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1. INTRODUCTION

Let C' be a nonempty, closed and convex subset of a real Hilbert space H
and A : C — H be a nonlinear mapping. Then, the variational inequality
problem (VIP) is to find u € C such that

(Au,v —u) >0, YveC. (1.1)
We denote by VI(C, A) the solution set of VIP (1.1). Let CB(C) and K(C)
denote the families of nonempty closed bounded subsets and nonempty com-

pact subsets of C, respectively. The Pompeiu-Hausdorff metric on CB(C) is
defined by

H(A, B) = max { supd(z, B),supd(y, A)} for A, B € CB(C),
€A yeEB

where d(z,C) = inf{||z — y|| : y € C}.

Let T : C — CB(C) be a multi-valued mapping. Then Prx = {u € Tx :
||z — u|| = d(z,Tx)}. A point x € C is called a fixed point of T if z € Tx.
However, if Tx = {z}, then x is called a strict point of T. We denote the set
of fixed point if T by F(T). A multi-valued mapping 7' : C — C'B(C) is said
to be A - hybrid if there exists A € R such that

(1+ NH(Tz, Ty)?
< (1=Nllz—y|?+ My, Tz)? + Md(z, Ty)%, Yz,yeC.  (1.2)
Note that if A = 0in (1.2), then we have the following nonexpansive mapping:
H(Tz,Ty) <|lz—vy||, Vaz,yeC.

T is said to be
(i) of type-one if

llu—v|| <HTx,Ty), ¥V z,y € C,u € Prx,v € Pry,
(ii) demicontractive-type in the sense of [13] if F(T") # ¢ and
HA (T, Ty) < ||z —y||* + kd*(z,Tz), =€ C,y € F(T)and k € (0,1).
Definition 1.1. A multi-valued mapping B : H — 27 with nonempty values
is said to be monotone, if (u — v,z —y) > 0, for all u € Bx and v € By.

A monotone mapping M is said to be maximal if the graph of M, denoted by
G(M) is not properly contained in the graph of any other monotone mapping
and for multi-valued mapping M,

GM) ={(z,y) :y € M(z)}.

It is well known that M is maximal if and only if for (z,y) € H x H, (x —
y,u—wv) >0 for all (y,v) € G(M) implies u € M(z).
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The split feasibility problem (SFP) introduced in 1994 by Censor and Elfv-
ing [6] is to find a point

x € C such that Az e Q, (1.3)

where C' and @) are nonempty closed convex sets in R™ and R™ respectively
and A is an m x n real matrix. The SFP has wide applications in many fields
such as phase retrieval, medical image reconstruction, signal processing and
radiation therapy treatment planning (for example see [1, 4] and the references
therein).

Based on SFP (1.3), Censor et al. [5] introduced the following split varia-
tional inclusion problem (SVIP) which is to find 2* € C such that

(f(z*),x —2*) >0, Ve eC, (1.4)
and such that
y'=Az" €Q solves (g(y*),y—y") =0, VyeQ; (1.5)

where f and g are given mappings.
Recently, Moudafi [15] introduced the following split monotone variational
inclusion problem (SMVIP) which is to find
z* € Hy such that 0 € f(z*) + By(z"), (1.6)
and
y* = Az* € Hy such that 0 € g(y*) + Ba(y"); (1.7)
where By : Hi — 271 and By : Hy — 2H2 are multi-valued maximal monotone
mappings, f : Hi — H; and g : Hy — Hs are two given mappings.

In 2017, Deepho et al. [11] considered the viscosity iterative algorithm to
approximate a common element of the set of solutions of SVIP of a finite family
of k-strictly pseudo-contractive nonself mappings. They proved a strong con-
vergence result under suitable conditions, which also solves some variational
inequality problem. The following iteration process was used to approximate
the aforementioned problems.

Uy = TV (@0 + YA (T2) Azy),

Yn = Bnun + (1 — Bn) Zi\;l Niz1Litn,

Tnt1 = an7g(x0) + (I — apnD)yp, n > 1,
where a,, 8, € (0,1),A > 0, g a contraction mapping with coefficient p €
(0,1), ZZ]\L ey = L{T;}Y, a finite family of k;-strictly pseudo-contraction
mappings and JAB “(1 = 1,2) is the resolvent of the maximal monotone map-
pings.
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Also, recently Shehu and Agbebaku [18] introduced an iterative algorithm
for solving split variational inclusion and fixed point problems for multi-valued
quasi-nonexpansive mapping. They employed the following iterative algorithm
to prove a strong convergence result:

tn = J{H (@0 + Y A*(JY2 = 1) Azy),
Tpi1 = O fn(Tn) + Bran + On(ow, + (1 — 0)uy),

wy, € Sz, for each n > 1, where {ay, }, {5,} and {d,,} are the real sequences in

_ P =D Aw|?
(0,1) such that a, + B + 6 =1, 0 € (0,1), 1, := TnHA*(JfQ—I)Aan?’
0<a<m <b<l, and {fn(zy)} is the uniform convergence sequence for

any x, in a bounded subset D of real Hilbert space H.

where

Motivated by the aforementioned results discussed above, we introduce a
modified Halpern iteration process which does not require the knowledge of op-
erator norm to approximate a common solution of split monotone variational
inclusion, variational inequality and fixed point problems for countable fami-
lies of type-one demicontractive multi-valued mappings in real Hilbert spaces.
Futhermore, we prove a strong convergence result and state some consequences
of our main result. An application of our consequence to split minimization
problem was displayed. The result presented in this paper extends and com-
plements the result of Deepho et al. [11] and other related results in literature
3].

2. PRELIMINARIES

We denote the weak and the strong convergence of a sequence {z,} to a
point z by x, — = and x, — x, respectively.

Let C be a nonempty, closed and convex subset of a real Hilbert space H.
For every point x € H, there exists a unique nearest point in C', denoted by
Pox such that

lle = Poall < lle —yll, Yy € C.

Pc is called the metric projection of H onto C' and it is well known that P¢
is a nonexpansive mapping of H onto C and also satisfies

|Pex — Peyl| < (x —y, Pox — Poy).
Moreover, Pox is characterized by the following properties:
(x — Pox,y — Pox) <0
and

|z —y||* > ||z — Pex||* + ||ly — Pcz||*, Vo € H, y € C.
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Definition 2.1. Let H be a real Hilbert space and T': H — CB(H) a multi-
valued mapping. Then, T is said to be demiclosed at the origin if for any
sequence {z,} C H with z,, = z*, and ||z,, — T'(x,,)|| — 0, we have z* € Tx*.

Lemma 2.2. ([10]) Let H be a real Hilbert space and T : H — H be a
nonexpansive mapping. Then for all x,y € H,

1
((x = Tz) = (y = Ty), Ty — Tx) < ||(Tx — z) = (Ty — y)|I (2.1)
and consequently, if y € F(T'), then

1
(x =Tz, Ty —Tx) < §|\T:c—1:]|2. (2.2)

Lemma 2.3. ([7]) Let H be a real Hilbert space. Then for all z,y € H and
a € (0,1), we have

() 202,) = [l + ol [z ~ pI12 =}z + 3112 = Ja? ~ |2,

(i) [Jez + (1 = a)y[|* = alfz][* + (1 = )[y|]* — (1 = )]z — y][*.

Lemma 2.4. ([9]) Let H be a real Hilbert space and {x;}i>1 be a bounded
sequence in H. For a; € (0,1) such that > ;2 a5 = 1, the following identity
holds

o (o]
I il =Y allel — 3 vyl — >
=1 =1

1<i<j<oo

Lemma 2.5. ([8]) Let H be a real Hilbert space T : H — CB(H) be a multi-
valued k-demicontractive mapping. Assume that for every p € F(T), Tp =
{p}. Then

1+Vk

H(Ta,Tp) <
(T'z, Tp) >

|z —pll, ¥aeCpeF(T)

Lemma 2.6. ([14]) Let A : H — 2" be a mazimal monotone mapping and
g : H — H be a Lipschitz continuous mapping. Then the mapping G = A+g :
H — 2" is also a mazimal monotone mapping.

Proposition 2.7. Let D : C — H be an inverse strongly monotone(ism)
mapping. Then,

u€e VI(C,D) <= u= Po(u— ADu), A> 0.
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Proposition 2.8. Let D be an ism mapping of C' into H. Let Ncv be the
normal cone to C at v € C, i.e.

Nev={we H| (v—u,w) >0, VueC}
and define

Dv+ Negv, veC
Tv =
0, ve H\C.

Then T is mazimal monotone and 0 € Tv if and only if v e VI(C, D).

Lemma 2.9. ([19]) Assume {a,} is a sequence of nonnegative real numbers
such that

apy1 < (1 - Un)an + 0ndpn, n >0,

where {0, } is a sequence in (0,1) and {6,} is a real sequence such that
(i) D202y on = oo,

(i) lmsup, o 0n <0 or > o7 |0p0y| < 0.

Then lim,,_,o a, = 0.

3. MAIN RESULTS

In this section, we state and prove a strong convergence result.

Theorem 3.1. Let Hy and Hy be real Hilbert spaces and C' be a nonempty,
closed and convex subset of Hy. Let A : Hi — Hy be a bounded linear operator
with A* its adjoint. Let f : Hi — Hy be o-ism mapping and g : Hy — Hy be p-
ism mapping. Let By : Hy — 271 and By : Hy — 272 be multi-valued mazimal
monotone mappings, and T; : Hy — CB(Hy), i = 1,2,... be an infinite family
of multi-valued type-one demicontractive type mappings with constant k; such
that k = sup,,~;{ki} € (0,1). Let D : C — H;p be a d-ism mapping and Pc a
metric projection of Hy onto C. Assume that

.= ﬁF(Ti) NVI(C,D)NQ #0,
=1

and vy, 1s chosen in such a way that for some € > 0,

< (22 (1 = Ag) — 1) Az ? _€>
[A*(JP2(I = Ag) — 1) A2

(3.1)

for J;?? (I — A\g)Ax,, # Az, and ~y, = 7, otherwise (v being any nonnegative
real number). The sequences {uyn}, {wn} and {z,} generated iteratively for
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an arbitrary x1 € C and a fired u € C by
tn = UL = M) (@n + A (T2 (I = Ag) — 1) Axy),
Wp, = PC(un - fDUn), (32)
Tptl = Qpu + (/Bn,O - an)wn + Zfil 5n,i231,
where 2, € Prawy, and Prow, = {28 € Tyw, : ||z} —wy|| = d(wp, Tw,)}, A >0
with conditions:
(1) ﬁn,O € (kv 1)7 ﬁn,iﬁn,j S (Oa 1)7 Za] = 172a ... such that Z;.io ﬁn,’i = 1;
(i) limp—yeo 0 =0 and > 07 g an = 00,
(iii) for each i > 1, liminf, o BpnoBn:i > 0,
(iv) oy < By for eachn > 1,
(v) for each p € N2, F(T;) and Tip = {p}.
Then the sequence {xy} converges strongly to z € T'.
Proof. Let p € I'. Then we have from (3.2) that
llwn = pl* = IT5 (I = Af)(@n + 1A (T2 (1 = Ag)Awn)) — pl|®
< llon +'7nA*(J>j\92(I —Ag) — I)Azy _pHQ
— Nl — plI2 + 22| A*(JE2(1 = Ag) — D) Ay
+ 29 2y — p, AY(JP2 (I — Ng) — T) Azy,). (3.3)
But from Lemma 2.2, we have
29 (Tn, — P, A*(J;\BQ(I —Ag) — I)Azy,)
= 2% (A(zn = p), (21 = Ag) = D) Azy)
=2, [<'])\B2 (I - )‘g)A-'En - Ap, (J)]\SQ (I - )‘g) - I)A$n>
— [(JY2(I = Ag) — I) Awn||?]
1
< 2711[5”(‘]52(1 = Ag) = DAz, |* = ||(JY2(1 = Ag) — I) Az |?]
= — Yl |(JY2(I = Ag) — 1) Az, ||*. (3.4)
Thus from (3.3) and (3.4), we obtain
[lun = pl* < ||z = pII? + 92l |A* (T2 (1 = Ag) — I) Az ||?
— ll(J32(I = Ag) — 1) Azy||?
= |z = Pl + Yo [l [A*(JF2 (I = Ag) — I) Az
—[I(J32 (I = Ag) — 1) Az |?]. (3.5)
Using condition on ~, in (3.1), we obtain that
lun = pl|* < |lzn = pI*. (3.6)
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Since D is d-ism and 0 < 2 < 26, we estimate

lwn = pl* = [|Po(I — €D)uy, — Po(I — €D)pl[?
=I(I = €D)uy — (I = ED)plf?
= ||(un — p) — &(Duy, — Dp)|f?
= |lun — pl[* — 2¢(Dun — Dp, uy — p) + €*||Dun, — Dpl|?
< |lun — pl[* — 2€8]| Duy, — Dpl||* + €2|| Dun, — Dpl|?
= |lun — pl[* + &(& — 26)|| Duy, — Dpl||?
< [Jun — pl[*. (3.7)

Using Lemma 2.4, (3.7) and the convexity of ||.||?, we have

lzns1 = plf?

o0
= llomu + (B0 — an)wn + Zﬁn,izfz —pl]?
=1
oo . .
= llom (u = p) + (Bno — o) (W — p) + > Bnizh (2 — p)||?
=1
OO .
saMu—mF+0%p—mMMm—MF+§j@mW;—mF

< anllu = pl* + (B0 — o)l lun — plI* + Z (Tywn. T;p))°
< apllu = plI* + (Buo — an)llzn — pII”

+ Z Bri [Hwn - p||2 + k(d(wp, Tiwn))Q]
=1

o0
< anllu = plI + (Buo — an)llen = ol + Y [llwn = pl[* + kllwy — 23,]°]
=1

oo
= (1 —an)l[zn _pH2 + o |u _pH2 + (k= Bno) Zﬁn,inn - Z%HZ
=1

< (1= an)|n — plI* + anl|u — p|?

< max{||z1 — p||*, [[u — p|[*}. (3.8)
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Therefore, {||lz; — p||2} is bounded. Hence, {z,} is bounded. Consequently,
{un}, {wyp} and {z!} are all bounded.
From (3.2), (3.5) and (3.7), we have that

|zt = plI* < (1= an)llzn = plI* + anllu — pl|?
(1= an) v [l A (21 = Ag) — D Az
(P = Ag) — 1) Az ]
(1= an)E(€ — 26)] [ Duy — Dp|l>. (3.9)
By condition on 7, in (3.1), we have from (3.9) that
Izt = plI* < (1= an)llzn —pl* + anllu — p||?
— (1= a)e®||A*(J2 (1 = Ag) — 1) Azy||?
— (1= an)€(20 — &)||Duy, — Dpl[*. (3.10)
CASE 1: Assume that {||z,, — p||} is a monotonically decreasing sequence.
Then, {z,} is convergent and thus
Jim [z, —pl| = lim_[[zp41 — pl|-

From (3.10), we have that

lim |A*(JP2(I = Ng) — I) Az,|| = 0. (3.11)
Also from (3.9), we have that
lim |[(J22(I — Ag) — I)Az,|| = 0. (3.12)
n—oo

Using (3.10) and condition (ii), we obtain that
le || Duy, — Dpl| = 0. (3.13)

From (3.8), we have that
(Bno—k Zﬁm\lwn—anZ (1 = an)lwn — pH2

— |#n+1 — pl)* + anllu — p||*.

Hence, from condition (ii),
hm BnO_ Zﬁnz”wn_anQ (314)

Now, for each i = 1,2, ... and condition (i), we obtain

lim Hwn — 2|2 = lim_ d(wn, Tiwn) = 0. (3.15)

n—oo
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Using (3.2), we have
lltn = plI? = [T = M) (@0 + AT (T2 = Ag) — 1) Azy,) — p||?
< <$n — D, Tn +’7nA*(<])\BQ(I - Ag) - I)Axn _p>
1 *
= §[Hun —pII” + ||zn + W A*(J2 (T = Ag) — I) Az, — pl|?
—tn = p = (@0 + A (TP (I = Ag) — ) Awy) — pl[*]
1
< 5 [l = o + Il — I
+ (Yl A (TH(T = Ag) — ) Az ||?
—[(J2(I = Ag) — I) Azy|?)
—[Jtn = p = (2n + WM A" (T2 (I = Ag) — I) Az, — p)||?]
1
< 5[\|un —pl|* + ||z — pl?
— ([tn — @[> + V2l A* (T2 (T = Ag) — 1) Az
— 29, (U — T, A*(JP2(I = Ng) — 1) Azy,))]

1
< 5[”“71 _pH2 + [|7r _pH2 — [|un _anQ

+ 29 [un — || [|AT(J2(I = Ag) — T) Ay |]. (3.16)
Thus,
= pl? <[z = pl” — |fun — 4|
+ 29|t — @l ||AT(JF2(I = Ag) — I) Az (3.17)

From (3.2) and (3.17), we have that
lzns1 = pl? < (1= an)|lun — pl* + an|lu — pl|?

+ (k - ﬂn,O) Zﬂn,z”wn - Z:LHQ
=1

< (1- an)[Hxn _pH2 — [|un — anQ
+ 29|t — | ||A* (T2 (I = Ag) — I) Azy|]

+ (k; - /Bn,O) Zﬁn,z”wn - Z:ZH2
i=1
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= (1 —an)|[zn —p’|2 — [lup — anz + anllu, — $n||2
(1= )2yl tn — all 14*(JE(L = Ag) — I) As|
+ (k= Bno) Zﬁm“wn - Zszza (3.18)
=1

this implies that

[[un — xn|’2 < (1= ap)llzn _sz — [|Zn41 _pHQ + anllun —anQ

+ (1= )29 un — @l [[A*(I2 (1 = Ag) — 1) Azy|

+ (k= Bno) Y Buillwn — 257,

i=1
From condition (ii), (3.11) and (3.14), we obtain that

lim ||u, — zy|| = 0. (3.19)

n—o0

Using (3.2), we have

[
= ||Pc(I — €D)un — Po(I — €D)pl?
< (Po(l ~ €D)un ~ Po(l — €D)p, (I ~ D)y — (I — ED)p)
= <wn_p7 (I_gD)un - (I—fD)p>
= 2 [l =9 + lfun — p — E(Dun — Dp)|P
~(wn —p) ~ (1~ €DJur — (1~ ED))IP]
< 3 [l = pI + llun = P>+ €(€ — 26)||Dwn — Dp?
— an — 0n) + E(Du — D)’
< 3l = pIP + Il = pII? + &( — 26)| Dutn — Dp*

= [[wn = un|[* = €| Dun — Dpl[* = 26wy, = tn, Duy, = Dp)
1
T2
— ||wn — un|[* + 2¢(up — wy, Duy, — Dp)

[l[wn = pl[* + [Jun — pl* — 266]| Duy, — Dpl|?

1
< 5 [llwn = pI + llon = plI* = [Jwn — un|?

+ 2¢]||upn, — wy|| || Dun, —DpH]. (3.20)
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Thus, we have

[[wn, _sz < ||y, _pHQ — ||wy, _UnH2
+2§Hun_wn|’ HDun_DpH- (3'21)

Using (3.2), (3.21) and following the same process as in (3.18), we have that

|2ns1 — plI* < (1= an)llwn — pl* + om||u — p| |
o0
+ (k — ﬁn,()) Zﬁn,szn - Z;||2
i=1
<(1- an)[Hwn _pH2 — |Jwn — un|’2
+ 2] |up, — wal| || Dun — Dpl|]
+ 29 [un — @n|| ||A*(J2 (I = Ag) — T) Azy||
(@)
+ (k' - 671,0) Z/Bn,szn - Z;H2
i=1
= (1 —an)l|zn _pH2 — |Jwn — UnH2 + an|[wn, — unH2
+2(1 — an)€|[un — wn|| |[Dun — Dpl|
+ 2nllun — @l [|A*(JY2(1 = Ag) — 1) Azy|

+ (k= Bn0) Y Buillwn — 25 (3.22)
=1

Hence, we have from (3.22) that

|[wn — un”2 < (1 —ap)|en _pH2 - Hanrl —p||2 + ap||wn, — unH2
+2(1_an)f||un_wn’| ||Dun—DpH
+ 29 [un — @n|| ||A*(J2(I — Ag) — T) Azy||

+ (k= Bno) D Brillwn — 2417 (3.23)
=1

Thus, using condition (ii), (3.13) and (3.14), we obtain

lim ||w, — uy,|| = 0. (3.24)
n—oo

From (3.19) and (3.24), we have that

TLILH;O ||wn — zp|| = 0. (3.25)
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From (3.2) and (3.15), we obtain that
e .
[[@n+1 = wall < anllu = wall + Y Bullzy, —wall = 0, n = o0.  (3.26)
i=1
Using (3.25) and (3.26), we have that

nlLH;O [|Zn+1 — znl| = 0. (3.27)

Let t, =z, + WnA*(JABQ(I — Ag) — I)Axy, then, we have from (3.11) that
[tn — 2n|| < WA JP2(I — Ag) — ) Azy|] — 0, n — oo, (3.28)
Also, we have from (3.19) and (3.28) that
l|lwn — tnl] < ||un — znl| + ||tn — 2n]| = 0, n — oco. (3.29)

Since {z,} is bounded, there exists a subsequence {w,,} which converges
weakly to z € H and consequently, we have {u,}, {w,} and {t,} with sub-
sequences {up;}, {wn;} and {t,;} which converges weakly to z. Using the
demiclosedness principle and (3.15), we have that z € N, F(T;), i = 1,2, ....

We now show that z € I(f, B1). Let (a,b) € G(By + f) which implies that
b— fa € Bi(a). Since wy, = J{'(I — Af)ty,, we have that (I — Af)t,, €
(I + AB1)up,, that is %(tnj — AMftn; — un;) € Bi1(up;). Using the maximal
monotonicity of (B; + f), we have

1
= (tn; — Aftn; — un,)) > 0.

(@ —up;,b— fa— 3

Hence, we have

1
(@ —up;,b) > <a—Unj7fa+X(tnj = Mt = uny))

= <a_unj7fa’_funj +funj _ftnj +X(tnj _unj)>

1
> 04 (@ — un,, fn; — fto;) + (@ — Un,, X(tnj —Up,;)).  (3.30)

Using (3.29), we have that

—_

|| fun, — ftn,|] = 0. (3.31)
Since uy,; — z, we have

lim (a — up,,b) = (a — 2,b). (3.32)

Jj—o0
Thus, from (3.30), we obtain that
(a —z,b) > 0.
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From the fact that By + f is maximal monotone, we conclude that 0 €
(B1 + f)z which implies that z € I(f, By).
Consequently, since Ar,; — Az, we have from (3.12) and Lemma 2.6 that

0 € gAz + By(Az).

Hence, we have Az € I(g, Ba).
Moreover, it follows from (3.24) that w,; — 2. Define

Yo — Da+ Nga, a € C,
B (Z), CLEHl\C.

By Proposition 2.8, we have that # is maximal monotone. Take (a,b) € G(H),
it is easy to see that b — Da € Neca. Since w,, € C, we have

(a — wp,b— Da) > 0. (3.33)
Since w,, = Pc(u, — £Duy,), we have that
(Un, — EDuy, — wp, wy, —a) >0 (3.34)
and hence
{a — wn, % + Duy) > 0. (3.35)

Thus, from (3.33) and (3.35), we obtain that
(@ —wp;, b) > (a —wy,, Da)

Way, — Unp.,
> (a—wn].,Da>— (a—wnj,Dunj +u>

3
= (a — wn;, Da— Dwy;) + (a — wn,;, Dwy, — Duy,)
Wy, — Un.,
_<a_wnjaDunj+ n]é- nJ>
> 5|\Da—DwnjH2+ (@ —wn;, Dwp; — Duy,)
Wy, — Un.,
_<a_wnj7Dunj+ n]é- nJ>
Wy, — Unp,
> (a — wn;, Dwp; — Duy,) — (@ — wn;, Dy, + %)

By letting j — oo and (3.24), we have that (a — z,b) > 0. Since H is maximal
monotone, we have that z € H~10. So it follows from Proposition 2.8 that
z € VI(C, D). Hence, we conclude that

2el =NX,F(T;)NVIC,D)NQ # 0.
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Next, we prove that {x,} converges strongly to z. Now, applying Lemma
2.3, we have that

o0
|Zni1 — 211> = [lanu + (Bn,o — om)wn + Z/Bmiziz — 2|
i=1

= [|(Bno — an)(wn = 2) + Y Bu,i(zy, — 2) + an(u — 2)|?

i=1
e .
< NN(Buo = an)(wn — 2) + > Builzh — 2)|P
i=1
+ 20 (Xpy1 — 2,u — 2)

< [(Buo — an)llwn — 2l + (k = Bu0) Y Bullwn — 21]]°
=1

+ 20, (Tpt1 — 2, u — 2)
= (1 — an)||wn — 2||* + 200 (Tns1 — 2,u — 2)
< (1 —ap)||zn — 2||* + 200 (Tns1 — 2,u — 2). (3.36)
Since z, — z, using Lemma 2.9 and condition (ii), we obtain that ||z, — z|| —
0, as n — oo, which implies that {z,} converges strongly to z € I.

CASE 2: Assume that {||x, —pl||} is not a monotonically decreasing sequence.
Set 1), = ||z», — p||? and let 7 : N — N be a mapping for all n > ng (for some
no large enough) defined by

T(n) :=max{k e N: k> n,¢p < 1}

Clearly, 7 is a nondecreasing sequence such that 7(n) — oo and 9,4, <
Vr(n)+1, for n > ng. It follows from (3.9) and (3.10) that

lim [|A*(JP2 (1 = Ag) — 1) Azl = 0

7(n)—oo
and

lim [|(J22(1 = Ag) — I) Ay || = 0.

7(n)—o0
Also, using (3.10) and condition (ii), we obtain that
lim [|Duq) — Dpl| = 0.

T(n)—
By following the same argument as in Case 1, we can show that

d(wT(n)’ Zi(n)) = d(wT(n), Tin(n)) =0.
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Now, for all n > ng, we have from (3.36) that
0 < |[@rmyr1 = 2I° = [|2r(m) — 2
< (1 - O‘T(n))”'rT(n) - Z||2 + 2a7(n) <337'(n)+1 —ZU— Z> - ||x'r(n) - ZH2
Thus,
||x’r(n) - sz < 2('%'7'(71) —ZU— Z> — 0.
Hence,
lim ||z, — 2||> = 0. 3.37
Therefore,

lim )= lim ¢ =0.

7(n)—oc0 7(n)—oc0

Moreover for n > ny, it is easily observed that 1. () < 1r(, if n # 7(n) (that
is 7(n) < n) because ©; > 141 for 7(n) +1 < j < n. Consequently,

0 < Y <max{Vrn), Yrn)+1} = Vrn)+1

Hence, lim,, o0 ¥, = 0, which implies that {x,} converges strongly to z € T".
This completes the proof. O

Remark 3.2. In this article, we considered a split monotone variational in-
clusion problem which generalizes the problems considered in [11] and [18].
Also, the mappings considered is a countable family of multi-valued type one
demicontractive mappings which generalizes the ones considered in [11], [18]
and some other related results in literature.

Here, we consider the class of quasi-nonexpansive multi-valued mappings
which is a subclass of demicontractive mappings, see [8].

Corollary 3.3. Let Hy and Hs be real Hilbert spaces and C be a nonempty,
closed and convex subset of Hy. Let A : Hi — Hs be a bounded linear operator
with A* its adjoint. Let f : Hy — Hy be o-ism mapping and g : Hy — Hs be p-
ism mapping. Let By : Hy — 211 and By : Hy — 22 be multi-valued mazximal
monotone mappings, and T; : Hy — CB(Hy), i = 1,2, ... be an infinite family
of multi-valued quasi-nonexpansive mappings. Let D : C — Hy be a d-ism
mappings and Po a metric projection of Hy onto C. Assume that

T —ﬂF )NVI(C,D)NQ#D

and vy, 1s chosen in such a way that for some € > 0,

e |21 = Ag) = D Awa )
A1 = 2g) = D) Az

(3.38)
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for JfQ (I — A\g)Azxy, # Az, and vy, = 7, otherwise (y being any nonnegative
real number). The sequences {uyn}, {wn} and {z,} generated iteratively for
an arbitrary x1 € C and a fired v € C by

U = TP = Nf) (0 + A (T2 (I — Ng) — I)Axy,),
wy, = Po(un — EDup), (3.39)
Tptrl = QpU + (Bn,O - an)wn + Z?il 671,1'2%7

where 2t € Prowy, and Prow, = {2 € Tywy, : ||z —w,|| = d(wy,, Tiw,)}, A >0
with conditions:

1) Bno € (0,1), Bnibnj € (0,1), 4,5 =1,2,... such that Y ;2 Bn;i =1,
(i) limp—oo o =0 and Y07 5 ap = 00,
(ili) for each i > 1, liminf, o0 Bn0Bn,i > 0,
(iv) an < Bno for eachn > 1,
(v) for each p € N2, F(T;) and T;p = {p}.

Then, the sequence {xy} converges strongly to z € T".

In the following result, we considered an infinite family of multi-valued type
one demicontractive type mappings and a split monotone variational inclusion
problem.

Corollary 3.4. Let Hy and Hs be real Hilbert spaces and C be a nonempty,
closed and convex subset of Hy. Let A : Hi — Hs be a bounded linear operator
with A* its adjoint. Let f : Hy — Hjp be o-ism mapping and g : Hy — Hs be p-
ism mapping. Let By : Hy — 2M and By : Hy — 212 be multi-valued mazximal
monotone mappings, and T; : Hy — CB(H1), i = 1,2, ... be an infinite family
of multi-valued type-one demicontractive type mappings with constant k; such
that k = sup,,~1{ki} € (0,1). Assume that

F::ﬁF(Ti)ﬁQ#@
=1

and vy, 1s chosen in such a way that for some € > 0,

( |2 (1 = Ag) = DA )
1451 = Ag) = DAz

(3.40)

for Jf2 (I — A\g)Ax,, # Az, and ~y, = 7, otherwise (v being any nonnegative
real number). The sequences {un}, {wn} and {z,} generated iteratively for
an arbitrary x1 € C and a fired u € C by

{un — BT = Af) (@0 + 1A (TP2(I = Ng) — 1) Ay),

. (3.41)
Tp4+1 = Qpl + (Bn,O - an)un + Zfil /Bn,iZ;”
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where 2% € Pru, and Praw, = {2 € Tywy, : |2 — up|| = d(un, Tyug)}, A >0
with conditions:
1) Bno € (k,1), Bnibnj € (0,1), i,j =1,2,... such that > ;2 i =1,
(i) limp—eo 0 =0 and > 07 5 an = 00,
(iii) for eachi > 1, liminf, o BnoBn:i > 0,
(iv) oy < By for eachn > 1,
(v) for each p € N2, F(T;) and Tip = {p}.
Then, the sequence {xy,} converges strongly to z € T'.

4. APPLICATION

In this section, we give an application of Corollary 3.4 to the split mini-
mization problem (SMP).

Let ¢ : H — R be a proper convex lower semi-continuous function and
¢ : H — R be a convex and differentiable function. Consider the minimization
problem:

minimize{p(z) + ¢(x) : z € H}. (4.1)
Problem (4.1) is equivalent to finding * € H such that
0 € dp(z*) + Vo(z™),

where J¢ is the subdifferential of ¢ and V¢ is the gradient of ¢. It is well
known that V¢ is é—Lipschitz continuous if and only if it is a-inverse strongly

monotone. Also Jy is maximal monotone. The proximal operator associated
with Oy is defined by

1
proza,(r) = argmin{p(x) + §||;U —ul?:ue H} foreachz € H.

Consequently, proxs,(I — V¢) is nonexpansive. In addition, F(proxs,(I —
Vo)) = (0p + V¢)~1(0). Hence, setting f = Vo1, g = Voo, By = dp;1 and
By = 0y in SMVIP, we obtain the following SMP:

find 2* € C such that 2" = argmin{¢;(z) + ¢1(x) : x € Hy} (4.2)
and
y* = Ax* € Q solves y* =argmin{pa(y)+ ¢2(y) : y € Ha}. (4.3)

Thus, we present the following algorithm for solving the SMP (4.2)-(4.3).
We denote the set of solution of the SMP by A.

Theorem 4.1. Let C and Q) be nonempty, closed and convex subset of real
Hilbert spaces H1 and Hs, respectively. Let A : Hi — Hy be a bounded linear
operator with A* its adjoint. Suppose w1 : Hi — R and 2 : Hy — R be two
proper, convexr and lower semi-continuous functions, ¢1 : Hy — R and ¢ :
Hy — R be two convexr and differentiable functions such that their gradients
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Vo, is %—Lipschz’tz continuous, i = 1,2. and T; : H) — CB(Hy), i = 1,2, ...
be an infinite family of multi-valued type-one demicontractive type mappings
with constant k; such that k = sup, > {ki} € (0,1). Assume that

F::ﬁF(Ti)ﬂA#(b
=1

and vy, 1s chosen in such a way that for some € > 0,

Hproa:am (I - v¢2)Aan2 >
n € | €, —e, 4.4
v ( A proza,, (I — Vas) — 1) Az, (44

for proxa,, (I —Voo)Ax, # Az, and v, =, otherwise (v being any nonneg-
ative real number). The sequences {un}, {wn} and {z,} generated iteratively
for an arbitrary x1 € C and a fixed u € C by

{un = proxyp, (I — Vori)(xn + ynA*(proxoy, (I — Voo)Axy,), (4.5)

Tp4+1 = Cpl + (571,0 - an)un + Zfil Bn,isz
where 2%, € Pruy, and Prowy, == {2} € Tywy, : ||25 — un|| = d(un, Tyun)}, A >0

with conditions:

(i) PBno € (k,1), Bnibn; € (0,1), 1,5 =1,2,... such that > ;2 fni =1,
(i) limp—oo o =0 and > 07 5 ap = 00,
(ili) for each i > 1, liminf, o Bn0Bn,i > 0,
(iv) apn < Bno for eachn > 1,

(v) for each p € N2, F(T;) and T;p = {p}.

Then, the sequence {x,} converges strongly to z € T.
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