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Abstract. In this paper, in a reflexive and strictly convex Banach space with a uniformly

Gâteaux differentiable norm, we obtain the convergence theorems of the implicit iteration

process and the explicit iteration process for the nonexpansive semigroup. Our results im-

prove and generalize some previous results.

1. Introduction

It is well known that the theory of fixed points is an important and widely
used branch of nonlinear analysis. Perhaps the most well known result in the
theory of fixed points is Banach’s contraction mapping principle. One classical
method to study fixed points of nonexpansive mappings is to use contractions
to approximate directly or approximate by iterations nonexpansive mappings.

Let T : K → K be a nonexpansive mapping, for a fixed u ∈ K and for each
t ∈ (0, 1), we define a contraction Tt : K → K by

Ttx = tu + (1− t)Tx.
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Browder[2] proved that as t → 0 the fixed point xt of Tt converges strongly to
a fixed point of T in a Hilbert space. Reich[6] extended Browde’s theorem to
a uniformly smooth Banach space. Halpern[5] firstly introduced the explicit
iterative scheme

xn+1 = αnu + (1− αn)Txn

in a Hilbert space and pointed out that the control conditions αn → 0 and∑
αn = ∞ are necessary for the convergence of {xn} to a fixed point of T .

Wittmann[10], still in Hilbert space, obtained a strong convergence result for
the above iteration {xn} under an additional condition

∑ |αn − αn+1| < ∞.
Shioji and Takahashi[9] extended Wittmann’s results to a uniformly convex
Banach space with a uniformly Gâteaux differentiable norm. Xu Hongkun[12]
proposed the following viscosity iterative process

xn+1 = αnf(xn) + (1− αn)Txn

and proved that {xn} converges to a fixed point of T , where f : K → K is a
contractive mapping. In 2002, Suzuki[8] first introduced in Hilbert space the
implicit iteration process

xn = αnu + (1− αn)Txn

for the nonexpansive semigroup case and gived the strong convergence the-
orem. Benavides, Acedo and Xu[1], in a uniformly smooth Banach space,
showed that both the implicit iteration process and the explicit iteration pro-
cess

xn+1 = αnu + (1− αn)Txn

are strongly convergent under some conditions such as asymptotic regularity.
In 2005, Xu Hongkun[11] studied the strong convergence of the implicit

iteration process in a uniformly convex Banach space which admits a weakly
sequentially continuous duality mapping.

Recently, in a real reflexive Banach space with a weakly sequentially con-
tinuous duality mapping, Chen Rudong and He Huimin[4] investigated the
strong convergence of the implicit iteration process

xn = αnf(xn) + (1− αn)Txn

and the explicit iteration process

yn+1 = βnf(yn) + (1− βn)Tyn

for the nonexpansive semigroup =, and proved that both the implicit iteration
process and the explicit iteration process converge strongly to a fixed point
p ∈ F (=), which is the unique solution in F (=) to the following variational
inequality 〈(f − I)q, j(x− q)〉 ≤ 0.

In this paper, we obtain the convergence theorems of the implicit iteration
process and the explicit iteration process for the nonexpansive semigroupa in



Viscosity approximation for fixed points of nonexpansive semigroup 535

a reflexive and strictly convex Banach space with a uniformly differentiable
norm, which improves and generalizes some previous results.

2. Preliminaries

Let X be a reflexive Banach space, and K a closed convex subset of X. Let
T : K → K be a nonexpansive mapping. We denote by F (T ) the set of fixed
point of T , i.e.,

F (T ) = {x ∈ K : x = Tx}.
Definition 2.1. The set = = {T (t) : t ∈ [0, +∞)} is called a nonexpansive
semigroup on K, if the following condition one satisfied:

(1) ∀t ∈ [0,+∞), T (t) is a nonexpansive mapping of K into itself;
(2) T (0)x = x,∀x ∈ K;
(3) T (s + t) = T (s) ◦ T (t), ∀s, t ∈ R+;
(4) The mapping T (·)x : R+ → K is continuous, for all x ∈ X.

We denote by F (=) the set of common fixed point of =, i.e.,

F (=) =
⋂

t≥0

F (T (t)).

A selfmapping f : K → K is called a contraction on K if there exists a
constant α ∈ (0, 1) such that

‖f(x)− f(y)‖ ≤ α‖x− y‖, ∀x, y ∈ K,

where α is a contraction constant.
Let X be a real Banach space with dual X∗. Let J : X → 2X∗

denote the
mormalized duality mapping defined by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, x ∈ X.

Lemma 2.2. [9] Let X be a Banach space. Then
‖x‖2 + 2〈y, j(x)〉 ≤ ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀x, y ∈ X, (2.1)

where j(x) ∈ J(x), j(x + y) ∈ J(x + y).

Let S = {x ∈ X : ‖x‖ = 1} denote the unit sphere of the Banach space X.
The space X is said to have a Gâteaux differentiable norm if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(2.2)
exists for all x, y ∈ S, and X is said to be smooth; X is said to have a uniformly
Gâteaux differentiable norm if the limit (2.2) is attained uniformly for x ∈ S.
Further, X is said to be uniformly smooth if the limit (2.2) exists uniformly
for (x, y) ∈ S×S, and we call X have a uniformly Fréchet differentiable norm.
The space X is said to be strictly convex if

‖x + y

2
‖ ≤ 1, ∀x, y ∈ S, x 6= y.
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The space X is said to be uniformly convex if there is δε > 0, such that

‖x + y

2
‖ < 1− δε

for each ε ∈ (0, 2] and x, y ∈ S, ‖x − y‖ > ε. We know that if X is a
reflexive and strictly convex Banach space then it is uniformly convex, and if
X is an uniformly smooth Banach space then it is a reflexive Banach space
with a uniformly Gâteaux differentiable norm. If X has a uniformly Gâteaux
differentiable norm then the duality mapping J is strong-to-weak∗ uniformly
continuous on bounded sets, and if X is uniformly smooth and only if the
duality mapping is strong-to-strong uniformly continuous.

We denote by LIM the Banach limit, where LIM ∈ (l∞)∗, ‖LIM‖ = 1, and
lim infn→∞ an ≤ LIMnan ≤ lim supn→∞ an, LIMnan = LIMnan+1, {an}n ∈
l∞.

Let {xn} ⊂ K be a bounded sequence, and g(x) = LIMn‖xn − x‖, x ∈ K.
Then we have the following conclusion.

Lemma 2.3. There exists x0 ∈ K such that g(x0) = min
x∈K

g(x).

Proof. Since g(x) is bounded below, d = inf
x∈K

g(x) exists, and there is {x′n} ⊂
K such that g(x′n) → d, (n → ∞). We denote Aε = {x ∈ X : g(x) ≤ d + ε}
for each ε > 0. It is easy to see that Aε is a nonempty closed convex set ,
moreover, x′n ∈ Aε if n large enough. Since X be reflexive, there exists x0 ∈ X
and subset {x′nk

} such that x′nk
converges weakly to x0. As Aε is closed convex,

x0 ∈ Aε, d ≤ g(x0) ≤ d + ε. Since ε is arbitrary, g(x0) = d. That is,
g(x0) = min

x∈K
g(x). ¤

Lemma 2.4. Let X be a Banach space with a uniformly Gâteaux differentiable
norm, K ⊂ X be nonempty closed and convex, and g(z) = min

x∈K
g(x). Then

LIMn〈u− z, j(xn − z)〉 ≤ 0, for all u ∈ K. (2.3)

Proof. Let C = {z : g(z) = min
x∈K

g(x)}. From Lemma 2.2, we get

‖xn − y‖2 = ‖xn − z + z − y‖2 ≤ ‖xn − z‖2 + 2〈z − y, j(xn − y)〉,
for z ∈ C, y ∈ K. Then

LIMn‖xn − y‖2 ≤ LIMn‖xn − z‖2 + 2LIMn〈z − y, j(xn − y)〉,
hence

LIMn〈z − y, j(xn − y)〉 ≥ 0, ∀y ∈ K. (2.4)
We take y = tu + (1− t)z, 0 < t < 1, then

z − y = t(z − u). (2.5)
From (2.4) and (2.5), we have

LIMn〈t(z − u), j(xn − tu− (1− t)z)〉 ≥ 0,
that is
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LIMn〈z − u, j(xn − tu− (1− t)z)〉 ≥ 0. (2.6)

Let t → 0. From (2.4) and J is strong-weak∗ continuous, we get
LIMn〈z − u, j(xn − z)〉 ≥ 0, ∀u ∈ K,

that is
LIMn〈u− z, j(xn − z)〉 ≤ 0, ∀u ∈ K.

This completes the proof. ¤
Lemma 2.5. [9] Assume {an} is a sequence of nonnegative real numbers such
that

an+1 ≤ (1− γn)an + δn, n ≥ 0,
where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i) lim
n→∞ γn = 0; (ii)

∞∑

n=1

γn = ∞; (iii) lim sup
n→∞

δn

γn
≤ 0 or

∞∑

n=1

|δn| < ∞.

Then lim
n→∞ an = 0.

3. Main results

Firstly, we give the convergence theorems of the implicit iteration process
for the nonexpansive semigroup.

Theorem 3.1. Let X be a reflexive and strictly convex Banach space with a
uniformly Gâteaux differentiable norm, and K be a nonempty closed convex
subset of X. Let = = {T (t) : t ≥ 0} be a nonexpansive semigroup on K
such that F (=) 6= ∅, and f : K → K be a contraction with a contraction
constants α ∈ (0, 1). Let {αn} and {tn} be sequences of real numbers satisfying
0 < αn < 1, tn > 0, and lim

n→∞ tn = lim
n→∞

αn

tn
= 0. Then the implicit iteration

process
xn = αnf(xn) + (1− αn)T (tn)xn, n ∈ N, (3.1)

converges strongly to a fixed point p ∈ F (=), which is also the unique solution
to the variational inequality:

〈(f − I)q, j(x− q)〉 ≤ 0, ∀x ⊂ F (=). (3.2)

Proof. We define the mapping Sn : K → K by
Sn(x) = αnf(x) + (1− αn)T (tn)x, (3.3)

for each fixed n ≥ 0. Then, Sn is a contraction mapping on K.
In fact, for all x, y ∈ K,

‖Sn(x)− Sn(y)‖ ≤ αn‖f(x)− f(y)‖+ (1− αn)‖T (tn)x− T (tn)y‖
≤ (1− αn + ααn)‖x− y‖.

From the Banach fixed-point principle and 1−αn +ααn < 1, we get that there
is a unique point xn ∈ K such that (3.3) is satisfied. This shows the implicit
iteration process (3.1) is well defined.
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Step 1. The solution to (3.2) is unique.

Let p, q ⊂ F (=) are solutions of (3.2). Then
〈(f − I)q, j(p− q)〉 ≤ 0, (3.4)

and
〈(f − I)p, j(q − p)〉 ≤ 0. (3.5)

Adding up (3.4) and (3.5) yields
〈p− q − (f(p)− f(q)), j(p− q)〉 ≤ 0,

as a result,
‖p− q‖2 ≤ α‖p− q‖2.

Since 0 < α < 1, we get p = q.
Step 2. The sequence {xn} defined by (3.1) is bounded.

For x ∈ F (=),
‖xn − x‖2 = 〈xn − x, j(xn − x)〉

= αn〈f(xn)− x, j(xn − x)〉+ (1− αn)〈T (tn)xn − x, j(xn − x)〉
≤ αn‖f(xn)− f(x)‖ · ‖xn − x‖+ αn〈f(x)− x, j(xn − x)〉

+(1− αn)‖T (tn)xn − T (tn)x‖ · ‖xn − x‖
≤ (1− (1− α)αn)‖xn − x‖2 + αn〈f(x)− x, j(xn − x)〉,

which implies that

‖xn − x‖2 ≤ 1
1− α

〈f(x)− x, j(xn − x)〉

≤ 1
1− α

‖f(x)− x‖ · ‖xn − x‖.
Consequently,

‖xn − x‖ ≤ 1
1− α

‖f(x)− x‖.
Then {xn} is bounded, so are {T (tn)xn} and {f(xn)}.
Step 3. We show F (=)

⋂
C 6= ∅.

Let g(x) = LIMn‖xn − x‖, C = {z : g(z) = min
x∈K

g(x)}. It is easy to see

that C is a nonempty closed bounded subset of X. Let σn =
αn

tn
. We have

αn = σntn, xn = σntnf(xn) + (1− σntn)T (tn)xn.
Let t = pntn + qn for each t > 0, where 0 ≤ qn < tn and pn is a integral. We
denote d = 2 sup{‖T (tn)xn‖+‖f(xn)‖}, εn = ‖T (tn)xn−xn‖. Since {T (tn)xn}
and {f(xn)} are bounded, we have

pnεn = pnσntn‖f(xn)− T (tn)xn‖ ≤ σntd → 0 as n →∞.
Hence for each p ∈ C, it follows that

‖xn − T (t)p‖ = ‖xn − T (tn)xn + T (tn)xn − T (2tn)xn + T (2tn)xn

− · · · − T (pntn)xn + T (pntn)xn − T (t)p‖
≤

pn−1∑
k=0

‖T ((k + 1)tn)xn − T (ktn)xn‖+ ‖T (pntn)xn − T (t)p‖
≤ pn‖T (tn)xn − xn‖+ ‖xn − T (qn)xn‖
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≤ pnεn + ‖xn − p‖+ ‖T (qn)p− p‖.
Taking the Banach limit, we get

LIMn‖xn − p‖ ≤ LIMn‖xn − T (t)p‖
≤ LIMnpnεn + LIMn‖xn − p‖+ LIMn‖T (qn)p− p‖
= LIMn‖xn − p‖.

Then g(T (t)p) = g(p) and thus T (t)C ⊂ C. For a fixed p0 ∈ F (=), since X a
reflexive and strictly convex Banach space and C a nonempty closed convex
subset of X, there is unique p ∈ C such that

‖p− p0‖ = inf
x∈C

‖x− p0‖.
Hence for arbitrary t ≥ 0,

‖p0 − T (t)p‖ = ‖T (t)p0 − T (t)p‖ ≤ ‖p0 − p‖ = inf
x∈C

‖p0 − x‖.
Since T (t)p ⊂ C and p ∈ C is unique, we obtain T (t)p = p, ∀t ≥ 0. That is,
p is a fixed point of =.
Step 4. For the sequence {xn} defined by (3.1), there is a subset {xni} ⊂ {xn}
such that xni → p ∈ F (=)

⋂
C.

Since xn−f(xn) =
1− αn

αn
(T (tn)xn−xn), for arbitrary q ∈ F (=) , it follows

that
〈xn − f(xn), j(xn − q)〉 =

1− αn

αn
〈T (tn)xn − xn, j(xn − q)〉

=
1− αn

αn
〈T (tn)xn − q + q − xn, j(xn − q)〉

≤ 1− αn

αn
(‖T (tn)xn−q‖·‖xn−q‖−‖xn−q‖2) ≤ 0,

that is,
〈xn − f(xn), j(xn − q)〉 ≤ 0. (3.6)

Hence
‖xn − p‖2 = 〈xn − p, j(xn − q)〉

= 〈xn − f(xn) + f(xn)− f(p) + f(p)− p, j(xn − p)〉
= 〈xn − f(xn), j(xn − p)〉+ 〈f(xn)− f(p), j(xn − p)〉.

+〈f(p)− p, j(xn − p)〉
≤ 0 + α‖xn − p‖2 + 〈f(p)− p, j(xn − p)〉.

By Lemma 2.4, we have LIMn‖xn − p‖2 = 0. Therefore lim inf
n

‖xn − p‖ = 0.

Then there is a subset {xni} ⊂ {xn} such that xni → p.
Step 5. The sequence {xn} is compact.

Take arbitrary {xnk
} ⊂ {xn}. Let φ(x) = ‖xnk

− x‖,x ∈ K. Set φ(x)
instead of g(x) in step 3 and step 4, we conclude that there is a subset of
{xnk

} converges strongly to p ∈ F (=) ∩ C̃, where C̃ = {z : φ(z) = min
n

φ(x)}.
So, the sequence {xn} is compact.
Step 6. We show that {xn} converges strongly to p ∈ F (=).

Let {xni} ⊂ {xn}, {xmi} ⊂ {xn}, xni → p, xmi → q. From (3.6), we have
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〈p− f(p), j(p− q)〉 = lim
i→∞

〈xni − f(xni), j(xni − q)〉 ≤ 0, (3.7)

〈q − f(q), j(q − p)〉 = lim
i→∞

〈xmi − f(xmi), j(xmi − p)〉 ≤ 0. (3.8)

Adding up (3.7) and (3.8) yields
〈p− q − f(p) + f(q), j(p− q)〉 ≤ 0.

As a result,
‖p− q‖2 ≤ ‖f(p)− f(q)‖ · ‖p− q‖ ≤ α‖p− q‖2.

This implies that p = q. Therefore xn → p.
Step 7. We show that p is a solution to (3.2).

In (3.6), since xn → p, we have 〈f(p)−p, j(x−p)〉 = lim
n→∞〈f(xn)−xn, j(x−

xn)〉 ≤ 0. That is, p ∈ F (=)
⋂

C is the unique solution to the variational
inequality (3.2). This completes the proof. ¤
Theorem 3.2. Let X be a reflexive and strictly convex Banach space with a
uniformly Gâteaux differentiable norm, and K be a nonempty closed convex
subset of X. Let = = {T (t) : t ≥ 0} be a nonexpansive semigroup on K
such that F (=) 6= ∅, and f : K → K be a contraction with a contraction
constants α ∈ (0, 1). Let {βn} and {tn} be sequences of real numbers satisfying

0 < βn < 1,
∞∑

n=1
βn = ∞, tn > 0, and lim

n→∞ tn = lim
n→∞

βn

tn
= 0. Then the explicit

iteration process: for y0 ∈ K,
yn+1 = βnf(yn) + (1− βn)T (tn)yn, n ∈ N (3.9)

converges strongly to a fixed point p ∈ F (=), which is also the unique solution
to the variational inequality:

〈(f − I)q, j(x− q)〉 ≤ 0, ∀x ⊂ F (=). (3.10)

Proof. Proceeding as the proof of step 1 of Theorem 3.1, we have that the
solution to (3.10) is unique.
Step 1. The sequence {yn} defined by (3.1) is bounded.

For y ∈ F (=), we have
‖yn+1 − y‖ ≤ (1− βn)‖T (tn)yn − y‖+ βn‖f(yn)− y‖

≤ (1− βn)‖yn − y‖+ βn‖f(yn)− f(y)‖+ βn‖f(y)− y‖
≤ (1− (1− α)βn)‖yn − y‖+ βn‖f(y)− y‖
≤ max{‖yn − y‖, 1

1−α‖f(y)− y‖}.
Then {yn} is bounded, so are {T (tn)yn} and {f(yn)}.
Step 2. Let q ∈ F (=) be the solution of (3.10). We show

lim sup
n→∞

〈(f − I)q, j(yn+1 − q)〉 ≤ 0.

Let n,m ∈ N, n > m, and {xm} be a sequence in the Theorem 3.1. From
Theorem 3.1, we get xm → q and

xm − yn = αmf(xm) + (1− αm)T (tm)xm − yn

= αm(f(xm)− yn) + (1− αm)(T (tm)xm − yn).
Hence
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‖xm − yn‖2 = ‖αm(f(xm)− yn) + (1− αm)(T (tm)xm − yn)‖2

≤ (1−αm)2‖(T (tm)xm−yn)‖2+2αm〈f(xm)−yn, j(xm−yn)〉
≤ (1− αm)2(‖(T (tm)xm − T (tm)yn)‖+ ‖T (tm)yn − yn‖)2

+2αm〈f(xm)− yn, j(xm − yn)〉
≤ (1− αm)2(‖xm − yn‖+ ‖T (tm)yn − yn‖)2

+2αm〈f(xm)− yn, j(xm − yn)〉
= (1− αm)2(‖xm − yn‖2 + ‖T (tm)yn − yn‖2

+2‖xm − yn‖ · ‖T (tm)yn − yn‖)
+2αm〈f(xm)− xm + xm − yn, j(xm − yn)〉

≤ (1− αm)2(‖xm − yn‖2 + ‖T (tm)yn − yn‖2

+2‖xm − yn‖ · ‖T (tm)yn − yn‖)
+2αm〈f(xm)− xm, j(xm − yn)〉+ 2αm‖xm − yn‖2

= (1+α2
m)‖xm−yn‖2 +(1−α)2‖T (tm)yn−yn‖(2‖xm−yn‖)

+‖T (tm)yn − yn‖) + 2αm〈f(xm)− xm, j(xm − yn)〉,
which implies that

〈f(xm)− xm, j(yn − xm)〉 ≤ α2
m

2
‖xm − yn‖2 +

(1− αm)2

2αm
‖T (tm)yn

−yn‖(2‖xm − yn‖+ ‖T (tm)yn − yn‖).
Since {xm}, {yn} are bounded, {xm − yn} and {T (tm)yn − yn} are bounded.
Then there is M > 0, such that

M = sup
m,n

{1
2
‖xm − yn‖2,

1
2
(2‖xm − yn‖+ ‖T (tm)yn − yn‖)}.

Hence

〈f(xm)− xm, j(xm − yn)〉 ≤ α2
mM +

(1− αm)2

αm
‖T (tm)yn − yn‖M.

Taking the upper limit, we get
lim sup

n→∞
〈f(xm)− xm, j(xm − yn)〉 ≤ α2

mM.

Put m →∞, we obtain lim sup
n→∞

〈f(q)− q, j(yn − q)〉 ≤ 0,

that is,
lim sup

n→∞
〈f(q)− q, j(yn+1 − q)〉 ≤ 0.

Step 3. We show that {yn} converges strongly to q.
By Lemma 2.2, we obtain

‖yn+1 − q‖2 = ‖(1− βn)(T (tn)yn − q) + βn(f(yn)− q)‖2

≤ (1− βn)2‖T (tn)yn − q‖2 + 2βn〈f(yn)− q, j(yn+1 − q)〉
≤ (1− βn)2‖yn − q‖2 + 2βn〈f(yn)− f(q), j(yn+1 − q)〉

+2βn〈f(q)− q, j(yn+1 − q)〉
≤ (1− βn)2‖yn − q‖2 + αβn(‖yn − q‖2 + ‖yn+1 − q‖2)

+2βn〈f(q)− q, j(yn+1 − q)〉.
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Since {βn} and {yn} are bounded, there exists M̃ > 0 such that
1

1− αβn
‖yn − q‖2 ≤ M̃.

It follows that

‖yn+1 − q‖2 ≤ 1− (2− α)βn + β2
n

1− αβn
‖yn − q‖2 +

2βn

1− αβn
〈f(q)− q, j(yn+1 − q)〉

≤ 1− αβn − 2(1− α)βn

1− αβn
‖yn−q‖2+

2βn

1− αβn
〈f(q)−q, j(yn+1−q)〉+β2

nM̃

≤ (1− 2(1− α)βn

1− αβn
)‖yn − q‖2 +

2βn

1− αβn
〈f(q)− q, j(yn+1 − q)〉+ β2

nM̃

≤ (1− 2(1− α)βn

1− αβn
)‖yn−q‖2 +βn(

2
1− αβn

〈f(q)−q, j(yn+1−q)〉+βnM̃).

Putting

γn =
2(1− α)βn

1− αβn
, δn = βn(

2
1− αβn

〈f(q)− q, j(yn+1 − q)〉+ βnM̃),

we get

γn → 0,
∞∑

n=1

γn = ∞, ‖yn+1 − q‖2 ≤ (1− γn)‖yn − q‖2 + δn

and
lim sup

n→∞
δn

γn
= lim sup

n→∞
1

(1−α)〈(f − I)q, j(yn+1 − q)〉 ≤ 0.

From Lemma 2.5 we have yn → q. This completes the proof. ¤

Remark. Theorem 3.1 and 3.2 of [4] are obtained in a real reflexive Ba-
nach space with a weakly sequentially continuous duality mapping. Com-
paratively, in a reflexive and strictly convex Banach space with a uniformly
Gâteaux differentiable norm, we obtain the convergence theorems. The main
results generalize or generalize partly the corresponding results of Suzuki[8],
Xu Hongkun[12], Chen Rudong[3], Chen Rudong and He Huimin[4].
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