 3 x
)
}

= max
1≤i≤4

{Li(x)δ (fi(x))},

for all x ∈ R0 and δ ∈ RR0
+ has the form described in (H3) with k = 4

and f1(x) = p
√
m+ 1 x, f2(x) = p

√
3m+ 2 x, f3(x) = p

√
−m x, f4(x) =

p
√

4m+ 3 x, and L1(x) = L2(x) = L3(x) = L4(x) = 1, for all x ∈ R0.

Moreover, for every x ∈ R0, ξ, µ ∈ XR0 , we obtain∥∥Tmξ(x)− Tmµ(x)
∥∥
∗

=
∥∥12

(
ξ
(

p
√
m+ 1x

)
− µ

(
p
√
m+ 1x

))
+ 2

(
ξ
(

p
√

3m+ 2x
)
− µ

(
p
√

3m+ 2x
))

+ 2
(
ξ
(

p
√
−mx

)
− µ

(
p
√
−mx

))
−
(
ξ
(

p
√

4m+ 3x
)
− µ

(
p
√

4m+ 3x
))
‖∗

≤ max
{

12‖ξ
(

p
√
m+ 1x

)
− µ

(
p
√
m+ 1x

)
‖∗,

2‖ξ
(

p
√

3m+ 2x
)
− µ

(
p
√

3m+ 2x
)
‖∗,

2‖ξ
(

p
√
−mx

)
− µ

(
p
√
−mx

)
‖∗, ‖ξ

(
p
√

4m+ 3x
)
− µ

(
p
√

4m+ 3x
)
‖∗
}

≤ max{‖ξ
(

p
√
m+ 1x

)
− µ

(
p
√
m+ 1x

)
‖∗,

‖ξ
(

p
√

3m+ 2x
)
− µ

(
p
√

3m+ 2x
)
‖∗,

‖ξ
(

p
√
−mx

)
− µ

(
p
√
−mx

)
‖∗, ‖ξ

(
p
√

4m+ 3x
)
− µ

(
p
√

4m+ 3x
)
‖∗}

= max
1≤i≤4

{Li(x)‖ξ(fi(x))− µ(fi(x))‖∗},

so (H2) is valid.
Now we will show, by induction, that for all x ∈ R0, m ∈ U and n ∈ N

Λnεm(x) ≤ λ1(m+ 1)λ2(2m+ 1)αn
mh1(x

p)h2(x
p). (2.5)
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For n = 0, inequality (2.5) is exactly (2.4). Next we will assume that (2.5)
holds for n = k, where k ∈ N. Then

Λk+1
m εm(x) = Λm

(
Λk
mεm(x)

)
= max

{
Λk
mεm

(
p
√
m+ 1 x

)
, Λk

mεm
(

p
√

3m+ 2 x
)
,Λk

mεm
(

p
√
−m x

)
,

Λk
mεm

(
p
√

4m+ 3 x
) }

≤ λ1(m+ 1)λ2(2m+ 1)αk
m max

{
h1((m+ 1)xp)h2((m+ 1)xp),

h1((3m+ 2)xp)h2((3m+ 2)xp), h1((−m)xp)h2((−m)xp),

h1((4m+ 3)xp)h2((4m+ 3)xp)
}

≤ λ1(m+ 1)λ2(2m+ 1)αk
m max

{
λ1(m+ 1)λ2(m+ 1),

λ1(3m+ 2)λ2(3m+ 2), λ1(−m)λ2(−m),

λ1(4m+ 3)λ2(4m+ 3)
}
h1(x

p)h2(x
p)

= λ1(m+ 1)λ2(2m+ 1)αk+1
m h1(x

p)h2(x
p),

for all x ∈ R0, m ∈ U . This show that (2.5) holds for n = k + 1. We conclude
that the inequality (2.5) holds for all n ∈ N.

Since, for each m ∈ U , αm < 1, hence, we get

lim
n→∞

Λnεm(x) = 0,

for all x ∈ R0. Therefore, according to Theorem 1.7, there exists, for each
m ∈ U , a fixed point Fm : R0 → X of the operator Tm such that∥∥f(x)−Fm(x)

∥∥
∗ ≤ sup

n∈N

{
Λn
mεm(x)

}
(2.6)

≤ sup
n∈N

{
λ1(m+ 1)λ2(2m+ 1)αn

mh1(x
p)h2(x

p)
}
, x ∈ R0.

Moreover Fm(x) = limn→∞ (T n
mf) (x), x ∈ R0.

Next, we should prove the following inequality∥∥T n
mf
(

p
√

2xp + yp
)

+ T n
mf
(

p
√

2xp − yp
)
− 2T n

mf
(

p
√
xp + yp

)
(2.7)

− 2T n
mf
(

p
√
xp − yp

)
− 12T n

mf(x)
∥∥
∗ ≤ α

n
mh1(x

p)h2(y
p),

for every x, y ∈ R0 such that x 6= y, x 6= −y, y 6= p
√

2x, y 6= − p
√

2x, n ∈ N
and m ∈ U .

We proceed by induction, since the case n = 0 is just (2.2), we take k ∈ N
and assume that (2.7) holds for n = k and every x, y ∈ R0 such that x 6= y ,
x 6= −y , y 6= p

√
2x , y 6= − p

√
2x and m ∈ U . Then, for each x, y ∈ R0 such
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that x 6= y, x 6= −y, y 6= p
√

2x, y 6= − p
√

2x and m ∈ U , we get

∥∥T k+1
m f

(
p
√

2xp + yp
)

+ T k+1
m f

(
p
√

2xp − yp
)
− 2T k+1

m f
(

p
√
xp + yp

)
− 2T k+1

m f
(

p
√
xp − yp

)
− 12T k+1

m f(x)
∥∥
∗

=
∥∥12T k

mf
(

p
√
m+ 1 p

√
2xp + yp

)
+ 2T k

mf
(

p
√

3m+ 2 p
√

2xp + yp
)

+ 2T k
mf
(

p
√
−m p

√
2xp + yp

)
− T k

mf
(

p
√

4m+ 3 p
√

2xp + yp
)

+ 12T k
mf
(

p
√
m+ 1 p

√
2xp − yp

)
+ 2T k

mf
(

p
√

3m+ 2 p
√

2xp − yp
)

+ 2T k
mf
(

p
√
−m p

√
2xp − yp

)
− T k

mf
(

p
√

4m+ 3 p
√

2xp − yp
)

− 24T k
mf
(

p
√
m+ 1 p

√
xp + yp

)
− 4T k

mf
(

p
√

3m+ 2 p
√
xp + yp

)
− 4T k

mf
(

p
√
−m p
√
xp + yp

)
+ 2T k

mf
(

p
√

4m+ 3 p
√
xp + yp

)
− 24T k

mf
(

p
√
m+ 1 p

√
xp − yp

)
− 4T k

mf
(

p
√

3m+ 2 p
√
xp − yp

)
− 4T k

mf
(

p
√
−m p
√
xp − yp

)
+ 2T k

mf
(

p
√

4m+ 3 p
√
xp − yp

)
− 144T k

mf
(

p
√
m+ 1 x

)
− 24T k

mf
(

p
√

3m+ 2 x
)

− 24T k
mf
(

p
√
−m x

)
+ 12T k

mf
(

p
√

4m+ 3 x
) ∥∥
∗

≤max
{

12
∥∥T k

mf
(

p
√
m+ 1 p

√
2xp + yp

)
+ T k

mf
(

p
√
m+ 1 p

√
2xp − yp

)
− 2T k

mf
(

p
√
m+ 1 p

√
xp + yp

)
− 2T k

mf
(

p
√
m+ 1 p

√
xp − yp

)
− 12T k

mf
(

p
√
m+ 1 x

)
‖∗,

2
∥∥T k

mf
(

p
√

3m+ 2 p
√

2xp + yp
)

+ T k
mf
(

p
√

3m+ 2 p
√

2xp − yp
)

− 2T k
mf
(

p
√

3m+ 2 p
√
xp + yp

)
− 2T k

mf
(

p
√

3m+ 2 p
√
xp − yp

)
− 12T k

mf
(

p
√

3m+ 2 x
)
‖∗,

2
∥∥T k

mf
(

p
√
−m p

√
2xp + yp

)
+ T k

mf
(

p
√
−m p

√
2xp − yp

)
− 2T k

mf
(

p
√
−m p
√
xp + yp

)
− 2T k

mf
(

p
√
−m p
√
xp − yp

)
− 12T k

mf
(

p
√
−m x

)
‖∗,∥∥T k

mf
(

p
√

4m+ 3 p
√

2xp + yp
)

+ T k
mf
(

p
√

4m+ 3 p
√

2xp − yp
)

− 2T k
mf
(

p
√

4m+ 3 p
√
xp + yp

)
− 2T k

mf
(

p
√

4m+ 3 p
√
xp − yp

)
− 12T k

mf
(

p
√

4m+ 3 x
)
‖∗
}
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≤ max
{∥∥T k

mf
(

p
√
m+ 1 p

√
2xp + yp

)
+ T k

mf
(

p
√
m+ 1 p

√
2xp − yp

)
− 2T k

mf
(

p
√
m+ 1 p

√
xp + yp

)
− 2T k

mf
(

p
√
m+ 1 p

√
xp − yp

)
− 12T k

mf
(

p
√
m+ 1 x

) ∥∥
∗,∥∥T k

mf
(

p
√

3m+ 2 p
√

2xp + yp
)

+ T k
mf
(

p
√

3m+ 2 p
√

2xp − yp
)

− 2T k
mf
(

p
√

3m+ 2 p
√
xp + yp

)
− 2T k

mf
(

p
√

3m+ 2 p
√
xp − yp

)
− 12T k

mf
(

p
√

3m+ 2 x
) ∥∥
∗,∥∥T k

mf
(

p
√
−m p

√
2xp + yp

)
+ T k

mf
(

p
√
−m p

√
2xp − yp

)
− 2T k

mf
(

p
√
−m p
√
xp + yp

)
− 2T k

mf
(

p
√
−m p
√
xp − yp

)
− 12T k

mf
(

p
√
−m x

) ∥∥
∗
∥∥T k

mf
(

p
√

4m+ 3 p
√

2xp + yp
)

+ T k
mf
(

p
√

4m+ 3 p
√

2xp − yp
)
− 2T k

mf
(

p
√

4m+ 3 p
√
xp + yp

)
− 2T k

mf
(

p
√

4m+ 3 p
√
xp − yp

)
− 12T k

mf
(

p
√

4m+ 3 x
) ∥∥
∗

}
≤ max

{
αk
mh1((m+ 1)xp)h2((m+ 1)yp), αk

mh1((3m+ 2)xp)h2((3m+ 2)yp),

αk
mh1((−m)xp)h2((−m)yp), αk

mh1((4m+ 3)xp)h2((4m+ 3)yp)
}

≤ αk
mh1(x

p)h2(y
p) max

{
λ1(m+ 1)λ2(m+ 1), λ1(3m+ 2)λ2(3m+ 2)

λ1(−m)λ2(−m), λ1(4m+ 3)λ2(4m+ 3)
}

≤ αk+1
m h1(x

p)h2(y
p).

Thus, by induction, we have shown that (2.7) holds for n ∈ N, and m ∈ U .
Letting n→∞ in (2.7), we obtain

Fm

(
p
√

2xp + yp
)

+ Fm

(
p
√

2xp − yp
)

= 2Fm

(
p
√
xp + yp

)
+ 2Fm

(
p
√
xp − yp

)
− 12Fm(x),

for all x, y ∈ R0 such that x 6= y , x 6= −y , y 6= p
√

2x , y 6= − p
√

2x and m ∈ U .
This implies that Fm : R → X is a solution of the Eq. (1.4). Therefore, we
construct a sequence {Fm}m∈ N of solutions of Eq (1.4) on XR0 such that∥∥Fm(x)− f(x)‖∗ ≤ sup

n∈N
Λn
mεm(x)

≤ sup
n∈N
{λ1(m+ 1)λ2(2m+ 1)αn

mh1(x
p)h2(x

p)},

for all x ∈ R0 and m ∈ U . letting n→∞ and using (2.1) we deduce that f is
solution of Eq. (1.4) on R0. �
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With an analogous proof of the above theorem, we can prove the following
theorem.

Theorem 2.3. Let p be an odd integer, X be a non-Archimedean Banach
space and h : R0 → R+ be a mapping such that

U : =
{
n ∈ N : αn = max{λ(n+ 1) ; λ(3n+ 2), λ(−n), λ(4n+ 3)} < 1

}
6= φ,

is an infinite set, where

λ(n) = inf {t ∈ R+ : h(nx) ≤ t h(x), x ∈ R0} ,

for all a ∈ N, such that

lim
n→∞

(λ(n+ 1) + λ(2n+ 1)) = 0.

Assume that f : R→ X satisfies the inequality∥∥f ( p
√

2xp + yp
)

+ f
(

p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)

∥∥
∗ ≤ h(xp) + h(yp), (2.8)

for all x, y ∈ R0 such that x 6= y, x 6= −y, y 6= p
√

2 x and y 6= − p
√

2 x. Then
f is a solution of Eq. (1.4) on R0.

Proof. Replacing in (2.8) x by p
√
m+ 1 x and y by p

√
2m+ 1 x where x ∈

R0, m ∈ U , then we get∥∥12f
(

p
√
m+ 1 x

)
+2f

(
p
√

3m+ 2x
)
+2f

(
p
√
−mx

)
−f

(
p
√

4m+ 3x
)
−f(x)

∥∥
∗

≤ h((m+ 1)xp) + h((2m+ 1)xp)

≤ (λ(m+ 1) + λ(2m+ 1))h(xp),

for all m ∈ U and all x ∈ R0.
We define operators Tm : XR0 → XR0 by

Tmξ(x) = 12ξ
(

p
√
m+ 1x

)
+ 2ξ

(
p
√

3m+ 2x
)

+ 2ξ
(

p
√
−mx

)
− ξ

(
p
√

4m+ 3 x
)
,

for all ξ ∈ XR0 , x ∈ R0. We also define the operator εm : R0 → R+ by

εm(x) = h((m+1)xp)+h((2m+1)xp) ≤ (λ(m+ 1)+λ(2m+ 1))h(xp), x ∈ R0,

and the operator Λm : RR0
+ → RR0

+ defined by

Λmδ(x) = max{δ
(

p
√
m+ 1 x

)
, δ
(

p
√

3m+ 2 x
)
, δ
(

p
√
−m x

)
, δ
(

p
√

4m+ 3 x
)
}.

As in theorem 2.2, we observe that inequality (2.8) take the form∥∥f(x)− Tmf(x)|
∥∥
∗ ≤ εm(x), x ∈ R0, m ∈ U .

This completes the proof. �
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Next, as a particular cases of those above theorems, when we change the
control h1(x)h2(y) (or h(x)+h(y)) by c|xr||ys| (or c|xr|+ |ys|) we will fall into
stability in the sense of Hyers-Ulam-Rassiass. In this subject, by according
the previous theorems we define h1, h2, h : R→ R+ as follows:
h1(x

p) = c1|Q1(x
p)|r , h2(x

p) = c2|Q2(x
p)|s and h(xp) = c|Q(xp)|r for all

x ∈ R0, where c1, c2, c ≥ 0, r, s ∈ R, p is an odd integer and Q1, Q2, Q are
Cubic mappings, we derive some particular cases.

Corollary 2.4. Let X be a non-Archimedean Banach space. Assume that a
function f : R→ X verify the inequality∥∥f ( p

√
2xp + yp

)
+ f

(
p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)

∥∥
∗ ≤ c|Q1(x

p)|r|Q2(y
p)|s, (2.9)

for all x, y ∈ R0, where c = c1× c2 ≥ 0, r+ s < 0. Then f is a solution of the
equation (1.4) on R0.

Proof. For each m ∈ N, we define λ1(m) as in Theorem 2.2:

λ1(m+ 1) = inf {t ∈ R+ : h1 ((m+ 1)xp) ≤ th1(xp)}

= inf
{
t ∈ R+ : c1

∣∣∣Q1 ((m+ 1)xp)
∣∣∣r ≤ tc1|Q1(x

p)|r
}

= inf
{
t ∈ R+ : (m+ 1)3r|Q1(x

p)|r ≤ t|Q1(x
p)|r
}

=(m+ 1)3r,

for all x ∈ R0. Also, for each m ∈ N we have λ2(2m + 1) = (2m + 1)3s. It’s
clear that there exists m0 ∈ N such that, for each m ≥ m0 we get

αm = max
{
λ1(m+ 1)λ2(m+ 1), λ1(3m+ 2)λ2(3m+ 2), λ1(−m)λ2(−m),

λ1(4m+ 3)λ2(4m+ 3)
}

= max
{

(m+ 1)3(r+s), (3m+ 2)3(r+s), (−m)3(r+s), (4m+ 3)3(r+s)
}

< 1.

According to Theorem 2.2, there exists a unique p-radical function
Fm : R0 → X such that

‖Fm(x)− f(x)‖∗ ≤ c sup
n∈N

{
λ1(m+ 1)λ2(2m+ 1)αn

m|Q1(x
p)|r|Q2(x

p)|s
}

= c(m+ 1)3r(2m+ 1)3s|Q1(x
p)|r|Q2(x

p)|s sup
n∈N

{
αn
m

}
,

for all x ∈ R0.
On the other hand, since r + s < 0, one of r, s must be negative. Assume

that r < 0. Then

lim
m→∞

λ1(m+ 1)λ2(2m+ 1) = lim
m→∞

(m+ 1)3(r+s) = 0. (2.10)
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We get the desired results. �

Corollary 2.5. Let X be a non-Archimedean Banach space. Assume that a
function f : R→ X verify the inequality∥∥f ( p

√
2xp + yp

)
+ f

(
p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)

∥∥
∗ ≤ c (|Q(xp)|r + |Q(yp)|r) , (2.11)

for all x, y ∈ R0, where c ≥ 0, r < 0. Then f is a solution of the equation
(1.4) on R0.

Proof. The proof is similar to the proof of Corollary 2.4. �

In the following corollaries, we get the hyperstability results for the inho-
mogeneous general p-radical functional equation.

Corollary 2.6. Let X be a non-Archimedean Banach space, p be an odd
integer, G : R×R→ X be a function such that G(0, 0) = 0 and f : R→ X be
a function such that f(0) = 0. Assume that f,G satisfy the inequality:∥∥f ( p

√
2xp + yp

)
+ f

(
p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)−G(x, y)

∥∥
∗ ≤ c|Q1(x

p)|r|Q2(y
p)|s, (2.12)

for all x, y ∈ R0, where c, r, s ∈ R such that c ≥ 0, r+ s < 0. If the functional
equation;

f
(

p
√

2xp + yp
)

+ f
(

p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
(2.13)

− 12f(x)−G(x, y) = 0,

has a solution f0 : R→ X, then f is a solution of Eq. (2.13).

Proof. Let ψ : R → X be a function defined by ψ(x) = f(x) − f0(x) for all
x ∈ R. Then,∥∥ψ ( p

√
2xp + yp

)
+ ψ

(
p
√

2xp − yp
)
− 2ψ

(
p
√
xp + yp

)
− 2ψ

(
p
√
xp − yp

)
− 12ψ(x)

∥∥
∗

=
∥∥f ( p

√
2xp + yp

)
+ f

(
p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)

−G(x, y)− f0
(

p
√

2xp + yp
)
− f0

(
p
√

2xp − yp
)

+ 2f0
(

p
√
xp + yp

)
+ 2f0

(
p
√
xp − yp

)
+ 12f(x) +G(x, y)

∥∥
∗
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≤ max
{∥∥f ( p

√
2xp + yp

)
+ f

(
p
√

2xp − yp
)

− 2f
(

p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)−G(x, y)

∥∥
∗,
∥∥f0 ( p

√
2xp + yp

)
+ f0

(
p
√

2xp − yp
)

− 2f0
(

p
√
xp + yp

)
− 2f0

(
p
√
xp − yp

)
− 12f0(x)−G(x, y)

∥∥
∗
}

≤
∥∥f ( p

√
2xp + yp

)
+ f

(
p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)−G(x, y)

∥∥
∗

≤ c|Q1(x
p)|r|Q2(y

p)|s,

for all x, y ∈ R0. By using Corollary 2.4, we deduce that ψ is a solution of
equation (1.4). Moreover, for all x, y ∈ R0, we have

f
(

p
√

2xp + yp
)

+ f
(

p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)−G(x, y)

= ψ
(

p
√

2xp + yp
)

+ ψ
(

p
√

2xp − yp
)
− 2ψ

(
p
√
xp + yp

)
− 2ψ

(
p
√
xp − yp

)
− 12ψ(x) + f0

(
p
√

2xp + yp
)

+ f0

(
p
√

2xp − yp
)
− 2f0

(
p
√
xp + yp

)
− 2f0

(
p
√
xp − yp

)
− 12f0(x)−G(x, y) = 0,

which means that f is a solution of (2.13). �

With an analogous proof of Corollary 2.6, we find the following corollary.

Corollary 2.7. Let X be a non-Archimedean Banach space, p be an odd
integer and G : R×R→ X be a function such that G(0, 0) = 0 and f : R→ X
is a function such that f(0) = 0. Assume that f,G satisfy the inequality∥∥f ( p

√
2xp + yp

)
+ f

(
p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)−G(x, y)

∥∥
∗ ≤ c (|Q(xp)|r + |Q(yp)|s) , (2.14)

for all x, y ∈ R0, where c, r, s ∈ R such that c ≥ 0, r+ s < 0. If the functional
equation

f
(

p
√

2xp + yp
)

+ f
(

p
√

2xp − yp
)
− 2f

(
p
√
xp + yp

)
− 2f

(
p
√
xp − yp

)
− 12f(x)−G(x, y) = 0, (2.15)

has a solution f0 : R→ X, then f is a solution of Eq. (2.15).
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tional Equations and Inequalities (Bȩdlewo, Poland, May 17-23, 2015), p. 196, Ann.
Univ. Paedagog. Crac. Stud. Math., 14 (2015), 163-202.

[19] M. Eshaghi Gordji and M. Parviz, On the Hyers-Ulam stability of the functional equation

f
(

2
√
x2 + y2

)
= f(x) + f(y), Nonlinear Funct. Anal. Appl., 14 (2009), 413-420.



Hyperstability of p-radical functional equation related to cubic mapping 489

[20] M. Eshaghi Gordji, H. Khodaei, A. Ebadian and G.H. Kim, Nearly radical quadratic
functional equations in p-2-normed spaces, Abstr. Appl. Anal., 2012 (2012), Article ID
896032.
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