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Abstract. We are concerned with degree theory for some classes of upper demicontinuous
set-valued operators of monotone type with weakly compact convex values in reflexive sepa-
rable Banach spaces. As extensions of the celebrated Leray-Schauder degree, the basic idea
is to use an elliptic super-regularization method by means of suitable compact embeddings
due to Browder and Ton.

1. INTRODUCTION

Degree theory may be one of the most effective tools in the study of non-
linear equations, with application to nonlinear problems in partial differential
equations. Leray and Schauder [10] introduced a degree theory for compact
perturbations of the identity in Banach spaces, based on the classical Brouwer
degree [3] for continuous functions in the Euclidean space.

Browder [4] constructed a topological degree for demicontinuous operators
of class (S54+) in reflexive Banach spaces in the technique of Galerkin approxi-
mation; see also [13, 14]. Berkovits and Tienari [2] developed a degree theory
for set-valued operators of class (S;) in reflexive separable Banach spaces with
a method of elliptic super-regularization, with application to elliptic prob-
lems with discontinuous nonlinearity. In [2], a compact embedding theorem of
Browder and Ton [5] is used to apply a set-valued form of the Leray-Schauder
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degree due to Ma [11], still speaking of the Leray-Schauder degree; see also
[6, 12]. This approach is more elegant than the Galerkin method.

Moreover, Berkovits [1] considered an extension of the Leray-Schauder de-
gree by replacing the compact perturbation by a composition of operators of
monotone type, called an abstract Hammerstein operator. Actually, a given
boundary value problem can be transformed into an abstract Hammerstein
equation which will be solved.

In this direction, we focus on degree theory for set-valued operators of mono-
tone type in reflexive Banach spaces in two kind of ways, as extensions of the
Leray-Schauder degree.

In the present paper, the first goal is to investigate the degree theory of
Berkovits and Tienari for upper demicontinuous set-valued operators of class
(S4+) in a more precise manner. The study is based on the Leray-Schauder
degree by means of compact embeddings. To do this, it is supposed that the
operators considered have at least weakly compact values. It is emphasized
that the closed-valued condition in [2] is not sufficient for the use of the Leray-
Schauder degree.

In a similar situation, the second goal is to develop a topological degree
theory for bounded upper demicontinuous set-valued operators of class (S1)r
with weakly compact convex values, where T is a bounded continuous operator
of class (S4). As a set-valued version of [1], the method of approach is to
use the degree theory for the class (54 ); see [7]. It is remarkable that weak
compactness is only required in place of compactness. This is due to the
compact embedding theorem.

Applying the (S5 )-degree theory, some elliptic problems with discontinuous
nonlinearity were dealt with in [2, 8]. Based on the (S5 )7-degree, the Dirichlet
boundary value problem related to the p-Laplacian with discontinuous nonlin-
earity was discussed in [7], via an abstract Hammerstein equation; see [1, 9]
for the continuous case.

In this note, we first introduce the Leray-Schauder degree for compact set-
valued perturbations of the identity in normed spaces in Section 2. This is
applied to construct a degree theory for upper demicontinuous operators of
class (S;) with weakly compact convex values in reflexive Banach spaces in
Section 3. Based on the (S, )-degree, we demonstrate a degree theory for
upper demicontinuous operators of class (54 ) in Section 4.



Degree theory for set-valued operators of monotone type 533

2. THE LERAY-SCHAUDER DEGREE

As a set-valued version of the celebrated Leray-Schauder degree, we intro-
duce a degree theory of Ma [11] for compact set-valued perturbations of the
identity in normed spaces; see also [6, 12].

Definition 2.1. Let X and Y be two normed spaces. A set-valued operator
F:Qc X — 2" is said to be

(1) upper semicontinuous (u.s.c.) if the set F~1(A) = {u € Q| FunA # 0}
is closed for each closed set A in Y

(2) upper demicontinuous (u.d.c.) if F~1(A) is closed for each weakly
closed set A in Y;

(3) bounded if it takes bounded sets into bounded sets;

(4) compact if it is upper semicontinuous and the image of any bounded
set is relatively compact;

(5) of Leray-Schauder type if it is of the form I + C, where I denotes the
identity operator and C' is compact.

Given a nonempty set € in a normed space X, let Q and 9Q denote the
closure and the boundary of 2 in X, respectively. Let B,(u) denote the open
ball in X of positive radius r centered at u.

For our aim, we need the topological degree for set-valued operators of
Leray-Schauder type in infinite dimensional normed spaces given in [11], still
speaking of the Leray-Schauder degree. The basic idea is to use the Brouwer
degree [3] by reduction to continuous single-valued operators in finite dimen-
sional normed spaces.

Theorem 2.2. Let G be any bounded open set in a normed space X and
suppose that F : G — 2% is a compact set-valued operator with nonempty
compact convez values. If h ¢ (I + F)(0G), then the (LS)-degree of I + F on
G over h is defined as an integer, denoted by dps(I + F,G,h), and it has the
following properties:

(a) (Existence) If drs(I + F,G,h) # 0, then h € (I + F)(G).

(b) (Additivity) If G1 and G2 are two disjoint open subsets of G such that

h ¢ (I+ F)(G\(G1UG3)), then we have

dLS(I+F7G7h) :dLS(I+F7Gl7h)+dLS(I+F5G23h)'

(c) (Homotopy Invariance) Suppose that H : [0,1] x G — 2% is a com-
pact set-valued homotopy with nonempty compact convex values. If
h:[0,1] = X is a continuous map such that h(t) ¢ (I + H(t,-))(9G)
for allt € [0,1], then the value of drs(I + H(t,-), G, h(t)) is constant
for all t € [0,1].

(d) (Normalization) For any h € G, we have dps(I,G,h) = 1.
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The Leray-Schauder degree stated in Theorem 2.2 will be a main ingredient
for the introduction to degree function for set-valued operators of monotone
type in the next section.

3. THE (S4)-DEGREE

In this section, we introduce a degree theory for the class of upper demicon-
tinuous operators of class (S;) in reflexive separable Banach spaces, due to
Berkovits and Tienari [2]. The study is mainly based on the Leray-Schauder
degree with the aid of compact embeddings.

Let X be a Banach space with dual space X*. The symbol (-, -) x denotes
the dual pairing between X* and X in this order. The symbol — (—) stands
for strong (weak) convergence.

Definition 3.1. (1) A set-valued operator F : Q € X — 2% is said to be
of class (S4) if for any sequence (uy,) in €2 and any sequence (v,) in X™* with
vy, € Fu, such that

up — win X and limsup (v, u, —u) <0,

n—oo

we have u, — v in X.
(2) A homotopy H: [0,1] x Q — 2% is said to be of class (Sy) if for any
sequence (ty, u,) in [0, 1] xQ and any sequence (wy,) in X* with w,, € H(ty, uy,)
such that

tn, — tin [0,1], up = v in X, and limsup (wy, u, —u) <0,
n—oo

we have u,, - u in X.

For the discussion later, we now consider the duality operator which is of
class (S4). In fact, the existence of the operator lies in the Hahn-Banach
theorem; see [4, Proposition §|.

Proposition 3.2. Let (X, ||-||) be a reflexive Banach space which is renormed
so that both X and X* are locally uniformly conver. Then there exists a unique
bicontinuous operator J of X onto X*, called the duality operator, such that
(Ju,u) = ||ul|* and || Ju|| = ||ul| for all u € X. Moreover, the duality operator
J: X — X* is of class (S4).

For the construction of a new degree, we need the following compact em-
bedding theorem of Browder and Ton [5, Theorem 1]. This enables us to apply
the Leray-Schauder degree or the (S )-degree.

Proposition 3.3. Let Y be a reflexive separable Banach space. Then there
exists a separable Hilbert space W and a compact linear injection ¢ : W —'Y
such that (W) is dense in'Y.
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In what follows, let X be a real reflexive separable Banach space, renormed
if necessary, such that X and X* are locally uniformly convex.

In the sense of Proposition 3.3, let ¢ : W — X be a compact linear injection
defined on a separable Hilbert space W such that ¢(W) is dense in X . Define

another operator (;AS : X* — W by setting
(¢(v), w)w = (v,¢p(w))x for all w e W and all v € X*, (3.1)

where (-, )y denotes the inner product of the space W. Obviously, ¢ is also
a compact linear injection.

Suppose that F : G € X — 2% is a bounded upper demicontinuous oper-
ator with nonempty weakly compact convex values, where G is an open set in
X. To this F, we associate a family of operators defined by

P=1+ /\¢<ng for any positive number .

Then each Fy : G — 2% is an operator of Leray-Schauder type with nonempty
compact convex values.

Remark 3.4. In fact, the condition “F has closed-values” in [2] is not suffi-
cient for applying the Leray-Schauder degree given in Theorem 2.2. For this
reason, it should be required that F' has weakly compact values. This implies,
by the strong continuity of ¢2, that <bq3F has compact values.

Let k(X ™) denote the collection of nonempty weakly compact convex subsets
of X*. For any bounded open set GG in X, we consider the following class of
operators:

Fs.(G) :={F: G — k(X*) | F is bounded, u.d.c., and of class (S})}.

We begin with a fundamental result needed for the construction of the
(S4+)-degree and its properties.

Lemma 3.5. Let G be any bounded open set in X and A be any closed subset
of G. Suppose that H : [0,1] x G — k(X*) is a bounded upper demicontinuous
homotopy of class (Si). If h : [0,1] — X* is a continuous map such that
h(t) ¢ H(t,A) for all t € [0,1], then there is a positive number \g such that

ha(t) ¢ H(t,-)x(A) for allt €[0,1] and all X € [Ag, 00),
where H(t,-)x = I + A\pdH (t,-) and hy(t) = A\pPh(t).

Proof. Let A be any closed subset of G such that h(t) ¢ H(t, A) for all t €
[0,1]. Assume to the contrary that there are sequences (\,) in (0,00) with
Ap — 00, (t,) in [0,1], and (u,) in A such that

Un + A@d(wy, — h(tn)) =0 for each n € N, (3.2)
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where w,, € H(t,,uy). Passing to subsequences if necessary, we may suppose
that

tp, >t in[0,1], wu, —u inX, and w,—w in X" (3.3)
Then we obtain from (3.2) and (3.3) that

dd(wn) = ¢Ph(t) = ¢p(w) in X,

which implies by the injectivity of ¢¢ that w = h(t). Hence it follows from
(3.2) and (3.3) that

lim sup (wy,, up, — u) = limsup (w, — h(t,), uy)
n—oo n—oo

= lim sup (wy,, — h(t,), —/\nqﬁfﬁ(wn — h(tn)))

n—oo
= limsup [~ Aul|d(wn — h(t)) ]
n—oo
<0,
where || - ||y denotes the norm of the Hilbert space W in the sense of (3.1).

Since H is of class (S ) and is upper demicontinuous with weakly closed values,
we have u, — u € A and h(t) € H(t,u), which contradicts the hypothesis that
h(t) ¢ H(t, A). This completes the proof. O

Corollary 3.6. Suppose that G is a bounded open set in X and F € Fs,(G).
Ifh ¢ F(0G), then there exists a positive number Ao such that hy ¢ F\(0G) for
all A € [N, 00) and the value of d,s(Fx, G, hy) is constant for all X € [Ag, 00).

Proof. Applying Lemma 3.5 with H(¢,-) = F and h(t) = h for all ¢ € [0,1]
and A = 0G, we can choose a positive number Ao such that hy ¢ F\(0G) for
all A € [Ag, 00). Next, let A; and Ap be arbitrary elements of [\, c0) such that
A1 < A2 Let H :[0,1] x G — 2% be defined by
H(t,u) := Fy@)(u) for (t,u) € [0,1] x G,
where A(t) = (1 —t)\1 +tAg for t € [0,1]. Then H is a homotopy of Leray-
Schauder type with nonempty compact convex values such that
haw ¢ H(t,0G) for all t € [0,1].

Hence it follows from the homotopy invariance of the Leray-Schauder degree
in Theorem 2.2 that

drs(Fx,, Gy hy,) = drs(H(0,-), G, hyy)
== dLS(H(17 ')7G7h)\(l))
=drs(Fx,, G, hy,).

Since A1 and Ay were arbitrarily chosen in [Ag, 00), We conclude the value of
drs(Fy, G, hy) is constant for all A € [Ag,00). This completes the proof. O
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In view of Corollary 3.6, we are now in a position to define a topological
degree for the class Fg, .

Definition 3.7. Suppose that F' € Fg, (G), where G is a bounded open set
in X. If h ¢ F(OG), then we define a degree function as follows:

dS+ (Fu G7 h) = )\h_)IEO dLS(F)\)G7 h)\)a

where Fy = I 4+ A¢pdF and hy = Apoh.

In order to justify our degree in a more precise manner, we replaced the
closed-valued condition on F' in [2] by weakly compact-valued one, as men-
tioned in Remark 3.4.

Using the Leray-Schauder theory, we can deduce some of the basic properties
of the (S5 )-degree.

Theorem 3.8. Let G be any bounded open subset of X and suppose that

F € Fs,.(G). Then the following properties are satisfied:

(a) (Existence) If ds, (F,G,h) # 0, then the inclusion h € Fu has a
solution in G.

(b) (Additivity) If G1 and Go are two disjoint open subsets of G such that
h ¢ F(G\(G1U Gs)), then we have

ds, (F,G,h) =ds, (F,G1,h) +ds, (F,Ga,h).

(c) (Homotopy Invariance) Suppose that H : [0,1] x G — k(X*) is a
bounded upper demicontinuous homotopy of class (S+). If h: [0,1] —
X* is a continuous map such that h(t) ¢ H(t,0G) for all t € [0,1],
then the value of ds, (H(t,-),G,h(t)) is constant for all t € [0,1].

(d) (Normalization) If h € J(G), then we have dg, (J,G,h) = 1.

Proof. (a) If h ¢ Fu for all u € G, then a special case of constant homotopy of

Lemma 3.5 implies that there is a positive number A\g such that hy ¢ F)(G) for
all A € [Ag, 00). It follows from part (a) of Theorem 2.2 that drg(Fy, G, hy) =0
for all A € [\, 00). By Definition 3.7, we have dg, (F,G,h) = 0.

(b) Applying Lemma 3.5 with A = G\(G; U Gs), we take a positive number
Ao such that

hy & Fx(G\(G1UGs)) for all A € [Ag, 00).
By the additivity of the Leray-Schauder degree in Theorem 2.2, we have
drs (Fx, G, hy) = dps (Fx, G1,hy) + dig (Fx, G2, hy) - for all A € [Ag, 00),
which implies by Definition 3.7 that
ds, (F,G,h) =ds, (F,G1,h) +ds, (F,Ga,h).
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(c) By Lemma 3.5, we can choose a positive number Ao such that
hx(t) ¢ H(t,-)x(0G) for all ¢t € [0,1] and all A € [Ag, 00).
Let A € (Mg, 00) be arbitrary but fixed. Consider H : [0,1] x G — 2% given by

H(t,u) :== H(t,-)x(u) for (t,u) €[0,1] x G.

Then H is a homotopy of Leray-Schauder type with nonempty compact convex
values such that

ha(t) & H(t,u) for all (t,u) € [0,1] x OG.

Hence it follows from the homotopy invariance of the degree in Theorem 2.2
that the value of drs(H(t,-),G, hy(t)) is constant for all ¢ € [0,1]. For any
t1,ty € [0,1], we have by Definition 3.7

ds, (H(t1,"),G,h(t1)) = JHm drs(H(t1,-)x, G, ha(t1))
= lim drs(H(tz,)x G, ha(t2))
=dgs, (H(t2,-),G, h(t2)).

(d) Let h be any element of J(G). Then there is an element uy € G with
Jug = h. We may choose a positive number R with |lug|| < R such that

ds,(J,G,h) = ds, (J, Br(0),h).

Since the duality operator J is positively homogeneous, it is clear that Ju # th
for all (t,u) € [0,1] x 0Bg(0). Taking h(t) = th for ¢t € [0, 1], we obtain from
part (c) that

ds, (J, Br(0),h) = ds. (J, Br(0),0).

Moreover, we have by Definition 3.7
ds+(J, BR(O), 0) = Ali_}n(}o dLs(J)\, BR(O), O),

where Jy = I + A\¢d.J. Note by Proposition 3.2 and (3.1) that
(J(tu),u+ AddJ (tu)) = tul® + N|J (tu)[|Fy
for (t,u) € [0,00) x X and A € (0,00). For any positive number A\, we have
Tu+thgppJu # 0 for all (¢, u) € [0,1] x dBg(0),

which implies by the homotopy invariance and normalization of the degree in
Theorem 2.2 that

drs(Jx, Br(0),0) = drs(I, Br(0),0) = 1.
Therefore, ds, (J,G,h) = 1. This completes the proof. O

Applying the degree theory for the class Fg, , we can consider elliptic prob-
lems with discontinuous nonlinearity; see [2, §].
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4. THE (S4)r-DEGREE

In this section, we demonstrate a degree theory for another class of up-
per demicontinuous operators of class (54 )r with elliptic super-regularization
method, as in the previous section.

Let X be a reflexive Banach space with dual space X*. Identifying the
bidual space X** with X, we sometimes write (y,z) for (z,y)x+ for z € X
and y € X*.

Definition 4.1. Let T : Q; € X — X™* be a bounded operator such that
Q C Q. A set-valued operator F': Q € X — 2% is said to be:

(1) of class (S4)r if for any sequence (u,) in €2 and any sequence (vy,) in
X with v, € Fu, such that v, = v in X, Tu,, — y in X*, and
lim sup (v, Tu, —y) <0,
n—oo
we have u, — u in X;

(2) T-quasimonotone, written F' € (QM ), if for any sequence (uy) in
and any sequence (v,) in X with v, € Fu, such that v, — uin X
and Tu, — y in X*, we have

lim inf (vy,, Tu, — y) > 0.
n—oo
Notice that if F': Q € X — 2% is a bounded operator of class (S )r and
T:Q — X*is a bounded continuous operator, where €2 is closed in X, then
F is T-quasimonotone. Moreover, the operators of class (5S4 ) are invariant
under (QM)rp-perturbations. See [9] for the single-valued case.

In the following, let X be a real reflexive separable Banach space which has
been renormed so that both X and X* are locally uniformly convex.

According to Proposition 3.3 with Y = X* let ¢ : W — X* be a compact
linear injection on a separable Hilbert space W such that ¢(W) is dense in
X*. Let ¢ : X — W be defined by

(p(v), w)w = (v, p(w))x+ for all we W and all v € X, (4.1)

where (-, ) denotes the inner product of the space W.

Suppose that F' : G € X — 2% is a bounded upper demicontinuous operator
with nonempty weakly compact convex values and T : G — X* is a bounded
continuous operator of class (S;), where G is a bounded open set in X. To
this F', we associate a family of operators given by

=T+ )\qﬁqBF for any positive number A.

Then it is obvious that each Fy : G — 2% is a bounded upper semicontinuous
operator of class (S4) with nonempty compact convex values.
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Let k(X)) denote the collection of nonempty weakly compact convex subsets
of X. For any bounded open set G in X, we consider the following classes of
operators:

Fi1(G) :={T: G — X* | T is bounded, continuous, and of class (S5 )},
Fr(G) :={F: G — k(X) | F is bounded, u.d.c., and of class (Sy)r},

with T' € F1(G), called an essential inner map to F.

We need an elementary result for the construction of the (Sy)r-degree. For
completeness, we give the proof; see also [7, Lemma 2.3].

Lemma 4.2. Let G be any bounded open set in X and A be any closed subset
of G. Suppose that F € Fr(G), where T € F1(G). If h ¢ F(A), then there
exists a positive number Ao such that hy ¢ Fy(A) for all A € [\, 00), where

hy = Apoh.

Proof. Let A be any closed subset of G such that h ¢ F(A). Assume that
there exist sequences (A,) in (0,00) with A, — oo and (u,) in A such that
hy, € F,(uy) for all n € N, that is,

Tty + Anpd(vp, —h) =0, (4.2)
where v, € Fu,. Without loss of generality, we may suppose that
Up = u in X, v, =v in X, and y, :=Tu, =y in X". (4.3)

As before, we get ¢gz3(vn) — gbq@(h) = qquAS(v) in X*, which implies v = h, that
is, v, — h in X. Hence it follows from (4.2) and (4.3) that

lim sup <Um Yn — y> = lim sup <Un —h, _)\n¢¢§(vn - h))

n—oo n—oo
= Timsup [~ An (o, — B[}
n—oo
<0,
where || - ||y denotes the norm of the Hilbert space W in the sense of (4.1).
Since F' is of class (S4)r, we have u,, — u € A and h € Fu, in contradiction
to the hypothesis that h ¢ F(A). This completes the proof. O

Corollary 4.3. Suppose that G is a bounded open set in X and F € Fr(G),
where T € Fi1(G). If h ¢ F(0QG), then there is a positive number Ao such that
hy & FX\(OG) for all X € [Ao,00) and the value of ds, (Fx,G,hy) is constant

for all X € [Ag, 00).

Proof. According to Lemma 4.2 with A = 0G, we find a positive number g
such that h) §é F)\(aG) for all A € [)\0,00). Let A\, Ag € [)\0, OO) with A1 < As.
Then Fy, A € [A1, \2], defines a bounded upper semicontinuous homotopy of
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class (S4) with nonempty compact convex values such that hy ¢ Fy(9G) for all
A € [A1, A2]. Hence it follows from the homotopy invariance of the (S5 )-degree
in Theorem 3.8 that

d5+ (F)\17G7 h)\l) = d5+ (F)\27 G7 h)\Q)-

Consequently, the value of dg, (F)\, G, hy) is constant for all A € [Ag, 00). This
completes the proof. O

Now we can define a topological degree for the class Fpr. As a set-valued
version of [1], it is emphasized that the closed-valued condition on F in [7] is
replaced by weakly compact-valued one.

Definition 4.4. Suppose that F' € Fp(G) with T € F1(G), where G is a
bounded open set in X. If h ¢ F(0G), then we define a degree function by

d(F,G,h) = lim ds. (F),G,hy),
—00

where F\ = T + A¢¢F and hy = Apoh.

Actually, the value of d(F,G,h) is independent of the choice of essential
inner map 7. In the single-valued case, it was proved in [1, Corollary 6.2].

Definition 4.5. For a bounded operator T' : G C X — X*, a homotopy
H:[0,1] x G — 2X is said to be of class (S, )7 if for any sequence (t,,u,) in
[0,1] x G and any sequence (wy,) in X with w,, € H(t,,uy) such that

t, — tin[0,1], u, = uin X, Tu, — y in X*, and limsup (w,, Tu, —y) <0,

n—oo

we have u,, — v in X.

The following result shows that every affine homotopy with a common es-
sential inner map 7' is of class (Sy)7.

Lemma 4.6. Suppose that F,S € Fr(G) with T € Fi(G), where G is a

bounded open set in X. Then affine homotopy H: [0,1] x G — 2% defined by
H(t,u) := (1 —t)Fu+tSu for (t,u) € [0,1] x G

is bounded, upper demicontinuous, and of class (Sy)r and it has nonempty
weakly compact convex values. It is called an admissible affine homotopy with
the common essential inner map T.

Proof. For the proof of the fact that H is of class (S ), we refer to [7, Lemma
1.6]. It is easy to verify that H(¢,u) is weakly compact and convex for each
(t,u) € [0,1] x G. O

The degree function d defined above has the usual properties whose proof
is mainly based on the (S5 )-degree in the previous section.
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Theorem 4.7. Let G be any bounded open set in X and suppose that F €

Fr(G), where T € F1(G). Then the following properties are satisfied:
(a) (Existence) If d(F,G,h) # 0, then the inclusion h € Fu has a solution
in G.
(b) (Additivity) If Gy and G4 are two disjoint open subsets of G such that
h ¢ F(G\ (G1 UG2)), then we have

d(F, G, h) = d(F, Gl,h) +d(F, Gg,h).

(c) (Homotopy invariance) Suppose that H: [0,1] x G — k(X) is an
admissible affine homotopy of class (S4)r with a common essential

inner map T' € Fi(G). If h : [0,1] — X is a continuous map such that
h(t) ¢ H(t,0G) for all t € [0, 1], then the value of d(H(t,-), G, h(t)) is
constant for all ¢ € [0, 1].

(d) (Normalization) For any h € G, we have d(I,G,h) = 1.

Proof. Assertions (a)-(c) follow from the corresponding properties of the (S5 )-
degree stated in Theorem 3.8, together with Lemma 4.2 and Definition 4.4.
(d) Note by Proposition 3.2 that the duality operators J : X — X* and
J71 1 X* — X are bounded, continuous, and of class (S;). It is known in
[1, 9] that the identity operator I = J~! o J belongs to F;(G). Let h be any
element of G. Let R be a positive number with ||h|| < R such that

d(Ia G, h) = d(lv BR(O)7 h)
Since Tu # th for all (t,u) € [0,1] x 9Br(0), this implies that
d(I, Br(0),h) = d(I, Br(0),0) = )\lim ds, (I, Br(0),0),
—00

where I = J + A¢¢I. Note by (4.1) that
(Tt IAd(w)) - = lull® + e\[3(w) I3y
for (t,u) € [0,00) x X and X € (0,00). For any positive number X\, we have
Ju + tApp(u) # 0

for all (¢,u) € [0, 1] x dBR(0), which implies by parts (c) and (d) of Theorem
3.8 that
ds, (Ix, Br(0),0) = ds, (J, Br(0),0) = 1.
Therefore, d(I,G,h) = 1, what we wanted to prove. O
Based on the degree theory for the class Fr, the Dirichlet boundary value

problem related to the p-Laplacian with discontinuous nonlinearity was con-
sidered in [7]; see also [1, 9] for the continuous case.
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Remark 4.8. So far we have observed two degree functions for upper demi-
continuous set-valued operators of monotone type in reflexive separable Ba-
nach spaces, as extensions of the Leray-Schauder degree. The main point in
this note was that (weak) compactness of values should be needed instead of
closedness when handling certain compositions with set-valued operators in
the construction of our degree, as we saw in Remark 3.4.
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