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Abstract. We are concerned with degree theory for some classes of upper demicontinuous

set-valued operators of monotone type with weakly compact convex values in reflexive sepa-

rable Banach spaces. As extensions of the celebrated Leray-Schauder degree, the basic idea

is to use an elliptic super-regularization method by means of suitable compact embeddings

due to Browder and Ton.

1. Introduction

Degree theory may be one of the most effective tools in the study of non-
linear equations, with application to nonlinear problems in partial differential
equations. Leray and Schauder [10] introduced a degree theory for compact
perturbations of the identity in Banach spaces, based on the classical Brouwer
degree [3] for continuous functions in the Euclidean space.

Browder [4] constructed a topological degree for demicontinuous operators
of class (S+) in reflexive Banach spaces in the technique of Galerkin approxi-
mation; see also [13, 14]. Berkovits and Tienari [2] developed a degree theory
for set-valued operators of class (S+) in reflexive separable Banach spaces with
a method of elliptic super-regularization, with application to elliptic prob-
lems with discontinuous nonlinearity. In [2], a compact embedding theorem of
Browder and Ton [5] is used to apply a set-valued form of the Leray-Schauder
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degree due to Ma [11], still speaking of the Leray-Schauder degree; see also
[6, 12]. This approach is more elegant than the Galerkin method.

Moreover, Berkovits [1] considered an extension of the Leray-Schauder de-
gree by replacing the compact perturbation by a composition of operators of
monotone type, called an abstract Hammerstein operator. Actually, a given
boundary value problem can be transformed into an abstract Hammerstein
equation which will be solved.

In this direction, we focus on degree theory for set-valued operators of mono-
tone type in reflexive Banach spaces in two kind of ways, as extensions of the
Leray-Schauder degree.

In the present paper, the first goal is to investigate the degree theory of
Berkovits and Tienari for upper demicontinuous set-valued operators of class
(S+) in a more precise manner. The study is based on the Leray-Schauder
degree by means of compact embeddings. To do this, it is supposed that the
operators considered have at least weakly compact values. It is emphasized
that the closed-valued condition in [2] is not sufficient for the use of the Leray-
Schauder degree.

In a similar situation, the second goal is to develop a topological degree
theory for bounded upper demicontinuous set-valued operators of class (S+)T
with weakly compact convex values, where T is a bounded continuous operator
of class (S+). As a set-valued version of [1], the method of approach is to
use the degree theory for the class (S+); see [7]. It is remarkable that weak
compactness is only required in place of compactness. This is due to the
compact embedding theorem.

Applying the (S+)-degree theory, some elliptic problems with discontinuous
nonlinearity were dealt with in [2, 8]. Based on the (S+)T -degree, the Dirichlet
boundary value problem related to the p-Laplacian with discontinuous nonlin-
earity was discussed in [7], via an abstract Hammerstein equation; see [1, 9]
for the continuous case.

In this note, we first introduce the Leray-Schauder degree for compact set-
valued perturbations of the identity in normed spaces in Section 2. This is
applied to construct a degree theory for upper demicontinuous operators of
class (S+) with weakly compact convex values in reflexive Banach spaces in
Section 3. Based on the (S+)-degree, we demonstrate a degree theory for
upper demicontinuous operators of class (S+)T in Section 4.
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2. The Leray-Schauder degree

As a set-valued version of the celebrated Leray-Schauder degree, we intro-
duce a degree theory of Ma [11] for compact set-valued perturbations of the
identity in normed spaces; see also [6, 12].

Definition 2.1. Let X and Y be two normed spaces. A set-valued operator
F : Ω ⊂ X → 2Y is said to be

(1) upper semicontinuous (u.s.c.) if the set F−1(A) = {u ∈ Ω |Fu∩A 6= ∅}
is closed for each closed set A in Y ;

(2) upper demicontinuous (u.d.c.) if F−1(A) is closed for each weakly
closed set A in Y ;

(3) bounded if it takes bounded sets into bounded sets;
(4) compact if it is upper semicontinuous and the image of any bounded

set is relatively compact;
(5) of Leray-Schauder type if it is of the form I + C, where I denotes the

identity operator and C is compact.

Given a nonempty set Ω in a normed space X, let Ω and ∂Ω denote the
closure and the boundary of Ω in X, respectively. Let Br(u) denote the open
ball in X of positive radius r centered at u.

For our aim, we need the topological degree for set-valued operators of
Leray-Schauder type in infinite dimensional normed spaces given in [11], still
speaking of the Leray-Schauder degree. The basic idea is to use the Brouwer
degree [3] by reduction to continuous single-valued operators in finite dimen-
sional normed spaces.

Theorem 2.2. Let G be any bounded open set in a normed space X and
suppose that F : G → 2X is a compact set-valued operator with nonempty
compact convex values. If h /∈ (I + F )(∂G), then the (LS)-degree of I + F on
G over h is defined as an integer, denoted by dLS(I + F,G, h), and it has the
following properties:

(a) (Existence) If dLS(I + F,G, h) 6= 0, then h ∈ (I + F )(G).
(b) (Additivity) If G1 and G2 are two disjoint open subsets of G such that

h /∈ (I + F )(G\(G1 ∪G2)), then we have

dLS(I + F,G, h) = dLS(I + F,G1, h) + dLS(I + F,G2, h).

(c) (Homotopy Invariance) Suppose that H : [0, 1] × G → 2X is a com-
pact set-valued homotopy with nonempty compact convex values. If
h : [0, 1] → X is a continuous map such that h(t) /∈ (I + H(t, ·))(∂G)
for all t ∈ [0, 1], then the value of dLS(I +H(t, ·), G, h(t)) is constant
for all t ∈ [0, 1].

(d) (Normalization) For any h ∈ G, we have dLS(I,G, h) = 1.
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The Leray-Schauder degree stated in Theorem 2.2 will be a main ingredient
for the introduction to degree function for set-valued operators of monotone
type in the next section.

3. The (S+)-degree

In this section, we introduce a degree theory for the class of upper demicon-
tinuous operators of class (S+) in reflexive separable Banach spaces, due to
Berkovits and Tienari [2]. The study is mainly based on the Leray-Schauder
degree with the aid of compact embeddings.

Let X be a Banach space with dual space X∗. The symbol 〈·, ·〉X denotes
the dual pairing between X∗ and X in this order. The symbol → (⇀) stands
for strong (weak) convergence.

Definition 3.1. (1) A set-valued operator F : Ω ⊂ X → 2X
∗

is said to be
of class (S+) if for any sequence (un) in Ω and any sequence (vn) in X∗ with
vn ∈ Fun such that

un ⇀ u in X and lim sup
n→∞

〈vn, un − u〉 ≤ 0,

we have un → u in X.
(2) A homotopy H : [0, 1] × Ω → 2X

∗
is said to be of class (S+) if for any

sequence (tn, un) in [0, 1]×Ω and any sequence (wn) in X∗ with wn ∈ H(tn, un)
such that

tn → t in [0, 1], un ⇀ u in X, and lim sup
n→∞

〈wn, un − u〉 ≤ 0,

we have un → u in X.

For the discussion later, we now consider the duality operator which is of
class (S+). In fact, the existence of the operator lies in the Hahn-Banach
theorem; see [4, Proposition 8].

Proposition 3.2. Let (X, ‖·‖) be a reflexive Banach space which is renormed
so that both X and X∗ are locally uniformly convex. Then there exists a unique
bicontinuous operator J of X onto X∗, called the duality operator, such that
〈Ju, u〉 = ‖u‖2 and ‖Ju‖ = ‖u‖ for all u ∈ X. Moreover, the duality operator
J : X → X∗ is of class (S+).

For the construction of a new degree, we need the following compact em-
bedding theorem of Browder and Ton [5, Theorem 1]. This enables us to apply
the Leray-Schauder degree or the (S+)-degree.

Proposition 3.3. Let Y be a reflexive separable Banach space. Then there
exists a separable Hilbert space W and a compact linear injection φ : W → Y
such that φ(W ) is dense in Y .
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In what follows, let X be a real reflexive separable Banach space, renormed
if necessary, such that X and X∗ are locally uniformly convex.

In the sense of Proposition 3.3, let φ : W → X be a compact linear injection
defined on a separable Hilbert space W such that φ(W ) is dense in X. Define

another operator φ̂ : X∗ →W by setting

(φ̂(v), w)W = 〈v, φ(w)〉X for all w ∈W and all v ∈ X∗, (3.1)

where (·, ·)W denotes the inner product of the space W . Obviously, φ̂ is also
a compact linear injection.

Suppose that F : G ⊂ X → 2X
∗

is a bounded upper demicontinuous oper-
ator with nonempty weakly compact convex values, where G is an open set in
X. To this F , we associate a family of operators defined by

Fλ := I + λφφ̂F for any positive number λ.

Then each Fλ : G→ 2X is an operator of Leray-Schauder type with nonempty
compact convex values.

Remark 3.4. In fact, the condition “F has closed-values” in [2] is not suffi-
cient for applying the Leray-Schauder degree given in Theorem 2.2. For this
reason, it should be required that F has weakly compact values. This implies,
by the strong continuity of φ̂, that φφ̂F has compact values.

Let k(X∗) denote the collection of nonempty weakly compact convex subsets
of X∗. For any bounded open set G in X, we consider the following class of
operators:

FS+(G) := {F : G→ k(X∗) | F is bounded, u.d.c., and of class (S+)}.

We begin with a fundamental result needed for the construction of the
(S+)-degree and its properties.

Lemma 3.5. Let G be any bounded open set in X and A be any closed subset
of G. Suppose that H : [0, 1]×G→ k(X∗) is a bounded upper demicontinuous
homotopy of class (S+). If h : [0, 1] → X∗ is a continuous map such that
h(t) /∈ H(t, A) for all t ∈ [0, 1], then there is a positive number λ0 such that

hλ(t) /∈ H(t, ·)λ(A) for all t ∈ [0, 1] and all λ ∈ [λ0,∞),

where H(t, ·)λ = I + λφφ̂H(t, ·) and hλ(t) = λφφ̂h(t).

Proof. Let A be any closed subset of G such that h(t) /∈ H(t, A) for all t ∈
[0, 1]. Assume to the contrary that there are sequences (λn) in (0,∞) with
λn →∞, (tn) in [0, 1], and (un) in A such that

un + λnφφ̂(wn − h(tn)) = 0 for each n ∈ N, (3.2)
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where wn ∈ H(tn, un). Passing to subsequences if necessary, we may suppose
that

tn → t in [0, 1], un ⇀ u in X, and wn ⇀ w in X∗. (3.3)

Then we obtain from (3.2) and (3.3) that

φφ̂(wn)→ φφ̂h(t) = φφ̂(w) in X,

which implies by the injectivity of φφ̂ that w = h(t). Hence it follows from
(3.2) and (3.3) that

lim sup
n→∞

〈wn, un − u〉 = lim sup
n→∞

〈wn − h(tn), un〉

= lim sup
n→∞

〈wn − h(tn),−λnφφ̂(wn − h(tn))〉

= lim sup
n→∞

[
−λn‖φ̂(wn − h(tn))‖2W

]
≤ 0,

where ‖ · ‖W denotes the norm of the Hilbert space W in the sense of (3.1).
SinceH is of class (S+) and is upper demicontinuous with weakly closed values,
we have un → u ∈ A and h(t) ∈ H(t, u), which contradicts the hypothesis that
h(t) /∈ H(t, A). This completes the proof. �

Corollary 3.6. Suppose that G is a bounded open set in X and F ∈ FS+(G).
If h /∈ F (∂G), then there exists a positive number λ0 such that hλ /∈ Fλ(∂G) for
all λ ∈ [λ0,∞) and the value of dLS(Fλ, G, hλ) is constant for all λ ∈ [λ0,∞).

Proof. Applying Lemma 3.5 with H(t, ·) = F and h(t) = h for all t ∈ [0, 1]
and A = ∂G, we can choose a positive number λ0 such that hλ /∈ Fλ(∂G) for
all λ ∈ [λ0,∞). Next, let λ1 and λ2 be arbitrary elements of [λ0,∞) such that
λ1 < λ2. Let H : [0, 1]×G→ 2X be defined by

H(t, u) := Fλ(t)(u) for (t, u) ∈ [0, 1]×G,
where λ(t) = (1 − t)λ1 + tλ2 for t ∈ [0, 1]. Then H is a homotopy of Leray-
Schauder type with nonempty compact convex values such that

hλ(t) /∈ H(t, ∂G) for all t ∈ [0, 1].

Hence it follows from the homotopy invariance of the Leray-Schauder degree
in Theorem 2.2 that

dLS(Fλ1 , G, hλ1) = dLS(H(0, ·), G, hλ(0))
= dLS(H(1, ·), G, hλ(1))
= dLS(Fλ2 , G, hλ2).

Since λ1 and λ2 were arbitrarily chosen in [λ0,∞), We conclude the value of
dLS(Fλ, G, hλ) is constant for all λ ∈ [λ0,∞). This completes the proof. �
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In view of Corollary 3.6, we are now in a position to define a topological
degree for the class FS+ .

Definition 3.7. Suppose that F ∈ FS+(G), where G is a bounded open set
in X. If h 6∈ F (∂G), then we define a degree function as follows:

dS+(F,G, h) := lim
λ→∞

dLS(Fλ, G, hλ),

where Fλ = I + λφφ̂F and hλ = λφφ̂h.

In order to justify our degree in a more precise manner, we replaced the
closed-valued condition on F in [2] by weakly compact-valued one, as men-
tioned in Remark 3.4.

Using the Leray-Schauder theory, we can deduce some of the basic properties
of the (S+)-degree.

Theorem 3.8. Let G be any bounded open subset of X and suppose that
F ∈ FS+(G). Then the following properties are satisfied:

(a) (Existence) If dS+(F,G, h) 6= 0, then the inclusion h ∈ Fu has a
solution in G.

(b) (Additivity) If G1 and G2 are two disjoint open subsets of G such that
h /∈ F (G\(G1 ∪G2)), then we have

dS+(F,G, h) = dS+(F,G1, h) + dS+(F,G2, h).

(c) (Homotopy Invariance) Suppose that H : [0, 1] × G → k(X∗) is a
bounded upper demicontinuous homotopy of class (S+). If h : [0, 1]→
X∗ is a continuous map such that h(t) /∈ H(t, ∂G) for all t ∈ [0, 1],
then the value of dS+(H(t, ·), G, h(t)) is constant for all t ∈ [0, 1].

(d) (Normalization) If h ∈ J(G), then we have dS+(J,G, h) = 1.

Proof. (a) If h /∈ Fu for all u ∈ G, then a special case of constant homotopy of
Lemma 3.5 implies that there is a positive number λ0 such that hλ /∈ Fλ(G) for
all λ ∈ [λ0,∞). It follows from part (a) of Theorem 2.2 that dLS(Fλ, G, hλ) = 0
for all λ ∈ [λ0,∞). By Definition 3.7, we have dS+(F,G, h) = 0.

(b) Applying Lemma 3.5 with A = G\(G1 ∪ G2), we take a positive number
λ0 such that

hλ /∈ Fλ(G\(G1 ∪G2)) for all λ ∈ [λ0,∞).

By the additivity of the Leray-Schauder degree in Theorem 2.2, we have

dLS (Fλ, G, hλ) = dLS (Fλ, G1, hλ) + dLS (Fλ, G2, hλ) for all λ ∈ [λ0,∞),

which implies by Definition 3.7 that

dS+(F,G, h) = dS+(F,G1, h) + dS+(F,G2, h).
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(c) By Lemma 3.5, we can choose a positive number λ0 such that

hλ(t) /∈ H(t, ·)λ(∂G) for all t ∈ [0, 1] and all λ ∈ [λ0,∞).

Let λ ∈ (λ0,∞) be arbitrary but fixed. Consider H̃ : [0, 1]×G→ 2X given by

H̃(t, u) := H(t, ·)λ(u) for (t, u) ∈ [0, 1]×G.

Then H̃ is a homotopy of Leray-Schauder type with nonempty compact convex
values such that

hλ(t) /∈ H̃(t, u) for all (t, u) ∈ [0, 1]× ∂G.
Hence it follows from the homotopy invariance of the degree in Theorem 2.2
that the value of dLS(H̃(t, ·), G, hλ(t)) is constant for all t ∈ [0, 1]. For any
t1, t2 ∈ [0, 1], we have by Definition 3.7

dS+(H(t1, ·), G, h(t1)) = lim
λ→∞

dLS(H(t1, ·)λ, G, hλ(t1))

= lim
λ→∞

dLS(H(t2, ·)λ, G, hλ(t2))

= dS+(H(t2, ·), G, h(t2)).

(d) Let h be any element of J(G). Then there is an element u0 ∈ G with
Ju0 = h. We may choose a positive number R with ‖u0‖ < R such that

dS+(J,G, h) = dS+(J,BR(0), h).

Since the duality operator J is positively homogeneous, it is clear that Ju 6= th
for all (t, u) ∈ [0, 1]× ∂BR(0). Taking h(t) = th for t ∈ [0, 1], we obtain from
part (c) that

dS+(J,BR(0), h) = dS+(J,BR(0), 0).

Moreover, we have by Definition 3.7

dS+(J,BR(0), 0) = lim
λ→∞

dLS(Jλ, BR(0), 0),

where Jλ = I + λφφ̂J . Note by Proposition 3.2 and (3.1) that

〈J(tu), u+ λφφ̂J(tu)〉 = t‖u‖2 + λ‖φ̂J(tu)‖2W
for (t, u) ∈ [0,∞)×X and λ ∈ (0,∞). For any positive number λ, we have

Iu+ tλφφ̂Ju 6= 0 for all (t, u) ∈ [0, 1]× ∂BR(0),

which implies by the homotopy invariance and normalization of the degree in
Theorem 2.2 that

dLS(Jλ, BR(0), 0) = dLS(I,BR(0), 0) = 1.

Therefore, dS+(J,G, h) = 1. This completes the proof. �

Applying the degree theory for the class FS+ , we can consider elliptic prob-
lems with discontinuous nonlinearity; see [2, 8].
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4. The (S+)T -degree

In this section, we demonstrate a degree theory for another class of up-
per demicontinuous operators of class (S+)T with elliptic super-regularization
method, as in the previous section.

Let X be a reflexive Banach space with dual space X∗. Identifying the
bidual space X∗∗ with X, we sometimes write 〈y, x〉 for 〈x, y〉X∗ for x ∈ X
and y ∈ X∗.

Definition 4.1. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that
Ω ⊂ Ω1. A set-valued operator F : Ω ⊂ X → 2X is said to be:

(1) of class (S+)T if for any sequence (un) in Ω and any sequence (vn) in
X with vn ∈ Fun such that un ⇀ u in X, Tun ⇀ y in X∗, and

lim sup
n→∞

〈vn, Tun − y〉 ≤ 0,

we have un → u in X;
(2) T -quasimonotone, written F ∈ (QM)T , if for any sequence (un) in Ω

and any sequence (vn) in X with vn ∈ Fun such that un ⇀ u in X
and Tun ⇀ y in X∗, we have

lim inf
n→∞

〈vn, Tun − y〉 ≥ 0.

Notice that if F : Ω ⊂ X → 2X is a bounded operator of class (S+)T and
T : Ω → X∗ is a bounded continuous operator, where Ω is closed in X, then
F is T -quasimonotone. Moreover, the operators of class (S+)T are invariant
under (QM)T -perturbations. See [9] for the single-valued case.

In the following, let X be a real reflexive separable Banach space which has
been renormed so that both X and X∗ are locally uniformly convex.

According to Proposition 3.3 with Y = X∗, let φ : W → X∗ be a compact
linear injection on a separable Hilbert space W such that φ(W ) is dense in

X∗. Let φ̂ : X →W be defined by

(φ̂(v), w)W = 〈v, φ(w)〉X∗ for all w ∈W and all v ∈ X, (4.1)

where (·, ·)W denotes the inner product of the space W .
Suppose that F : G ⊂ X → 2X is a bounded upper demicontinuous operator

with nonempty weakly compact convex values and T : G→ X∗ is a bounded
continuous operator of class (S+), where G is a bounded open set in X. To
this F , we associate a family of operators given by

Fλ := T + λφφ̂F for any positive number λ.

Then it is obvious that each Fλ : G→ 2X
∗

is a bounded upper semicontinuous
operator of class (S+) with nonempty compact convex values.
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Let k(X) denote the collection of nonempty weakly compact convex subsets
of X. For any bounded open set G in X, we consider the following classes of
operators:

F1(G) := {T : G→ X∗ | T is bounded, continuous, and of class (S+)},
FT (G) := {F : G→ k(X) | F is bounded, u.d.c., and of class (S+)T },

with T ∈ F1(G), called an essential inner map to F .

We need an elementary result for the construction of the (S+)T -degree. For
completeness, we give the proof; see also [7, Lemma 2.3].

Lemma 4.2. Let G be any bounded open set in X and A be any closed subset
of G. Suppose that F ∈ FT (G), where T ∈ F1(G). If h /∈ F (A), then there
exists a positive number λ0 such that hλ /∈ Fλ(A) for all λ ∈ [λ0,∞), where

hλ = λφφ̂h.

Proof. Let A be any closed subset of G such that h /∈ F (A). Assume that
there exist sequences (λn) in (0,∞) with λn → ∞ and (un) in A such that
hλn ∈ Fλn(un) for all n ∈ N, that is,

Tun + λnφφ̂(vn − h) = 0, (4.2)

where vn ∈ Fun. Without loss of generality, we may suppose that

un ⇀ u in X, vn ⇀ v in X, and yn := Tun ⇀ y in X∗. (4.3)

As before, we get φφ̂(vn) → φφ̂(h) = φφ̂(v) in X∗, which implies v = h, that
is, vn ⇀ h in X. Hence it follows from (4.2) and (4.3) that

lim sup
n→∞

〈vn, yn − y〉 = lim sup
n→∞

〈vn − h,−λnφφ̂(vn − h)〉

= lim sup
n→∞

[
−λn‖φ̂(vn − h)‖2W

]
≤ 0,

where ‖ · ‖W denotes the norm of the Hilbert space W in the sense of (4.1).
Since F is of class (S+)T , we have un → u ∈ A and h ∈ Fu, in contradiction
to the hypothesis that h /∈ F (A). This completes the proof. �

Corollary 4.3. Suppose that G is a bounded open set in X and F ∈ FT (G),
where T ∈ F1(G). If h /∈ F (∂G), then there is a positive number λ0 such that
hλ /∈ Fλ(∂G) for all λ ∈ [λ0,∞) and the value of dS+(Fλ, G, hλ) is constant
for all λ ∈ [λ0,∞).

Proof. According to Lemma 4.2 with A = ∂G, we find a positive number λ0
such that hλ /∈ Fλ(∂G) for all λ ∈ [λ0,∞). Let λ1, λ2 ∈ [λ0,∞) with λ1 < λ2.
Then Fλ, λ ∈ [λ1, λ2], defines a bounded upper semicontinuous homotopy of
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class (S+) with nonempty compact convex values such that hλ /∈ Fλ(∂G) for all
λ ∈ [λ1, λ2]. Hence it follows from the homotopy invariance of the (S+)-degree
in Theorem 3.8 that

dS+(Fλ1 , G, hλ1) = dS+(Fλ2 , G, hλ2).

Consequently, the value of dS+(Fλ, G, hλ) is constant for all λ ∈ [λ0,∞). This
completes the proof. �

Now we can define a topological degree for the class FT . As a set-valued
version of [1], it is emphasized that the closed-valued condition on F in [7] is
replaced by weakly compact-valued one.

Definition 4.4. Suppose that F ∈ FT (G) with T ∈ F1(G), where G is a
bounded open set in X. If h 6∈ F (∂G), then we define a degree function by

d(F,G, h) := lim
λ→∞

dS+(Fλ, G, hλ),

where Fλ = T + λφφ̂F and hλ = λφφ̂h.

Actually, the value of d(F,G, h) is independent of the choice of essential
inner map T . In the single-valued case, it was proved in [1, Corollary 6.2].

Definition 4.5. For a bounded operator T : G ⊂ X → X∗, a homotopy
H : [0, 1]×G→ 2X is said to be of class (S+)T if for any sequence (tn, un) in
[0, 1]×G and any sequence (wn) in X with wn ∈ H(tn, un) such that

tn → t in [0, 1], un ⇀ u in X, Tun ⇀ y in X∗, and lim sup
n→∞

〈wn, Tun−y〉 ≤ 0,

we have un → u in X.

The following result shows that every affine homotopy with a common es-
sential inner map T is of class (S+)T .

Lemma 4.6. Suppose that F, S ∈ FT (G) with T ∈ F1(G), where G is a
bounded open set in X. Then affine homotopy H : [0, 1]×G→ 2X defined by

H(t, u) := (1− t)Fu+ tSu for (t, u) ∈ [0, 1]×G
is bounded, upper demicontinuous, and of class (S+)T and it has nonempty
weakly compact convex values. It is called an admissible affine homotopy with
the common essential inner map T .

Proof. For the proof of the fact that H is of class (S+)T , we refer to [7, Lemma
1.6]. It is easy to verify that H(t, u) is weakly compact and convex for each
(t, u) ∈ [0, 1]×G. �

The degree function d defined above has the usual properties whose proof
is mainly based on the (S+)-degree in the previous section.
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Theorem 4.7. Let G be any bounded open set in X and suppose that F ∈
FT (G), where T ∈ F1(G). Then the following properties are satisfied:

(a) (Existence) If d(F,G, h) 6= 0, then the inclusion h ∈ Fu has a solution
in G.

(b) (Additivity) If G1 and G2 are two disjoint open subsets of G such that
h /∈ F (G \ (G1 ∪G2)), then we have

d(F,G, h) = d(F,G1, h) + d(F,G2, h).

(c) (Homotopy invariance) Suppose that H : [0, 1] × G → k(X) is an
admissible affine homotopy of class (S+)T with a common essential
inner map T ∈ F1(G). If h : [0, 1]→ X is a continuous map such that
h(t) /∈ H(t, ∂G) for all t ∈ [0, 1], then the value of d(H(t, ·), G, h(t)) is
constant for all t ∈ [0, 1].

(d) (Normalization) For any h ∈ G, we have d(I,G, h) = 1.

Proof. Assertions (a)-(c) follow from the corresponding properties of the (S+)-
degree stated in Theorem 3.8, together with Lemma 4.2 and Definition 4.4.
(d) Note by Proposition 3.2 that the duality operators J : X → X∗ and
J−1 : X∗ → X are bounded, continuous, and of class (S+). It is known in
[1, 9] that the identity operator I = J−1 ◦ J belongs to FJ(G). Let h be any
element of G. Let R be a positive number with ‖h‖ < R such that

d(I,G, h) = d(I,BR(0), h).

Since Iu 6= th for all (t, u) ∈ [0, 1]× ∂BR(0), this implies that

d(I,BR(0), h) = d(I,BR(0), 0) = lim
λ→∞

dS+(Iλ, BR(0), 0),

where Iλ = J + λφφ̂I. Note by (4.1) that

〈u, Ju+ tλφφ̂(u)〉X∗ = ‖u‖2 + tλ‖φ̂(u)‖2W
for (t, u) ∈ [0,∞)×X and λ ∈ (0,∞). For any positive number λ, we have

Ju+ tλφφ̂(u) 6= 0

for all (t, u) ∈ [0, 1]× ∂BR(0), which implies by parts (c) and (d) of Theorem
3.8 that

dS+(Iλ, BR(0), 0) = dS+(J,BR(0), 0) = 1.

Therefore, d(I,G, h) = 1, what we wanted to prove. �

Based on the degree theory for the class FT , the Dirichlet boundary value
problem related to the p-Laplacian with discontinuous nonlinearity was con-
sidered in [7]; see also [1, 9] for the continuous case.
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Remark 4.8. So far we have observed two degree functions for upper demi-
continuous set-valued operators of monotone type in reflexive separable Ba-
nach spaces, as extensions of the Leray-Schauder degree. The main point in
this note was that (weak) compactness of values should be needed instead of
closedness when handling certain compositions with set-valued operators in
the construction of our degree, as we saw in Remark 3.4.
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