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Abstract. In this paper, we introduce coincidence point theorems for Beride type contrac-

tion mappings via simulation functions and obtain some sufficient axioms for the existence

and uniqueness of coincidence point for such class of mappings in the setting of metric spaces.

1. Introduction

Some real world problems can be created as mathematical models. The ex-
istence of solutions for these problems has been investigated in various math-
ematics for example, functional analysis, differential equations, integral equa-
tions. Some methods via fixed point theory can show the solution of these
problems. Fixed point theory gains very large impetus due to its wide range
of applications in various fields such as economics, computer science, engineer-
ing, biology, physics, etc.

In addition, Banach’s contraction principle [1] is crucial to present the exis-
tence of solutions for some nonlinear equations, differential and integral equa-
tions, and other nonlinear problems.
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Later, Berinde [3] extended the Zamfirescu fixed point theorem [2] to almost
contractions, a class of contractive type mappings.

Khojasteh et al. [6] originated the notion of Z-contractions using a spe-
cific family of functions called simulation functions. Subsequently, many re-
searchers generalized this idea in many ways (see [7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18] and proved many interesting results in the arena of fixed point
theory.

In this paper, we define a Berinde type contraction mappings via the sim-
ulation functions in metric spaces.

2. Preliminaries

Theorem 2.1. ([1]) Let (X, d) be a complete metric space and S be a self-
mapping on X such that there exist k ∈ [0, 1),

d(Sθ, Sϑ) ≤ kd(θ, ϑ), ∀ θ, ϑ ∈ X. (2.1)

Then, S has a unique fixed point in X.

Theorem 2.2. ([3]) Let (X, d) be a complete metric space and a self-mapping
S on X be an almost contraction, that is, there exist δ ∈ [0, 1) and L ≥ 0 such
that

d(Sθ, Sϑ) ≤ δd(θ, ϑ) + Ld(ϑ, Sθ), ∀ θ, ϑ ∈ X. (2.2)

Then, we have the followings:

(i) Fix(S) 6= ∅, where Fix(S) = {θ ∈ X : Sθ = θ};
(ii) for any θ0 ∈ X, the Picard iteration {θn+1} given by θn+1 = Sθn for

each n ≥ 0 converges to some θ∗ ∈ Fix(S);
(iii) the following estimate holds

d(θn+i−1, θ
∗) ≤ δi

1− δ
d(θn+1, θn), ∀n ≥ 0, i ≥ 1.

Theorem 2.3. ([4]) Let (X, d) be a complete metric space and a self-mapping

S ont X be a Ćirić almost contraction, that is, there exist δ ∈ [0, 1) and L ≥ 0
such that for all θ, ϑ ∈ X,

d(Sθ, Sϑ) ≤ δmax{d(θ, ϑ), d(θ, Sθ), d(ϑ, Sϑ), d(θ, Sϑ), d(ϑ, Sθ)}
+ Ld(ϑ, Sθ).

(2.3)

Then, we have the followings:

(i) Fix(S) 6= ∅, where Fix(S) = {θ ∈ X : Sθ = θ};
(ii) for any θ0 = θ ∈ X, the Picard iteration {θn} given by θn+1 = Sθn for

each n ≥ 0 converges to some θ∗ ∈ Fix(S);
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(iii) the following estimate holds

d(θn, θ
∗) ≤ δn

1− δ
d(θ, Sθ), ∀n ≥ 1.

Subsequently, Babu et al. [5] defined the class of mappings satisfying axiom
(B) as follows:

Definition 2.4. ([5]) Let (X, d) be a metric space and a self-mapping S on
X is said to satisfy axiom (B) if there exist a constant δ ∈ (0, 1) and L ≥ 0
such that

d(Sθ, Sϑ)

≤ δd(θ, ϑ) + Lmin{d(θ, Sθ), d(ϑ, Sϑ), d(θ, Sϑ), d(ϑ, Sθ)}, ∀ θ, ϑ ∈ X.
(2.4)

They proved a fixed point theorem for such mappings in complete metric
spaces. They also discussed quasi-contraction, almost contraction and the
class of mappings that satisfy axiom (B) in detail.

Definition 2.5. A mapping ζ : [0,∞)2 → R is called a simulation function if
it satisfies the following axioms:

(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t for all t, s > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that

limn→∞ tn = limn→∞ sn > 0, then

lim sup
n→∞

ζ(tn, sn) < 0; (2.5)

(ζ4) if {tn}, {sn} are sequences in (0,∞) such that
limn→∞ tn = limn→∞ sn > 0 and tn < sn for all n ∈ N, then equation
(2.5) is satisfied.

If the function ζ satisfies the axioms (ζ1)-(ζ3), we say that ζ is a simula-
tion function according to the sense of Khojasteh et al. [6] and if it satisfies
(ζ1), (ζ2), and (ζ4), then it is a simulation function according to the sense of
Roldán-López-de-Hierro et al. [10]. Denoted by Z is the set of all simulation
functions.

Example 2.6. ([6]) We give some examples of simulation functions.

(i) Let ζ : [0,∞)2 → R be defined by ζ(t, s) = f(s) − g(t) for all t, s ∈
[0,∞), where f, g : [0,∞)→ [0,∞) are two continuous functions such
that f(t) = g(t) = 0 if and only if t = 0, and f(t) < t < g(t) for all
t > 0. Then ζ is a simulation function.

(ii) Let ζ : [0,∞)2 → R be defined by ζ(t, s) = s− f(t,s)
g(t,s) t for all t, s ∈ [0,∞),

where f, g : [0,∞)2 → [0,∞) are two continuous functions with respect
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to each variable such that f(t, s) > g(t, s) for all t, s > 0. Then ζ is a
simulation function.

(iii) Let ζ : [0,∞)2 → R be defined by ζ(t, s) = s − f(s) − t for all t, s ∈
[0,∞), where f : [0,∞) → [0,∞) is a continuous function such that
f(t) = 0 if and only if t = 0. Then ζ is a simulation function.

Definition 2.7. ([6]) Let (X, d) be a metric space and ζ ∈ Z. A mapping
S : X → X is called a Z-contraction with respect to ζ if

ζ(d(Sθ, Sϑ), d(θ, ϑ)) ≥ 0

holds for all θ, ϑ ∈ X.

Let S and Υ be two self-maps defined on a non-empty set X. If θ∗ = Sθ = Υθ
for some θ ∈ X, then θ is called a coincidence point of S and Υ and θ∗ is called
a point of coincidence of S and Υ . Moreover θ∗ is called a common fixed point
of S and Υ if θ= θ∗. A pair (S, Υ ) of self-maps is called weakly compatible if
they commute at their coincidence points.

Theorem 2.8. ([18]) Let S and Υ be weakly compatible self-maps defined on a
nonempty set X. If S and Υ have a unique point of coincidence η = Sθ = Υθ,
then η is the unique common fixed point of S and Υ .

Motivated and inspired by Definition 2.4, Definition 2.7 and Theorem 2.2,
we define a Berinde type contraction mappings via the simulation functions
in metric spaces as follows:

Definition 2.9. Let (X, d) be a metric space and let S, Υ : X → X be self-
mappings. We say that S is a Berinde type (Z, Υ )-contraction if there exists
ζ ∈ Z and a constant L ≥ 0 such that

ζ(d(Sθ, Sϑ),M(θ, ϑ) + LN(θ, ϑ)) ≥ 0, ∀ θ, ϑ ∈ X, (2.6)

holds with Υθ 6= Υϑ, where

M(θ, ϑ) = max

{
d(Υθ, Υϑ), d(Υθ, Sθ), d(Υϑ, Sϑ),

d(Υθ, Sϑ) + d(Υϑ, Sθ)

2

}
and

N(θ, ϑ) = min {d(Υθ, Sθ), d(Υϑ, Sϑ), d(Υθ, Sϑ), d(Υϑ, Sθ)} .

Remark 2.10. If S is a Berinde type (Z, Υ )-contraction with respect to ζ ∈ Z,
then

d(Sθ, Sϑ) < M(θ, ϑ) + LN(θ, ϑ), ∀ θ, ϑ ∈ X. (2.7)
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3. Main results

Firstly, the following lemma shows that a point of coincidence of a Berinde
type (Z, Υ )-contraction is unique.

Lemma 3.1. Let (X, d) be a metric space. If S be a Berinde type (Z, Υ )-
contraction with respect to ζ ∈ Z with a point of coincidence in X, then it is
unique.

Proof. We prove that if a point of coincidence of S and Υ exists then it is
unique. If η1 and η2 are two distinct points of coincidence of S and Υ , then
there exist two points %1, %2 ∈ X such that S%1 = Υ%1 = η1 6= η2 = Υ%2 = S%2.
Thus, it follows from equation (2.6) and (ζ2) that

0 ≤ ζ(d(S%1, S%2),M(%1, %2) + LN(%1, %2)), (3.1)

where

M(%1, %2)

= max

{
d(Υ%1, Υ%2), d(Υ%1, S%2), d(Υ%2, S%2),

d(Υ%1, S%2) + d(Υ%2, S%1)

2

}
= d(η1, η2)

and

N(%1, %2) = min {d(Υ%1, S%1), d(Υ%2, S%2), d(Υ%1, S%2), d(Υ%2, S%1)} = 0.

This together with (3.1) shows that

0 ≤ ζ(d(S%1, S%2),M(%1, %2) + LN(%1, %2)

= ζ(d(η1, η2), d(η1, η2))

< d(η1, η2)− d(η1, η2)

= 0

(3.2)

which is a contradiction. Hence, the point of coincidence of S and Υ in X is
unique. �

Theorem 3.2. Let (X, d) be a complete metric space, S be a Berinde type
(Z, Υ )-contraction with respect to ζ ∈ Z and suppose that there exists a Picard-
Jungck sequence {θn} of (S, Υ ). Then

lim
n→∞

d(Υθn, Υ θn+1) = 0. (3.3)

Proof. We consider the Picard-Jungck sequence such that Υθn+1 = Sθn, where
n ∈ N. If Υθn = Υθn+1, for some n ∈ N, then θn is a coincidence point. Thus,
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we assume that Υθn 6= Υθn+1 which implies that d(Υθn, Υ θn+1) > 0 for all
n ∈ N. Letting θ = θn and ϑ = θn+1 in equation (2.6), we obtain

0 ≤ ζ(d(Sθn, Sθn+1),M(θn, θn+1) + LN(θn, θn+1)), (3.4)

where

M(θn, θn+1)

= max

{
d(Υθn, Υ θn+1), d(Υθn, Sθn), d(Υθn+1, Sθn+1),

d(Υθn, Sθn+1) + d(Υθn+1, Sθn)

2

}

= max

{
d(Υθn, Υ θn+1), d(Υθn, Υ θn+1), d(Υθn+1, Υ θn+2),

d(Υθn, Υ θn+2) + d(Υθn+1, Υ θn+1)

2

}

= max

{
d(Υθn, Υ θn+1), d(Υθn+1, Υ θn+2),

d(Υθn, Υ θn+2)

2

}
.

(3.5)

The triangle inequality yields

d(Υθn, Υ θn+2)

2
≤ max{d(Υθn, Υ θn+1), d(Υθn+1, Υ θn+2)}. (3.6)

Since

N(θn, θn+1)

= min{d(Υθn, Sθn), d(Υθn+1, Sθn+1), d(Υθn, Sθn+1), d(Υθn+1, Sθn)}
= min{d(Υθn, Υ θn+1), d(Υθn+1, Υ θn+2), d(Υθn, Υ θn+1), d(Υθn+1, Υ θn+1)}
= 0,

(3.7)
this together with (3.4) shows that

0 ≤ ζ(d(Sθn, Sθn+1),M(θn, θn+1) + LN(θn, θn+1))

= ζ(d(Sθn, Sθn+1),max{d(Υθn, Υ θn+1), d(Υθn+1, Υ θn+2)})
< max{d(Υθn, Υ θn+1), d(Υθn+1, Υ θn+2)} − d(Υθn+1, Υ θn+2).

(3.8)

The inequality (3.8) shows that

M(θn, θn+1) = d(Υθn, Υ θn+1), ∀n ∈ N (3.9)

which implies that

d(Υθn+1, Υ θn+2) < d(Υθn, Υ θn+1), ∀n ∈ N. (3.10)
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Therefore, the sequence {d(Υθn, Υ θn+1)} is decreasing, so there is some ϕ ≥ 0
such that

lim
n→∞

d(Υθn, Υ θn+1) = ϕ.

Suppose ϕ > 0. Let the sequences {tn} and {sn} as tn = d(Υθn+1, Υ θn+2) and
sn = d(Υθn, Υ θn+1). Since limn→∞ tn = limn→∞ sn = ϕ and tn < sn for all n,
by the axiom (ζ4) and equation (2.6) we get

0 ≤ lim sup
n→∞

ζ(d(Υθn+1, Υ θn+2), d(Υθn, Υ θn+1)) < 0,

which is a contradiction. Hence, ϕ = 0, that is, equation (3.3) holds. �

Theorem 3.3. Let (X, d) be a metric space and S be a Berinde type (Z, Υ )-
contraction with respect to ζ ∈ Zand suppose that there exists a Picard-Jungck
sequence {θn} of (S, Υ ). Then the sequence {Υθn} is a Cauchy sequence.

Proof. We know that {Υθn} is a sequence in (X, d) such that (3.3) holds.
We now show that {Υθn} is a Cauchy sequence.

Suppose that {Υθn} is not a Cauchy sequence. Then there exist ξ > 0 and
two sequences {nk} and {mk} of natural numbers with mk > nk > k > 0,

d(Υθmk
, Υ θnk) ≥ ξ and d(Υθmk−1, Υ θnk) < ξ.

So, we obtain
ξ ≤ d(Υθmk

, Υ θnk)

≤ d(Υθmk
, Υ θmk−1) + d(Υθmk−1, Υ θnk)

< d(Υθmk
, Υ θmk−1) + ξ.

Letting k →∞ in above inequality, we have

lim
k→∞

d(Υθmk
, Υ θnk) = ξ (3.11)

Using (3.3) and (3.11), we obtain

lim
k→∞

d(Υθmk+1, Υ θnk+1) = ξ. (3.12)

Hence,

M(θmk
, θnk) = max

{
d(Υθmk

, Υ θnk), d(Υθmk
, Sθmk

), d(Υθnk , Sθnk),

d(Υθmk
, Sθnk) + d(Υθnk , Sθmk

)

2

}
.

(3.13)

Taking k →∞ in equation (3.13) and using equation (3.11) and (3.12), we get

lim
k→∞

M(θmk
, θnk) = ξ. (3.14)
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Additionally, with the aid of equation (2.6), we have

lim
k→∞

N(θmk
, θnk) = 0. (3.15)

Indeed, we take two sequences {tk} and {sk} with we get

tk = d(Sθmk
, Sθnkn) = d(Υθmk+1, Υ θnk+1) > 0

and

sk = M(θmk
, θnk) + LN(θmk

, θnk) > 0, ∀ k ∈ N.
Also, we have

M(θmk
, θnk) + LN(θmk

≥ d(Υθmk
, Υ θnk) > ξ.

Thus, we can apply the axiom (ζ4) to these sequences, that is,

0 ≤ lim sup
k→∞

ζ(d(Υθmk+1, Υ θnk+1),M(θmk
, θnk) + LN(θmk

, θnk)) < 0.

which is a contradiction. That is, {Υθn} is a Cauchy sequence. �

Theorem 3.4. Let (X, d) be a metric space, S be a Berinde type (Z, Υ )-
contraction with respect to ζ ∈ Z and suppose that there exists a Picard-Jungck
sequence {θn} of (S, Υ ). Also assume that, at least, one of the following axioms
holds.

(i) (S(X), d) or (Υ (X), d) is complete;
(ii) (X, d) is complete, Υ is continuous and S and Υ are compatible.

Then S and Υ have a unique coincidence point.

Proof. Suppose that (Υ (X), d) is complete. Then there exists ω ∈ X such that
Υθn+1 → Υω as n→∞ which implies

lim
n→∞

d(Υθn+1, Υω) = 0. (3.16)

Next, we prove that Sω = Υω. Assume Sω 6= Υω and so, d(Sω, Υω) = ε > 0.
From equation (3.16), there exists n0 ∈ N such that

d(Sθn, Υη) < ε = d(Sη, Υη)

for all n ≥ n0. This leads us to

Sθn 6= Sη ⇒ d(Sθn, Sη) > 0. (3.17)

for all n ≥ n0. Now, there does not exist some n3 ∈ N such that for all n ≥ n3
Υθn+1 = Υη.

Hence, there exists a partial subsequence {Υθpk} of {Υθn+1} such that

Υθpk 6= η. (3.18)
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for all k ∈ N. Let n2 ∈ N be such that pn2 ≥ n0. Thus, by using equation
(3.17) and (3.18). By the previous facts and axiom (ζ2), we get

0 ≤ ζ(d(Sη, Sθpn),M(η, θn+1) + LN(η, θn+1))

< M(η, θn+1) + LN(η, θn+1)− d(Sη, Sθpn).

Taking n→∞, we obtain

0 < M(η, θn+1) + LN(η, θn+1)− d(Sω, Υω)

= 0− d(Sω, Υω).

This implies that η = Υω = Sω and η is the (unique) point of coincidence of
S and Υ.

In the same way, we can prove that % = Sω = Υω is a (unique) point of
coincidence of S and Υ, when (S(X), d) is complete.

Suppose that (X, d) is complete, Υ is continuous and S and Υ are compati-
ble. Since (X, d) is complete, there exists ω ∈ X such that Sθn = Υθn+1 → ω
when n→∞. As Υ is continuous, we obtain

lim
n→∞

Υ (Sθn) = Υω ⇒ d(Υ (Sθn), Υω) = 0 (3.19)

and

lim
n→∞

Υ (Υθn+1) = Υω ⇒ d(Υ (Υθn+1), Υω) = 0. (3.20)

We claim that limn→∞ S(Υθn) = Sω. If not, then there exists a subsequence
{S(Υθpk)} of {S(Υθn)} such that

S(Υθpγ ) 6= Sω (3.21)

for all k ∈ N. There does not exist some k1 ∈ N such that for all n ≥ k1, we
get Υ (Υθn+1) = Υω. Thus, there exists a partial subsequence {Υ (Υθpτ )} of
{Υ (Υθn+1)} such that

Υ (Υθpτ ) 6= Υω. (3.22)

for all τ ∈ N. Hence, by (3.21) and (3.22), we have d(S(Υθpγ ), Sω) > 0 and
d(Υ (Υθpτ ), Υω) > 0 for all γ, τ ∈ N. By using axiom (ζ2), we obtain

0 ≤ ζ(d(S(Υθpγ ), Sω),M(Υ (Υθpτ ), Υω)) + LN(Υ (Υθpτ ), Υω)

< M(Υ (Υθpτ ), Υω)) + LN(Υ (Υθpτ ), Υω)− d(S(Υθpγ ), Sω)

= d(Υ (Υθpτ ), Υω)− d(S(Υθpγ ), Sω).

Thus, we have

d(S(Υθpγ ), Sω) < d(Υ (Υθpτ ), Υω)→ 0 as γ →∞
which is a contradiction. This implies that

lim
n→∞

d(S(Υθn), Sω) = 0. (3.23)
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Moreover, as S and Υ are compatible, we have

lim
n→∞

d(S(Υθn), Υ (Sθn) = 0. (3.24)

Using equation (3.19), (3.23) and (3.24), we get

d(Sω, Υω) ≤ d(Sω, S(Υθn)) + d(S(Υθn), Υ (Sθn))

+ d(Υ (Sθn), Υω)→ 0 as n→∞.

Therefore,

d(Sω, Υω) = 0.

This implies that % := Υω = Sω and % is the (unique) point of coincidence of
S and Υ . �

Theorem 3.5. Let (X, d) be a complete metric space, S be a Berinde type
(Z, Υ )-contraction with respect to ζ ∈ Z and suppose that there exists a Picard-
Jungck sequence {θn} of (S, Υ ). Also assume that, (S(X), d) or (Υ (X), d) is
complete and S and Υ are weakly compatible. Then S and Υ have a unique
common fixed point in X.

Proof. It follows Theorem 3.4, S and Υ have a unique point of coincidence.
Moreover, as S and T are weakly compatible, then according to Theorem 2.8,
they have a unique common fixed point in X. �

Example 3.6. Let X = {0, 4, 5} and d : X × X → [0,∞) be defined by
d(θ, ϑ) = |θ − ϑ|. Define S, Υ : X → X as

S =

(
0 4 5
4 4 4

)
and Υ =

(
0 4 5
5 4 0

)
.

Suppose ζ(t, s) =
s

s+ 1
− t.

Case (i). For θ = 0, ϑ = 4. From (2.6), we have

ζ(d(S0, S4),M(0, 4) + LN(0, 4)),

where

M(0, 4) = max

{
d(Υ0, Υ4), d(Υ0, S0), d(Υ4, S4),

d(Υ0, S4) + d(Υ4, S0)

2

}
= max

{
d(5, 4), d(5, 4), d(4, 4),

d(5, 4) + d(4, 4)

2

}
= max

{
1, 1, 0,

1

2

}
= 1
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and

N(0, 4) = min {d(Υ0, S0), d(Υ4, S4), d(Υ0, S4), d(Υ4, S0)}
= min {d(5, 4), d(4, 4), d(5, 4), d(4, 4)}
= min {1, 0, 1, 0}
= 0.

(3.25)

Thus,

ζ(d(S0, S4),M(0, 4) + LN(0, 4)) = ζ(0, 1) =
1

1 + 1
− 0 =

1

2
≥ 0.

Case (ii). For θ = 0, ϑ = 5. From (2.6), we have

ζ(d(S0, S5),M(0, 5) + LN(0, 5)),

where

M(0, 5) = max

{
d(Υ0, Υ5), d(Υ0, S0), d(Υ5, S5),

d(Υ0, S5) + d(Υ5, S0)

2

}
= max

{
d(5, 0), d(5, 4), d(0, 4),

d(5, 4) + d(0, 4)

2

}
= max

{
5, 1, 4,

5

2

}
= 5

and

N(0, 5) = min {d(Υ0, S0), d(Υ5, S5), d(Υ0, S5), d(Υ5, S0)}
= min {d(5, 4), d(0, 4), d(5, 4), d(0, 4)}
= min {1, 4, 1, 4}
= 1.

(3.26)

Thus,

ζ(d(S0, S5),M(0, 5) + LN(0, 5)) = ζ(0, 6) =
1

6 + 1
− 0 =

1

7
≥ 0.

Case (iii). For θ = 4, ϑ = 5. From (2.6), we have

ζ(d(S4, S5),M(4, 5) + LN(4, 5)),
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where

M(4, 5) = max

{
d(Υ4, Υ5), d(Υ4, S4), d(Υ5, S5),

d(Υ4, S5) + d(Υ5, S4)

2

}
= max

{
d(4, 0), d(4, 4), d(0, 4),

d(4, 4) + d(0, 4)

2

}
= max {4, 0, 4, 2}
= 4

and

N(4, 5) = min {d(Υ4, S4), d(Υ5, S5), d(Υ4, S5), d(Υ5, S4)}
= min {d(4, 4), d(0, 4), d(4, 4), d(0, 4)}
= min {0, 4, 0, 4}
= 0.

(3.27)

Thus,

ζ(d(S4, S5),M(4, 5) + LN(4, 5)) = ζ(0, 4) =
1

4 + 1
− 0 =

1

5
≥ 0.

Therefore, all the assumptions of Theorem 3.5 are satisfied and by the con-
clusion of it, S and Υ have a unique point of coincidence θ = 4 and also it is
their unique common fixed point.
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[11] A. Chanda, B. Damjanović and L.K. Dey, Fixed point results on θ-metric spaces via
simulation functions, Filomat, 31(11) (2017), 3365–3375.

[12] S. Komal, P. Kumam and D. Gopal, Best proximity point for Z-contraction and Suzuki
type Z-contraction mappings with an application to fractional calculus, Appl. Gen.
Topol., 17(2) (2016), 185–198.

[13] P. Kumam, D. Gopal and L. Budhiya, A new fixed point theorem under Suzuki type
Z-contraction mappings, J. Math. Anal., 8(1) (2017), 113–119.

[14] C. Mongkolkeha, Y.J. Cho and P. Kumam, Fixed point theorems for simulation functions
in b-metric spaces via the wt-distance, Appl. Gen. Topol., 18(1) (2017), 91–105.

[15] A. Nastasi and P. Vetro, Fixed point results on metric and partial metric spaces via
simulation functions, J. Nonlinear Sci. Appl., 8(6) (2015), 1059–1069.

[16] A. Padcharoen, P. Kumam, P. Saipar and P. Chaipunya, Generalized Suzuki type Z-
contraction in complete metric spaces, Kragujevac J. Math., 42(3) (2018), 419–430.
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